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EXISTENCE, UNIQUENESS AND ASYMPTOTIC
BEHAVIOR FOR NONLOCAL PARABOLIC PROBLEMS
WITH DOMINATING GRADIENT TERMS.

GUY BARLES AND ERWIN TOPP

ABSTRACT. In this paper we deal with the well-posedness of Dirichlet
problems associated to nonlocal Hamilton-Jacobi parabolic equations in
a bounded, smooth domain €2, in the case when the classical boundary
condition may be lost. We address the problem for both coercive and
noncoercive Hamiltonians: for coercive Hamiltonians, our results rely
more on the regularity properties of the solutions, while noncoercive
case are related to optimal control problems and the arguments are
based on a careful study of the dynamics near the boundary of the
domain. Comparison principles for bounded sub and supersolutions are
obtained in the context of viscosity solutions with generalized boundary
conditions, and consequently we obtain the existence and uniqueness
of solutions in C(Q x [0, +00)) by the application of Perron’s method.
Finally, we prove that the solution of these problems converges to the
solutions of the associated stationary problem as ¢t — +oo under suitable
assumptions on the data.

1. INTRODUCTION.

In this paper we are concerned with the existence, uniqueness and as-
ymptotic behavior for the solution of the following Cauchy problem set in
Q = 2 x(0,400) where Q2 C R" is a bounded domain with smooth boundary

ow — Z(u(-t),z) + H(x,t,u, Du) = 0, in Q
(CP) u(@,t) = @(z,t), in Q<
u(z,0) = wuo(z), in Q.

where u : R"™ x [0,+00) — R stands for the unknown function depending
on the “space” variable x € R™ and the “time” variable ¢ € [0, +00), Opu is
the derivative of u with respect to t and Du is its gradient with respect to
x. We denote by Q' = Q¢ x (0,4+00) and the function ¢ : Q! — R is
assumed to be continuous and bounded; it represents the prescribed value
of u in Q°** (“Dirichlet boundary condition”).

For a € (0,2) fixed, Z represents an integro-differential operator of order
less or equal than «, defined in the following way: for € R™ and ¢ regular
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enough at x and bounded in R", Z(¢, z) has the general form

(1) Z6.0) = [ (6o +2) - o(a) ~ Lp(Do(a), K o| 1,

where K : R™ — R is a measurable, nonnegative and bounded function.
Such an operator is called elliptic, and ranges from zero-th order non lo-
cal operators in the case K (2)|z|~("*®) has finite measure (see [18]) to the
fractional Laplacian of order «, which is the case when K is equal to a
well-known constant Cy, o > 0 (see [21]).

Our main interest is to prove the well-posedness of problem (CP) in the
context of loss of the boundary condition, namely existence and uniqueness
of a viscosity solution in C'(Q) which does not agree with ¢ on 92 x (0, +00).
Such losses of boundary conditions were studied in [7] whose main result was
that, if H has some natural growth depending on the ellipticity properties
of Z, then there is no loss of boundary condition. Our key assumptions on
«a and H will imply that our framework is exactly the opposite, i.e. the H
term will be (in a suitable sense) stronger than the Z one.

We recall that, in the second-order case, there are two well-known exam-
ples of problems developing this kind of loss of boundary conditions. The
first case is the case of the degenerate parabolic problems where the 7 is
replaced by a second-order linear operator: the equation becomes

O — 3 Tr(alw) DPu(x)) + He,tu, Du) =0 in @ x [0, +00),

but we assume that the operator is degenerate, i.e. the symmetric matrix
a(x) is nonnegative for any = but can have 0 eigenvalues. Such problems,
in particular in the linear case where studied by Keldysh [27] and Radke-
vich [28, 29] by pde methods (solutions in a weak sense) and by Freidlin [24]
through a probabilistic approach. The first general results by a viscosity
solutions’ approach handling real losses of Dirichlet boundary conditions
for second-order equations appears in [5] following some previous results for
first-order equations (see [12, 13]). More specifically, in problems which arise
from the study of optimal exit time problems, one is led to Hamilton-Jacobi
equations where H has the Bellman form

(1.2) H(x,t,u,p) = \u+ Zlelg{—b(w,t,ﬂ) -p— fa(z,t,B)},

where A > 0, B is a compact metric space (the control-space) and b, f
are continuous and bounded functions (see [2] and [23] for the connections
between control problems and such equations).

Loss of boundary conditions may arise at some point 2o € Q when a(zg) is
singular, and more precisely when a(zg)n(zg) = 0 where n(z¢) the unit outer
normal vector to 992 at zg. This condition indicates the lack of diffusion in
the normal direction at zp. In this context, in order to decide if there is (or
not) a loss of boundary condition, one has to examine the first-order term
in the equation together with the geometrical properties of the boundary :



3

we do not give details here and refer instead to [5]. Despite of the difficulty
connected to the loss of boundary conditions, existence and uniqueness for
such problems can be obtained in the context of viscosity solutions with
generalized boundary condition (see [5], [9], [20] [14] and references therein).

The second example, and in some sense which can be seen as being closer
to our framework, is the case of uniformly parabolic second-order problem
associated to a Hamiltonian with superquadratic growth in Dwu, namely
equations with the form

(1.3) 0w — Au+ H(x,u,Du) =0 in Q x [0,400),
where
(1.4) H(z,t,u,p) = Mu+[p[™ = f(z), m>2,

where A > 0 and f € C(£2). In this case, losses of boundary conditions
come from the relative strenght of the second-order term and the |Du|™-
term : in the superquadratic case, the |Du|™-term may impose such losses
of boundary data. In [8], [33], the existence and uniqueness of solutions is
obtained (taking into account these losses of Dirichlet boundary conditions)
and the asymptotic behavior of the solution of the problem as ¢ — +oo
is also studied in [33]. In this task, the discount rate A in problems with
Hamiltonians as (1.2) or (1.4) is determinant on the asymptotic behavior.
For instance, as it can be seen in [33], if A > 0 then the asymptotic behavior
of problems like (1.3) is the uniform convergence in C(£2) as t — +oc to the
solutions of the associated stationary problem. However, if the case A\ = 0
different behaviors may arise and it is well-known that the ergodic problem
plays a key role, see [15]. We mention here that such as ergodic behavior for
nonlocal operators is studied by the authors in collaboration with S. Koike
and O. Ley [11], see also [6].

This (very brief and incomplete) state-of-the-art on parabolic Dirichlet
problems with loss of boundary conditions allows us to be more specific
on the contents of this paper : we obtain the well-posedness of problem
(CP) in two cases which can be understood as the extension of the both
types of second-order problems we presented above. The first one concerns
coercive Hamiltonians as (1.4) for which the superquadratic condition has to
be replaced in our context by the superfractional condition m > «, making
the first-order term the leading term in the equation. We remark that we
have no other additional restriction to m (in particular, we can deal with
m < 1) and then we allow the study of Hamiltonians which are concave in
Du.

