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A divisibility criterion for exceptional APN functions

Florian Caullery

Abstract. We are interested in the functions from F2m to itself which are
Almost Perfectly Nonlinear over infinitely many extensions of F2, namely, the
exceptional APN functions. In particular, we study the case of the polynomial
functions of degree 4e with e odd and we give a necessary condition on an
associated multivariate polynomial for the function to be exceptional APN.
We use this condition to confirm the conjecture of Aubry, McGuire and Rodier
in some new cases.

1. Introduction

A vectorial Boolean function is a function f : F2m → F2m . It is well known that
all those functions admit a polynomial representation. Throughout this paper, we
will refer to f as a function as well as a polynomial. These objects arise in fields
like cryptography and coding theory and are of particular interest in the study
of block-ciphers using a substitution-permutation network (SP-network) since they
can represent a Substition Box (S-Box). In 1990 Biham and Shamir introduced
the differential cryptanalysis in [3]. The basic idea is to analyze how a difference
between two inputs of an S-box will influence the difference between the two out-
puts. This attack was the motivation for Nyberg to introduce the notion of Almost
Perfectly Nonlinear (APN) function [22] which are the function providing the S-
Boxes with best resistance against differential cryptanalysis. An APN function is
a vectorial Boolean function such that ∀a 6= 0, b ∈ F2m there exist at most two
solutions to the equation:

f(x+ a) + f(x) = b.

A complete classification of APN function is an interesting open problem that has
been widely studied by many authors. A first approach toward the classification
was to consider only power functions and the studies was recently extended to
polynomial functions (Carlet, Pott and al [8, 14, 15]) or polynomials on small
fields (Dillon [12]). On the other hand, several authors (Berger, Canteaut, Charpin,
Laigle-Chapuy [2], Byrne, McGuire [7] or Jedlicka [5]) showed that APN functions
cannot exist in certain cases. Some also studied the APN functions on fields of odd
characteristic (Leducq [19], Pott and al. [13, 23], Ness, Helleseth [21] or Wang,
Zha [27, 28] ).
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One way to face the problem of the classification is to consider the function APN
over infinitely many extensions of F2, namely, the exceptional APN functions. The
two best known classes of exceptional APN functions are the Gold functions: f(x) =

x2
i+1 and the Kasami functions f(x) = x4

i
−2i+1, both are APN whenever i and

m are coprime. We will refer to 2i + 1 and 4i − 2i + 1 respectively as the Gold
and Kasami exponent. Hernando and McGuire proved that those two functions are
the only monomial exceptional APN functions [17]. It was the starting point for
Aubry, McGuire and Rodier to formulate the following conjecture:

Conjecture 1 ([1]). The only exceptional APN functions are, up to Carlet
Charpin Zinoviev-equivalence (as defined below), the Gold and Kasami functions.

We provide the definition of the Carlet Charpin Zinoviev equivalence:

Definition 1.1 ([8]). Two functions f and g are Carlet Charpin Zinoviev
(CCZ-)equivalent if there exist a linear permutation between their graphs (i.e. the
sets {x, f(x)} and {x, g(x)}).

It is worth pointing out that all the functions CCZ-equivalent to an APN
function are also APN [8].

By means of a simple rewriting of the definition of APN function in terms of
algebraic geometry, Rodier was able to prove that, if the projective closure of the
surface X defined by the equation:

f(x) + f(y) + f(z) + f(x+ y + z)

(x + y)(y + z)(z + x)
= 0

has an absolutely irreducible component defined over F2m , then f is not an
exceptional APN function [24]. We will denote by X̄ the projective closure of X .
From now on we let q = 2m,

φ(x, y, z) =
f(x) + f(y) + f(z) + f(x+ y + z)

(x+ y)(y + z)(z + x)
,

φi(x, y, z) =
xi + yi + zi + (x + y + z)i

(x+ y)(y + z)(z + x)
.

and

A = (x + y)(y + z)(z + x).

Writing f =
∑d

i=0 aix
i with d the degree of f , we have φ =

∑d

i=0 aiφi and so the
homogeneous equation of X̄ is given by

ϕ(x, y, z, h) =

d
∑

i=0

aiφih
d−i.