On the other hand, in the case of problem (CP) associated to Bellman-
type Hamiltonians with the form (1.2), the diffusive role of Z defined in (1.1)
is of weaker order than the first-order term when we assume o < 1. However,
in contrast with the degenerate second-order case, losses of boundary condi-
tions arise even if we impose an uniform ellipticity condition in the sense of
Caffarelli and Silvestre [16], which is related with the nonintegrability of K¢
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at the origin (see assumption (UE) below). As in [34], the well-posedness of
(CP) is obtained through a careful examination of the effects of the drift b
at each point of 9 x (0,+00) and suitable assumptions.

Organization of the Paper: In Section 2 we provide the notion of solution
for (CP). In section 3 we precise what we mean with (CP) in coercive and
Bellman form, introduce the assumptions of each problem and present the
main results. In section 4 we study the behavior of sub and supersolutions
on the parabolic boundary. Section 5 is devoted to regularity issues for
each problem. The proof of the main results are given in section 6 and the
existence, uniqueness and large time behavior is addressed in section 7.

2. BASIC NOTATION AND NOTION OF SOLUTION.

We start with the basic notation. For § > 0 and =z € R™ we write Bs(x)
as the ball of radius § centered at z and By if z = 0. For an arbitrary set
A, we denote da(x) = dist(x,0A) the signed distance function to dA which
is nonnegative for z € A and nonpositive for x ¢ A. For Q) we simply write
d(x) = dya(x) and define the set 25 as the open set of all z € Q such that
d(xz) < d. By the smoothness of the domain, there exists a fixed number
do > 0, depending only on €2, such that d is smooth in the set of points z
such that |d(z)| < o (see [26]). For x € R” and X € R, we write

Q—z={2:24+2€Q} and AN2={Az:z€Q}.

By a modulus of continuity w we mean a nondecreasing, sublinear, con-
tinuous function w : [0, +00) — R such that w(0) = 0.

Given a set A C R", we denote USC(A) the set of real valued, upper
semicontinuous (usc for short) functions. In the analogous way, we write
LSC(A) the set of real valued, lower semicontinuous (Isc for short) functions.

Before presenting the viscosity evaluation, we need to introduce some
notation related with the nonlocal term Z. For a € (0,2), we denote

K%(2) = K(2)|z|~™*) | for 2z #0.

As we mentioned in the introduction, we are interested in the case «
represents the order of Z and therefore, in the case a € (0,1), for each
xz € R" and ¢ : R” — R bounded and smooth at z, we write

) T(o,2) = [ (oo +2) - o) K (2)de

We remark that in the case K is symmetric (that is, K(z) = K(—z) for
z € R™), then (1.1) is equivalent to (2.1) when « € (0,1).
For z,p € R", A C R"™ and ¢ a bounded function, we define

22 TAGe) = [ [6+2) - o) - 1alp, K

R7NA
We write in a simpler way Z[A](¢,x) = Z[A](p,z, Dé(x)) when ¢ €
L®(R™) N C*(B;) for some & > 0, Z(¢, ,p) = Z[R"|(¢, z,p) when A = R™.
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In the case o € (0,1), the presence of the compensator (namely, the term
1p(D¢(x), z)) is not necessary to give a sense to the nonlocal term and for
this reason we drop it in (2.2).

If ¢ € C*(Bs(x) x (t —5,t+9)) and w : R® x R — R is a bounded
measurable function, we define

Es(w, ¢, z,t)
(23) = 8t¢(x7t) - Z[Bg]((ﬁ(,t),.%’) _I[Bg](w('7t)7x7D¢(xat))
+ H(z,t,w(z,t), Dp(x,t)),

where “E” stands for “evaluation”.
For T' > 0, we define the sets

Qr =Qx (0,T]; 9'Qr =00 x (0,T]; QF'=Q°x (0,T).

We are going to consider finite time horizon problem associated with (CP)

ow — Z[u(-,t)] + H(z,t,u,Du) =0 in Qr
(CPr) u(z,t) =op(z,t) inQF

u(z,0) =wup(xz) in Q,

For a function u € USC(2 x [0,T]) (resp u € LSC(Q x [0,T))), we define
its upper (resp. lower) p-extension as the function defined in R" x [0, 7] by

u?(z,t) (resp. uy(x,t))

(2.4) u(x,t) if (z,t) € Q x [0, 7]
=< o(z,t) if (z,t) € Q° x [0,T]
max (resp. min){u(z,t),o(x,t)} if (z,t) € 92 x [0,T],
We provide a definition of solution to problem (CPt) which can be ex-

tended naturally to (CP).

Definition 2.1. A function u € USC(Q x [0,T]) is a viscosity subsolution
of (CPy) if for any smooth function ¢ : R™ x [0,T] — R, any mazimum
point (xq,t0) € Q x [0,T] of u? — ¢ in Bs(xo) x (to — 0,9 + ) NR™ x [0, T
with 6 > 0, we have the inequality

Es(u?, ¢, z0,t0) <0 if (zo,t0) € Qr,
Hlil’l{E(;(UfP, QS’ o, tO)a u(an tO) - 80(330, tO)} <0 Zf To € aQa
min{E5(usO7 ¢7 x07t0)7u(m07t0) - uO(xO)} <0 lfto = 07

where Es is defined in (2.3).

A function v € LSC(Q2 x [0,T]) is a viscosity supersolution of (CPt) if
for any smooth function ¢ : R™ x [0,T] — R, any minimum point (zo,t0) €
Q% [0,T] of v, — ¢ in Bs(xg) x (to — 6,t0 +0) NR™ x [0, T] with § > 0, we
have the inequality

Es(vp, ¢, z0,t0) = 0 if (zo,t0) € Qr,
maX{E5(U<p, Qb, Zo, tO)? U(an 750) - Qp(x(), tO)} > 0 Zf Ty € aQa
max{FEs(u?, ¢, xg, to), u(zo,to) — up(zo)} >0 if to = 0.



Finally, a viscosity solution of (CPr) is a function whose upper and lower
semicontinuous envelopes are sub and supersolution of the problem, respec-
tively.

The above definition is basically the same as the one presented in [1], [7],
[10], [30] and [31]. Written in that way we highlight the goal of this paper,
which is to state the existence and uniqueness of a solution of (CP) in C'(Q).

We note that Definition 2.1 interprets the points at Q x {T'} as interior
points, which is consistent with the classical definition of the Cauchy prob-
lem for parabolic equations (see [22],[25]). Of course, a weaker definition of
viscosity solution (concerning functions defined only in Qx [0, T')) can be set,
obtaining the same results presented in this paper. However, we avoid this
extra difficulty here since its consideration has no significant contribution to

the development of our problem.

3. ASSUMPTIONS AND MAIN RESULTS.

As we mentioned in the introduction, in this paper we study the well-
posedness for problem (CP) in two cases, depending on the features of H.
Basically, we are interested in the case when H has a coercive nature in the
gradient term, and the case H has a Bellman form and therefore it is not
necessarily coercive.

3.1. Coercive Hamiltonian and Examples. In this case we restrict the
time dependence of H by the assumption

(A0) There exists Hy : QxR xR"™ — R continuous and f : Qx [0, +00) — R
uniformly continuous and bounded such that
H(x,t,r,p) = Ho(z,r,p) — f(z,1),
for all z € Q,t > 0,7 € R and p € R™.
Let « € (0,2) and Z as in (1.1), (2.1). We will consider superfractional

coercive Hamiltonians, where the gradient growth is given by Hy through
the basic assumption

(A1) There exists m > « and Cy > 0 such that, for all R > 0 there exists
Cr > 0 satisfying

Ho(x,r,p) 2 CO|p|m — CR,
for all z € Q, p € R" and |r| < R.

However, we must be careful if the coercivity is sub or superlinear. For
this, we split the analysis depending on the gradient growth of Hy, that is

e Sublinear Coercivity: Assume (A0) holds. We say that H is sublinearly
coercive if Hy satisfies (A1) with m < 1, and the following continuity con-
dition holds

(A2-a) For all R > 0, there exists a modulus of continuity wg satisfying
Ho(y,r,p) — Ho(z,7,p +q) < wr(lz — y[(1 + |p]) +|4]),



for all z,y € Q, |r| < R, p,g € R", |q| < 1.

e Superlinear Coercivity: Assume (A0) holds. We say that H is superlinearly
coercive if Hy satisfies

(Al-b) There exists m > max{1,a} and ag > 0 such that, for all R > 0,
there exists a constant C'r such that

Ho(z,r,p) — pHo(z, p ', p”'p) < <(1 —m)ao|p|™ + CR) (1—p)
foralluy<1,z€Q,peR™ |r|<R.

(A2-b) If m is given by Assumption (A1-b), for all R > 0, there exists a
modulus of continuity wg satisfying

Ho(y,m,p) — Ho(z,7,p + q) < wgr(lz — y)) (1 + |p|™) + [p" 'wr(|q]),
for allz,y € Q, [r| < R, p,g e R" , |q| < 1.

Remark 3.1. Note that Condition (A1-b) gives us the gradient coercivity
of Hy since it implies (A1) with m > max{1, a}.

In order to describe the kind of Hamiltonians we have in mind, we in-
troduce the following examples : in the first one, we assume m < 1 and
consider

H(.%',t,?”,p) = al(m)’p‘m + a2(x)’p‘l + )\(.%')T' - f(l',t),
while in the second case, we suppose m > 1 and
H(z,t,7r,p) = a1(2)|p|™ + az(2)|p|' + b(z) - p + A(z)r — f(,1).

In both cases, | < m, a1, a2, )\, f : Q@ — R are continuous functions with
A > 0. We assume in addition that ai,as are Lipschitz continuous and
a1 > Cy for some fixed constant Cy > 0.

These Hamiltonians are coercive in Du and in the case m > 1 we can
include transport terms with a Lipschitz continuous vector field b : Q — R™.
The above assumptions are easily checkable in both cases.

3.2. Bellman Hamiltonian. Let B a compact metric space, b : 2x [0, +00)x
B — R™ and f,\: Qx [0,+00) x B — R continuous and bounded functions.
We say that H has a Bellman form if, for t € [0,+o0), r € R, z € Q,p € R",
H(x,t,r,p) can be written as

(HB) H(m,t,r,p) = Zlelg{Aﬁ(x’t)r - bﬁ(x’t) b= fﬂ(x’t)}a

and (X) below. In (Hg) we have adopted

and satisfies the assumptions (L)
= b(z,t, ) and in the same way for the other

the abuse of notation bg(z,t)
functions.

For H with the form (Hp) we impose the uniform space-time Lipschitz
asumption:
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There exists L > 0 such that, for all 8 € B, (z,s), (y,t) € Q x [0,+00)), we
have

(L) bg(x,8) = bs(y, )| < L(lz —y| + [s —t]).

Then we introduce the notation
Tin = {(x,t) €0'Q : V B € B, bg(x,t) - Dd(x) > 0},
Cout = {(2,t) € 8'Q : VB € B, bs(x,t) - Dd(x) < 0},
I'=0'Q\ (TinUTou),

and with this, we consider the following condition over the behavior of the
drisf terms on 9'Q

() Tin, Tout and T are unions of connected components of 8'Q.

We remark that, in the current Bellman setting, the nonlocal term 7 is as-
sumed to be of order a@ < 1. Therefore it has a weaker effect compared with
the first-order terms. In particular, on the boundary, the behavior of the
drift plays a determinant role. In this direction, the set I',,+ should be un-
derstood as the set where the classical boundary condition holds, meanwhile
on I';;, may arise losses of the boundary condition due to the “stronger” in-
fluence of the transport term compared with the nonlocal diffusion. Finally,
on I', we do not have a transport effect anymore : the value of the different
costs (boundary or running cost) decides of the choice of the control and of
the loss or no loss of boundary condition.

We introduce assumption (X) in order to avoid have different behaviors
of the bg’s on the same connected component, which could be a source of
discontinuities for the solution (the reader may think in term of transport
equation to be convinced by this claim). On I', it can be seen as a con-
trollability assumption in the normal direction. Similar assumptions of the
boundary are made in [5], [14] in the degenerate second-order setting and [34]
for the nonlocal one.

3.3. Structural Assumptions and Main Results. As it is classical for
Cauchy-Dirichlet problems, the initial and boundary data satisfy the follow-
ing compatibility condition at t = 0

(HO) uo(x) = ¢(z,0), for all z € Of).
The properness of the problem is encoded by the following two conditions

(H1) For all R > 0, there exists hg € C(2) such that, for all z € Q, u,v € R,
0<t<R,andp e R" we have

H(z,t,u,p) — H(z,t,v,p) > hr(x)(u —v).



(H2) For all R > 0, the function hgr in (H1) satisfies

inf {hpr(z) + / K*(z)dz} > 0.
e
Qe—x
As it is classical in problems where loss of the boundary condition arises,
Strong Comparison Principle needs the introduction of a modification of sub
and supersolutions. For a function v bounded and usc in @) (which will be
thought as subsolution) we denote

limsup u(y,s) if (z,t) € 9'Q
(3.1) w(z,t) = { Q3(y,s)—(x,t) ~
u(z,t) if (z,t) € Q\ d'Q.

Theorem 3.2. (Strong Comparison Principle - Coercive Case) Let
© € Cyp(Q°") and ug € C(Y). Assume (HO) holds and that H has a coercive
form satisfying (H1)-(H2). If u,v are bounded viscosity sub and supersolu-
tion to problem (CP) respectively, then

u<v inQUQ x {0}.
Moreover, if @ is defined as in (3.1), then @ < v in Q.
The result concerning the Bellman needs also a redefinition of sub and
supersolutions at the boundary. Of course, in this control framework, the

different part of the boundary {I'in, Tout, I'} play different roles.
For bounded functions u and v, v usc in @, v Isc in ), we denote

u(zx,t) if (z,t) € Q\ (T UT)
u(z,t) = limsup u(y,s) if (z,t) e 'y UT
(3.2) Q3(y,5)—=(z,t) )
. v(m,t) if ('Iat) € Q\Fm
o(z,t) = liminf w(y,s) if (z,t) € Tip.
Q3(y:5)— (@)

In the Bellman case, we will require the stronger ellipticity assumption

(UE) There exists ¢1,ca > 0 such that co < K(z) for all |z| < ¢;.

Theorem 3.3. (Strong Comparison Principle - Bellman Case) Let
© € Cp(Q%) and ug € C(Q). Assume a < 1, (UE), (HO) hold and let H
with Bellman form satisfying (H1)-(H2). If u,v are bounded viscosity sub
and supersolution of (CP) respectively, then

u<v inQUQ x {0}
Moreover, if 4,7 are defined as in (3.2), then @ < 9 in Q.

The result of Theorem 3.3 can be obtained without the uniform ellipticity
assumption (UE) by slightly changing the definition of I';,, oy and T'. In-
deed, in this setting, only the assumptions on the drift term determine the
loss or not loss of the boundary condition of the solution on I';,, [yt and I’
and they have to be strong enough to compensate the lack of the ellipticity
effect of Z.
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4. INITIAL AND BOUNDARY CONDITION.

We also remark that, considered as a part of the parabolic boundary, we
ask the initial condition is satisfied in the generalized sense. However, the
initial condition is satisfied in the classical sense on Q x {0}. Moreover,
mainly because of (H0), the condition holds classically on € x {0}.

Lemma 4.1. Assume that H € C(Q x [0,+00) x R x R"), ¢ € Cy(Q™),
ug € C(Q) satisfying (HO). If u,v are respectively a bounded, usc viscos-
ity subsolution and a bounded, lsc wviscosity supersolution to (CP), then

u(z,0) < up(z) < v(z,0) for all z € Q.

The proof of this lemma follows the same lines of the analogous result for
the second-order case presented in [20], with subtle modifications concerning
the nonlocal operator.

Now we look for the behavior of sub and supersolutions at the lateral
parabolic boundary.

Lemma 4.2. Assume that H € C(Qx [0, 4+00) x R xR") and ¢ € Cy(Q*?).
If (g, o) € 0'Q and u, v are respectively a bounded, usc viscosity subsolution
and a bounded, Isc viscosity supersolution to (CP), then
(1) We have u(xo,to) < @(xo,to) if one of the following conditions hold:
(i.1) There exists Co,p > 0 and m > « such that for all R > 0, there
exists Cr > 0 satisfying

H(x,t,r,kn ' Dd(z)(1 + 0,(1))) > Co(kn~ )™ — Cg

for all k,n >0, x € By(xp) and t,|r| < R.
(i.2) Condition (UE) with o < 1 holds, and there exists co,p > 0 such
that, for all R > 0 there exists C'r satisfying

H(z,t,r,kn ' Dd(z)(1 + 0,(1))) > —cokn 'd(z) — Cr
for all k,n >0, x € By(xo) and t,|r| < R.

(i) We have v(xg,tg) > p(xo,to) if condition (UE) with o < 1 holds, and
there exists co, p > 0 such that, for all R > 0 there exists Cr satisfying

H(z,t,r,—kn ' Dd(z)(1+ 0,(1))) < cokn 'd(z) + Cr
for all k,n >0, x € By(xg) and t,|r| < R.
Proof: We concentrate on (i) since (ii) is an adaptation to (i.2). By con-
tradiction, we assume u(zg, o) — @(xo,to) = v for some v > 0. This implies
in particular that u?(zg,tg) = u(xo,tp). We consider o € (max{1,a},?2)
and C1°~1 functions x, : R — R such that x is even, bounded, x(0) = 0,
x(t) > 0 for t # 0, liminf};_, x(t) > 0 and such that x(t) = |¢|” in a neigh-

borhood of 0. For ¢ we assume it is bounded, strictly increasing, 1 > —%y
and such that for some k > 0, ¢(¢t) = kt for all |[t| < 1. We consider a
parameter 7 and € = ¢, — 0 as n — 0 to be fixed later, and introduce the

test function
U(y,t) = ¥(d(y)/n) + € 'x(ly — zo|) + € 'x([t — to)-
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By our assumption on w,p, x and v, the function (z,t) — u?(z,t) —
U(z,t) has a maximum point (Z,¢) € R™ x (0,T) for n small enough. Of
course, (Z,t) depends on 7 but we drop the dependence on 7 to simplify
the notations. From the maximum point property, u¥(z,t) — U (z,t) >
u¥(xo,to) — ¥(xo,tp) which implies

u(z,8) — (d(@)/n) — € 'X(1T — ol) — € 'x(| = to]) > p(w0) + .
Using this inequality, classical arguments show that z — x¢ and t — to as
n — 0. And from the same inequality we obtain Z € € for n small enough

because 1) > —1/4v and ¢ is continuous. Finally, using properly the usc of
u¥ we conclude

(4.1)  d(z) =o1(n)n, |T — zol, |t — to] = 0y(1), and u¥(z,t) — u(zo,to),

as 7 — 0. Hence, picking some & > 0, we can use the viscosity inequality for
subsolutions, concluding that

atlll(jaf) < I[B(;](\I’(-,f),:f) +I[B§](uw("t_)’j’ D\I](j’f))
— H(Z,t,u(z,t), D¥(z,1)),

where in view of the first and second statement in (4.1), for 7 small enough
we can write

(4.3) DU(z,t) = kn~'Dd(z) + € Yz — 20|”%(Z — x0).

We start with the estimates concerning the nonlocal terms in (4.2). To
do this, we consider r < 1 independent of 7 and d(Z) < § < pu < r. We
define the sets

A" ={z€ B, : dz+2) <
Asp={2€ B, : d(T)—0<d(T+2) <d(Z)+ p}.
AL"t ={z€B, : p+dz) <
We remark that Bs C As, and using that 7 is a global maximum point

of u — W, in particular we have §(u?(-,t),z,2) < §(¥(-,1),Z, 2) in A5, \ B;s.
Using this last fact we can write

Z[Bg](u@('vf)7j7D\Il('i’7i)) +Z[Bé](\ll('7f)7j)
< I[Bﬂ(u@("f)’j’D\P(jaf)) +Z[A(eixt](u@("f)’j’D\P(jaf))
+ Z[AM (u? (1), 7, DV (%, 1)) + L[ As ] (Y (-, 9), 7),

and from this we estimate each term in the right-hans side of the above
inequality separately. The constant C' > 0 arising in each of the following
estimates does not depend on pu,d,n or €.

Using the expression (4.3), we have

(4.2)

(B (- 8), 2, DU(E, ) < 2[4 /B K*(2)d:

+ (kn "t + e loy(1)) K (z),
B\B;
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where the last integral does not exists if &« < 1. Thus, we get
Z[B)(u? (-, 6), 2, D¥(z,1)) < Ol|u?|loor™ + Cln~ ! + oy (1)r! ™,
and similarly, we have
TIA ) (w? (-, 1), 2, DU(2,1)) < Cl[uf|locp™ + Cln~ " + € Loy (1))~

At this point, we consider u = 7. Thus, for all  small enough and
z € As,, we have Y(d(Z + z)/n) = kn~'d(Z + z) and applying the definition
of ¥ we get

U(Z + 2,0) — U(z,0) < Cn ' + e Y2,
\I](j + Z’E) - \Il(j’f) - <D\I](jaf)’z> < 0(77_1 + 6_1)|Z|2’

from which we can get

where
ur—e ifa>1
(4.4) olp) =4 ph(p) fa=1
pult=e ifa<l1

Thus, recalling that we have chosen pu = 1 and taking ¢ > p@in{el} by

the above estimates we can write
I[Bg] (uw('a t_)’ z, D\I/(J_?, E)) + I[B(S](\I](? t_)a j)

< O~ + O ga(p) + ZAF™)(u? (- £), 7, DV(%, 1)).
where the constant C' depends only on the data and ||u?||s.

Under the above choice of € and using (4.1), we have 0, ¥ (z,t) > n~“o,(1).
Using this estimate and (4.5) into (4.2) we can write
N %op(1) < Cr=* +n~%) + Z[AF)(u? (-, 1), 7, DV(Z, 1))

— H(z,t,u(z,t), D¥(z,1)),

where DU(z,t) = e lo,(1) + kn~' Dd(z).

Since u(xg, tg) = @(xo)+v, by the continuity of ¢ and the last fact in (4.1),
for all  small enough, using that u¥ = ¢ in Q*** we can write

(4.5)

(4.6)

Z[AS (u? (-, 1), z, DY (Z,1)) < — Cv K%(z)dz
Agwt
+C(e! —i—n_l)/ || K*(2)dz.
Agzt
where we supress the last integral term when o < 1. Using the definition
of K, and recalling the choice of € above, we conclude from the above
inequality that

(4.7)  TIAS"(u® (-, 1), 2, D¥(z,1)) < —Cv . K%(2)dz + Cn ' 5,(6),
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where ¢(0) = 67 if @ > 1, §(§) = |In(6)| + 1 when o = 1 and 5(6) = 0 if
o<1

At this point we split the analysis. When we consider case (i.1), we just
have condition K is nonnegative and bounded, and therefore we only can
insure that

—Cv K*(z)dz <0.
Agzt

Using this into (4.7) we get
IIAS™ ) (u? (1), 2, DU(z, 7)) < 6(6),
and replacing this into (4.6), we choose 6 = 7. Applying the definition of ¢
and using the condition over H in (i.1), we arrive at
0 %oy(1) < O™ +n~%) = Cok™y ™" + C,

where C' depends only on ||u||s and the data. We fix r > 0 and since k > 0
and m > «, by choosing 1 small enough, we reach the contradiction.

For the case (i.2), recalling that o < 1 and the strong ellipticity assump-
tion (UE), we have from (4.7) that

T[ASY (u? (-, 1), 2, DU (T, 1)) < —Cvd™®

with C' > 0 independent of  and 6. We replace this estimate into (4.6) to
conclude this time that
n_aon(l) < C(T_a + n_a) —Cvo - H(j, t_a u(ja E)a kn_lDd(j)(l + 077(1)))

At this point we choose d(Z) < 0 < no,(1) and applying the condition
over the Hamiltonian for this case together with (4.1), we arrive at

n %op(1) <C(r *+n %) —Cvé *+ cokzn_ld(i) + C’,

where C' depends only on ||u||« and the data. Fixing 7 > 0 and recalling that

n~1d(z) = o,(1), we reach the contradiction by choosing 7 small enough.

This concludes the proof. O
As a corollary of this lemma we have the following

Proposition 4.3. Let ¢ € Cp(Q°*), T as in (1.1) and H with coercive
form. Let u be a bounded viscosity subsolution for the problem (CP) and let
(zg,t0) € O'Q. Then, u(xo,ty) < ©(x0,t0). In particular, @ defined in (3.1)
satisfies u(xog,to) < @(xo,to).

By Remark 3.1, this result holds since it fits into the case (i.1) in Lemma 4.2.
Concerning the Bellman structure of the problem, we have

Proposition 4.4. Let ¢ € Cp(Q°Y), a < 1, T as in (2.1) satisfying (UE),
and H with Bellman form. Let Let u,v be bounded viscosity sub and super-
solution for (CP), respectively, and i, v as in (3.2). Then

u<u<e<v<0v on Dy,
ut<u<y onl.

This result holds since it fits into the cases (7.2) and (i) in Lemma 4.2.
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5. REGULARITY ISSUES FOR COERCIVE AND BELLMAN PROBLEMS.

5.1. Regularity for Coercive Problem. We consider the stationary equa-
tion associated to the coercive version of (CP)

(5.1) { —Z[u] + Hy(x,u,Du) = A inQ

' u = in Q°,
where A > 0, ¢ € Cp(Q2°), T is a nonlocal operator of order a with the
form (1.1) or (2.1) and Hy defined in (A0) has a coercive form (sub or
superlinear).

As it can be seen in [11], the superfractional assumption (A1) makes the
gradient term the leading one in equation (5.1), and therefore regularity
results can be obtained in an analogous way as in the case of first and
second-order equations with coercive Hamiltonians in Du (see [3], [4], [17]
and references therein). This regularity result is presented here through the
following

Proposition 5.1. ([11]) Let u be a bounded usc viscosity subsolution in §)
to Equation (5.1). Then, there exists a constant C such that, for all x,y € Q

m—a

u(z) —u(y)] < Clo —y|
where C depends on the data, A and ||u?||«. In particular, u can be extended
up to 2 as a Hélder continuous function with Hélder exponent (m — a))/m.

Using this result we can obtain a regularity result for parabolic equations
which is sufficient to get the comparison principle. To do so, we need to in-
troduce some notations: for F C R" closed and g : Ex[0,7] — R a bounded
usc function, we define the time sup-convolution of g with parameter v > 0
as the function g” given by
(5.2)  ¢'(x,t):= sup {g(z,s) —y s —1t)?}, forxeE,tel0,T].

s€[0,T]

It is well-known that, for each v > 0 and = € E, t — ¢ (z,t) is Lipschitz
continuous in [0, 7], with Lipschitz constant C., := 4T~~t. In addition, if
g€ C(E x1[0,T)), g0 — g locally uniformly in E x [0,T] as 7 — 0.

Lemma 5.2. Let ¢ € C,(Q%*"), Z as in (1.1) or (2.1) and H with coercive
form. Let u be a bounded viscosity subsolution to problem (CPt). Then,
there exists a constant ay >0, a, — 0 as v — 0, such that u” is a viscosity
subsolution in Q x [a,T] of the problem

Oy —Z(u") + H(z,t,u?, DuY) = o04(1) in Q X [ay,T]

u =7 in Q° x [a,,T],

where 0,(1) depends only on the time modulus of continuity of the function
f given in (A0).
Proof: By the upper semicontinuity of u, for each (z,t) € Qr there exists
ty € [0,T] depending on x and + such that

uﬂ/('%}t) = u(x7t“/) - '7_1(t - t“/)Q'
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Since u is bounded, we also have that |t, —t| < (2HuHLoo(QT)’y)1/2 and
then we initially set a, as twice this last constant.

We start noting that by applying Proposition 4.3, for each (z,t) € 0'Qr
we can write

u’y(x’t) S Qp(x’t"/) - 7_1(75 - t’Y)Q S gp’y(:ﬂ,t),

and therefore, the (lateral) boundary condition holds in the classical sense.

Now we address the viscosity inequality in Q. Let (Z,t) € Qr and ¢ a
smooth test-funtion such that (z,%) is a maximum for v — ¢ in By, (Z) X
(t — b2, ¢+ d2) for some 1,2 > 0. Without loss of generality we can assume
0 < d(.f')

Denote as t., the time attaining the supremum in the definition of u”(z, )
and ¢(z,s) = ¢(x,s +t —1,). Using the definition of u7 and performing a
translation argument in time, we conclude that

w(@, ty)—(Z,ty) > u(x, s)—¢(x,s), forall (x,s) € Bs, (Z)x(ty—02,ty+02),

which is a testing for u at (z,t,) with test-function 6. Applying the viscosity
inequality for u, we can write

(5.3) Es(u?, ¢, %,t,) <0,
Now, using the definition of sup-convolution we have
w(@ + 2,t) =y (E, — 0?2 <u(T+2,1), z€Q-7,
O(T + 2,t,) =7y HE, —D)? < (T + 2,1), 2€Q° -7,
meanwhile using that u7(Z,%) = u(z,t,) — v 1 (t, — £)? we conclude
T(B5 (u(+ ), 2, D@, 1)) < ZBS () (1), 2, Do(a, F,)).
Finally, by definition of ¢ we have
d(z,t,) = Dp(2,1) and Do(z,t,) = Do(z,1).

Using these facts into (5.3) and using the uniform continuity of f, we
arrive to the desired viscosity inequality for u?. O
Joining Lemmas 5.1 and 5.2 we conclude the following

Lemma 5.3. Let ¢ € Cp(Q5*), T as in (1.1) or (2.1), and H with coercive
form. Then, for all u bounded viscosity subsolution to problem (CPr), there
exists o > 0 such that, for all v < v, u? € C'=™(Q x [a,, T)), where
uY is defined in (5.2) and ay is the constant given in Lemma 5.2.

Moreover, under the above assumptions, @ € C'=*/™mY(Q x [a,,T)),
where @ is defined in (3.1).

Proof: The regularity in ¢ comes from the definition of the sup-convolution.
For the Holder regularity in « the idea is to prove that for each ¢ € [a., T,
x — uY(xz,t) is a viscosity solution to a problem like (5.1). Let zg € €,
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to € (ay,T) and ¢ a test-function for u?(¢,-) at xyp. For e > 0 small, we
incorporate the time variable in the following way

(z,5) — ®(x,s) :=u(z,5) — p(z) — e (s — tg).

The function ® being bounded and upper semicontinuous in Qr, has
a maximum point (Z,5) € Qp. Since ®(7,5) > ®(z,t9), we have (5 —
t0)? < 2||ul|oo€, concluding that 5 — tg as € — 0. Then, using the upper
semicontinuity of u”, we get £ — x¢ as € — 0 too.

Using Lemma 5.2, we conclude that

2671(§ - t()) - I[B5](¢7 j.) - I[Bg](u7(§’ ')7 T, D(b(j))
+H(z,5,u"(z,5), D(T)) < 0y(1),
but we remark that 2¢71(5 —tg) > C, because of the Lipschitz continuity of
u” (recall that 2¢71(5 — to) is in the time superdifferential of u” at (Z, 3)).

Letting ¢ — 0 and controlling the integral terms by the use of Fatou’s
Lemma, we conclude that x — 7 (¢, ) is a subsolution to the problem

~T(u,x) + Ho(w,u, Du) < [|flloc + C +0,(1) in Q

for all t € [a.,T]. Using Proposition 5.1, we conclude the result.

Concerning the last part of the lemma, assume u = %. Then, to prove that
uY € O™ 1(Q x [ay, T)), it is sufficient to show that 7 is continuous up
to the lateral boundary. In fact, for (x¢,ty) € 0Q X [ay, T —a,], by definition
of Y and since u = %, we can write

uY (20, to) = u(wo,s) =7 (s = t0)* = w(zy, s6) =7~ (s — to)” + ox(1)
for some s depending on (z9,ty), T — =g, xx € Q and s — s. Then
u? (0, t0) = w(wp, 51) =7 (s — t0)* — 7 'or(1)
< (g, to) — v ox(1),
concluding that

(5.4) u(zg,to) < limsup u”(z,t) = lim Y (x,t),
Q>x—rx0,t—t0 Q3z—z0,t—10

where the last equality comes from u” is C'=%/™(Q x [a., T — a,]).

Now, taking © > zx — gy, we clearly have u(xg,to) = u(xg,sg) —
v~ (sp — to)?, for some s; depending on ty and x,. We see that (s;) is
bounded and therefore it converges to some 5 € [0,7T]. Dedefining a, smaller,
we have 5 € [a,T — a,]. Now, using the usc of v we have

uﬁ/(xk’to) < u(x()’ 5) - 771(5 - t0)2 < Uﬁ/(ﬂﬁo,to),

from which we get the reverse inequality in (5.4). This concludes the proof.
O
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5.2. Cone Condition for the Bellman Problem. The comfortable Holder
continuity property for subsolutions in the coercive case is hardly available
in the Bellman case. However, this property can be replaced by the weaker
“cone condition” which is sufficient to apply Soner’s argument and to get
the desired comparison results, see [8], [14], [19].

Proposition 5.4. Let ¢ € Cp(Q°"), o < 1, T as in (2.1) and H with
Bellman form. Let u be a bounded viscosity subsolution to (CP) and let @
as in (3.2). Then, for each (xg,ty) € I' UTyy,, there exists C > 0 and a
sequence (Tk,tr) € Q such that, as k — oo

(wh, t) — (w0, t0); (wk,tr) — (2o, to),
(5.5) |xp — zo| > Cd(xg),
|tr — to] > Cd(zy).

We provide the proof of the above cone condition for completeness. How-
ever, we note that the results of this section are the direct extensions to the
parabolic framework of the results presented in [34] and therefore we will
omit most of the proofs.

To get Proposition 5.4, we need to introduce notation and give an inter-
mediate result. For z € 2, a function ¢ : Q© — R bounded, in C1(B,.(x)) for
some 7 > 0, we define the censored operator Zq(¢, x) as

To(.0) = [ bl +2) - ()l K (2)dz
—X
Associated to this operator, we have the following proposition

Lemma 5.5. Let ¢ € Cy(Q°Y), a < 1, T as in (2.1) and H with Bellman
form. Let u be a bounded viscosity subsolution to (CP) and let @ as in (3.2).
Let (xq,t9) € 0'Q and By € B such that

(5.6) bs, (x0,t0) - Dd(zo) > co
for some co > 0, and consider the function U : Q — R defined as
Ulz,t) = a(x,t) + Ad'7(2)
Then, there exists A,a > 0 such that U is a viscosity subsolution of the
equation
Oru —Zo(u(-,t)) —bg, - Du=0 in By(xg) X (to — a,to + a).
We remark that the notion of viscosity subsolution for censored equations

is analogous to the one presented in Definition 2.1.
Using this result, we are in position to prove cone condition.

Proof of Proposition 5.4: Note that, if either zg € I" or z¢ € [';,, there
exists a control 5y € B satisfying (5.6) for some ¢y > 0. Thus, denoting
b = bg, we can take r > 0 small enough such that b(z,t) - Dd(x) > ¢o/2 for
all z € QN B,.(xg) and |t — to| < r. After rotation in the x variable and a
translation in (z,t), we can assume tg = 0, g = 0 and Dd(zg) = e, with
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en = (0,...,0,1), implying in particular that b,(0,0) > 0. Finally, denote
H, = {(2/,2,) ER": 2, >0} and A =H, N QN B,.

Recalling the function U defined in Lemma 5.5, we have this function
satisfies the equation

8tU - ZQ(U(7t)) —b-DU <0 on A X (—7“,7").

By a simple scaling argument, we conclude the function (y, s) — U (yy,s)
defined in v~ 1(A x (—r,r)) satisfies the equation

(5.7 Ow — ¥ L 1(w, y) — by(y) - Dw(y) <0 on~y (A x (—rr)),

where b, (y,s) = b(yy,vys) for each (y,s) € 7 YA x (=r,7)). Thus, the
function w : Hy x R — R defined as

w(z,t) = limsup U(yz,7vs)
v—0,(z,5)—(x,t)

is a viscosity subsolution for the problem

Orw — bn(0,0)a—w —5'(0,0) - Dyw =0 in Hy xR,
OYn

by classical arguments in half-relaxed limits applied over the equation (5.7).
It is worth remark that by Lemma 5.5 this equation holds up to the boundary
and that b,(0,0) > 0.

The maximal solution for the last transport equation with terminal data
w(y',1,7) (when we cast y, as the new “time” variable) is given by the
function

W(yl7yn7 S) = ?I}(y/ - bn(o)ilb/(o)(yn - 1)7 Ls+ bn(o)il(yn - 1))
Since W is maximal, we have w(y,s) < W(y,s) when 0 <y, < 1. Now,
by definition it is clear that w is upper semicontinuous and then w(0,0) =
U(0,0), meanwhile by the upper semicontinuity of u at the boundary and
the continuity of the distance function we have w(y,s) < U(0,0) for all
y € Hy. Then, recalling U(0,0) = @(0,0), we conclude that

@(0,0) = @(0,0) < W(0,0) = w(by(0)"'¥'(0), 1, —bs (0) ") < (0,0),

this is 4(0,0) = w(xp,tp), with x5 = (b,(0)719/(0),1) and t, = —b,(0)7 .
By the very definition of w, we have the existence of sequences v — 0,
ti — tp, 2k — xp such that (zg,tx) = (Ye2k, Yitx) satisfies (zg, ) — (0,0)
and u(xg,tr) — u(0,0).

Note that by definition of the sequence (zy); we have zj = yrap + o(Vk).
Using this, we perform a Taylor expansion on d(zy), obtaining the existence
of a point Z € Hy with Zx — 0 as k — oo such that

d(.%'k) = Dd(.f’k) . (’ykmb + O(’yk)).

Hence, since Dd(0) = e,, we conclude d(zx) = vy + o(k). Thus, using
the estimates for x;, and d(xy) we get that d(zg) > (4]zp|) k|, for all k
large enough. Recalling that xg = 0, we conclude that (xy)y is the sequence
satisfying (5.5). Finally, for the ¢ variable we have t, = xt,+o(x) and then
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we get |tp| < (4]tp|)"1d(z) for all k large. Recalling g = 0 we conclude the
result. O

Remark 5.6. [t is important to note that, considering (5.5) and its proof,
the time and space variables are playing the same role regarding the cone’s
condition property. This fact explains why we cannot weaken the time Lip-
schitz continuity of H given in assumption (H).

Following the same ideas given in Proposition 5.4, it is possible to conclude
the cone condition for supersolutions in I';,.

Proposition 5.7. Let ¢ € Cp(Q%"), a < 1, T as in (2.1) and H with
Bellman form. Let v a bounded viscosity supersolution to (CP) and let v as
in (3.2). Then, for each (xg,tg) € iy, there exists a sequence (Tk,tx)r of
points of Q satisfying (5.5) relative to v.

To get the last proposition, a similar result as Lemma 5.5 is needed for
supersolutions. This time we cannot get rid of the nonlinearity of H because
of the Bellman form, but this can be handled because all the drift terms are
pointing “strictly inside” Q. See [34] for details.

6. PROOF OF THE COMPARISON RESULTS.

6.1. Strong Comparison Principle for the Coercive Case. We start
with the following

Lemma 6.1. Let p € Cp(Q5*"), T as in (1.1), and H with coercive form
satisfying (H1)-(H2). Let u,v be bounded, respective sub and supersolution
to the problem

(6.1) { ouw — Z(u,x) + H(x,t,u,Du) =0 in Qr

U =g in Q5
and let @ as in (3.1).

Let v € (0,1) and p € (0,1) if H is superlinearly coercive, =1 if H is
sublinearly coercive. Define u = pa” where u” as in (5.2), and w = @ — v.
Then, w is a viscosity subsolution for the problem

(6.2)
{ duw + hrw — T(w,z) — p(|Dwl) = Cr(l—p)+0y(1)  in Qr
w = @ - n Q%xt,

where a~ is given in Lemma 5.2, 0,(1) depends only on the modulus of
continuity of f, R = ||t|oo +|[v||oc, @R is a modulus of continuity depending
on R and the data, hr arises in (H1), Cr depends on R and ||f||e0, and
¢ = pp’.

Proof: We omit the superscript ~ for simplicity and we address the super-

linear case; the sublinear case follows the same ideas with easier computa-
tions.
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Note that by Lemma 5.2 and direct arguments of the viscosity theory, we
have w is a viscosity subsolution to the problem

Ot — I(t, ) + pH (z,t, i, p~ ' D) = 0,(1) in Q x [ay,T]
@, in Q°x [ay,T],

u =
where 0,(1) — 0 as v — 0 uniformly on x € (0,1). Moreover, by Lemma 5.3,
we see that @ € C'=*/™1(Q x [a,,T)).

The aim is prove that w is a subsolution to (6.2) in the viscosity sense
with generalized boundary condition, and the most difficult scenario is when
we study the subsolution’s obstacle requirement at the lateral boundary.

Let (zq,t0) € 9'Qr. If w(zo,to) < (@ — )(xo,to), then the boundary
condition for subsolutions is satisfied in the classical sense and we get the
result. For this, we assume w(zo,%0) > (¢ — ¢)(x0,to) and the rest of the
proof is devoted to conclude the subsolution’s viscosity inequality at (zg, o).
In this case, w?~¥(xg,tg) = w(wo, o), and by Lemma 4.3 we see that

(6.3) v(wo, to) < u(wo,to) — @0, to) + ¢(zo,t0) < (xo,t0).

Let ¢ smooth such that w?~%¥ — ¢ has a strict maximum point in Q7 at
(zo,tg). Define vy = (Dd(xg),0) and for all € > 0 we consider the function

¢6(x7y7 Sat) = ¢(y7t) + ‘6_1((1.7 8) - (y7t)) - VO’Q'
Now we look for maximum points of the function ® : Q x R" x [0,7]?> — R
defined as
O(x,y,s,t) :=u(z,s) —v(y,t) — oz, y,s,t).
Note that by the boundedness and the upper semicontinuity of @, there
exists a point (Z,¥, 5,7) € Q x R™ x [0,T)? attaining the maximum of ® in
this set. Then, using the inequality

q)(j,ga 5’5) > q>(330 + EDd(xO)aanthtO)a

together with the continuity of @ given by Lemma 5.3, classical arguments
in viscosity solution’s theory allows us to write

('fag)a(gaE)_> (xoatO)a ‘6_1('%_§7§_Z)_V0‘ %Oa

6.4
(6.4) and  @(Z,5) = u(zo,to), vu(7,t) = v(zo, o),

as € — 0. Moreover, if € is small enough, we have 7 € ), since otherwise, by
the continuity of ¢, we would have

U‘P(gat_) = “P(jﬂ?) — (p(.%'o,to)

as € — 0, which is a contradiction to (6.3) in view of the last fact in (6.4).
Moreover, by the continuity of ¢ we see that v, (y,t) < ¢(y,t) for all € small
and therefore, even if § € 0, we have a viscosity supersolution inequality
associated to v, at (y,1).

On the other hand, by the second property in (6.4) we have

(6.5) T =g+ eDd(xg) + oc(e),
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A simple Taylor expansion on the distance function implies that d(z) >
d(y) + €(1 — 0c(1)) for all € small enough, concluding that z € Q. We
consider 0 < ¢ < ¢ and we subtract the viscosity inequality for v at (g,1)
to the viscosity inequality for @ at (Z, §), concluding that
(6.6) A—-1% < o,(1),
where

Zél = I[B(S’]((be('a g7 ga t-)a j.) - I[B(s’](_(be('fa ) ga t_)7 g)
+Z[B§/](ﬁ(7§)7.f,ﬁ) - I[Bg’](v('7f)7g7Q)a
with
P = Dote(2,9,5,8) = € (e ((2,5) — (5.1) — v0)
p= _Dygbe(x Y, S, E) D— ng( 3
and
A= (05¢c — 016e)(2.9,5,1) + pH (2,5, 1~ '@, 5), u~'p) — H(5,1,0(7,1), ).

Now we estimate each term in (6.6), starting with .A. We have
(6'7) (35¢5 8t¢5)(x Y, 5, i) at(b( 3
and then it remains to estimate the difference among the Hamiltonians to
complete the bound for A. Using (A0) and the first statement in (6.4), we
readily have
(6.8)

,U,H(J_T, s, ,u_lﬂ(j, 5)5 //J_lﬁ) - H(ga ta ’U(g, t_)’ (j) > (:U’ - 1)||f||00 - 06(1) + HO?

where 0,(1) — 0 as € — 0 uniformly in the rest of the variables and Hq is
defined as

HO = /‘HO(j’ Milﬂ(j’ 5)’ Milﬁ) - H()(ﬂ, U(ga E)a 97)
Now, using (H1),(A1-b) and (A2-b) we have
Ho > hi(@)(@(z,5) = v(5,D) + (1= ) ((m = Daolp" — Ci)

—wr(|z = gD (@ + 1p|™) — wr(IDyo(y, O™,
where R = ||@]|oc + ||v||oo. Thus, using the first fact in (6.4), for all € small
in terms on 1 — pu we can write

Ho > (1— 1) (m — Vaolpl™ /2 — wr(|Dye(@ B)) 5™
+ hp(Z)(w(z,5) — v(y,t)) — Cr(1 — ) — 0c(1)
inf{(1 = ) (m — Daop™ /2 = wr(|D,0(7. D p" '}

+ ha(@)(@(#,5) — v(7,5) — Cr(l — 1) — oc(1).
We notice that the infimum in the last expression is attained, from which
we conclude that

Ho > — cmuwr(|Do(g,t))™
+ hr(2)(a(z,5) —v(y,t)) — Cr(l — p) — 0e(1),

v
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where ¢, = (2(7%;717”))%((1 — p)(m — 1)ag)'~™. Replacing this into (6.8)

and recalling (6.7), we conclude the following estimate for .4
A > atgb(ga f) + hR(j)(ﬂ(ja 5) - U(g, E)) - Cm7“wR(|D¢(ﬂ, t_)|)m
+ (= D(|[fllec + Cr) — 0e(1),

where 0.(1) — 0 as € — 0 if we keep p, R fixed.
Now we addres the estimates for Z%. We start noting that

(6.10) I[Bs(¢e(-, 4,5, 1), %) — Z[By](—¢e(Z, -, 5,8),5) < € 2og (1),
where 0g/(1) is independent of €. To estimate the integral terms outside By,
we consider the sets

Dip=(Q—=2)N (2 =19), Dext = (Q2—2)°N(Q—17)°,
Di,=(Q-2)N(Q-7°, Dl =(Q-5)°N(Q-7)

int — int —

(6.9)

(6.11)

and then we can write

_ . o 5 5 5 5
I[Bg/](u('7 8)7 m,p) - I[Bg’](v('7 E)v Y, q) = Iint + Iint,i + Iint,gj + Iea:t?

Tho= [ @) - olg+ ) - (@) - @) - 1a{Do(w). )K" (s
Tha= @ 2) = (5 +2) = (1(0) = o) — 15(D(0), K ()
Zhg= [, (pa+2)—ulg+2) - (@) - o(@) - 1(D