The idea is to use the fact that if X̄ ∩ H , where H is an hyperplane, has
a reduced absolutely irreducible component then X̄ has an absolutely irreducible
component (see [1]). We wish to exploit this criterion to prove that the functions
which are not CCZ-equivalent to a Gold or Kasami monomial are not exceptional
APN. This approach enabled Aubry, McGuire and Rodier to state, for example,
that there is no exceptional APN function of degree odd not a Gold or Kasami
exponent as well as functions of degree 2e with e an odd number [1].
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The next step was to study the polynomials of degree 4e. Under the assumption
that φe is absolutely irreducible, Rodier proved that an exceptional APN function
should have its associated polynomial φ divisible by another polynomial with a
specific form (see [25]). In the same paper, he treated the case of exceptional APN
function of degree 12. It was later showed in [10] that there is no exceptional APN
polynomial functions of degree 4e with e > 3 such that φe is absolutely irreducible.

At this point, a natural question is: what happens when φe, with e odd, is
not absolutely irreducible? Using the symmetry in the variables x, y and z of the
polynomial φ and the language of Weil divisors, we will determine all the possible
divisors of the surface X̄. This result includes the main result of [25] as a corollary
and gives what I believe to be the limit of this kind of reasoning. With this tool, we
will treat the smallest untreated example, namely e = 5 and confirm the correctness
of the conjecture in this case.

2. The state of the art

Using the approach described in the introduction Aubry, McGuire and Rodier
obtained the following results in [1].

Theorem 2.1 ([1]). If the degree of the polynomial function f is odd and not
an exceptional number then f is not an exceptional APN function.

Theorem 2.2 ([1]). If the degree of the polynomial function f is 2e with e odd
and if f contains a term of odd degree, then f is not an exceptional APN function.

There are some results in the case of Gold degree 2i + 1:

Theorem 2.3 ([1]). Suppose f (x) = x2
i+1 + g (x) where deg (g) ≤ 2i−1 + 1.

Let g (x) =
∑2i−1+1

j=0 ajx
j. Suppose moreover that there exists a nonzero coefficient

aj of g such that φj (x, y, z) is absolutely irreducible. Then f is not an exceptional
APN function.

This result has been extended by Delgado and Janwa in [11] with the two
following theorems:

Theorem 2.4 ([11]). For k ≥ 2, let f(x) = x2
i+1+h(x) ∈ Fq where deg(h) ≡ 3

(mod 4) < 2i + 1. Then f is not an exceptional APN function.

and

Theorem 2.5 ([11]). For k ≥ 2, let f(x) = x2
i+1 + h(x) ∈ Fq where deg(h) =

d ≡ 1 (mod 4) < 2i + 1. If φ2i+1 and φd are relatively prime, then f is not an
exceptional APN function.

There also exist a result for polynomials of Kasami degree 22i − 2i + 1:

Theorem 2.6 ([16]). Suppose f (x) = x2
2i
−2i+1+g (x) where deg (g) ≤ 22k−1−

2k−1 + 1. Let g (x) =
∑22k−1

−2k−1+1
j=0 ajx

j . Suppose moreover that there exist a

nonzero coefficient aj of g such that φj (x, y, z) is absolutely irreducible. Then f is
not an exceptional APN function.

Rodier proved the following results in [25].
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Theorem 2.7 ([25]). Let f : Fq → Fq be an exceptional APN function of degree
4e with e such that φe is absolutely irreducible. Then the polynomials of the form

(x+ y) (x+ z) (y + z) + P,

with

P (x, y, z) = c1
(

x2 + y2 + z2
)

+ c4 (xy + xz + zy) + b1 (x+ y + z) + d1,

for c1, c4, b1, d1 ∈ Fq3 , divides φ.

Remark 2.8. This theorem is originally stated for e ≡ 3 (mod 4) but its proof
is also valid with e such that φe is absolutely irreducible (see [10]).

There are more precise results for polynomials of degree 12.

Theorem 2.9 ([25]). If the degree of the polynomial f defined over Fq is 12,
then either f is not an exceptional APN function or f is CCZ-equivalent to the
Gold function x3.

Also, using the same approach, the present author proved the following:

Theorem 2.10 ([10]). If the degree of the polynomial f defined over Fq is 4e
with e > 3 and such that φe is absolutely irreducible, then f is not an exceptional
APN function.

In particular, φe is absolutely irreducible when e ≡ 3 (mod 4) (see lemma 4.4)
so there is no exceptional APN function of degree 4e with e ≡ 3 (mod 4).

3. New Results

The main result of this paper is:

Theorem 3.1. Let f : Fq → Fq be an exceptional APN function of degree 4e
with e odd and let

φ(x, y, z) =
f(x) + f(y) + f(z) + f(x+ y + z)

(x+ y)(y + z)(z + x)

be its associated polynomial. Let σ be a generator of the Galois group Gal(Fq3/Fq).
One of these three conditions holds

(1) The polynomial φ is divisible by

(A+ P (x, y, z)) (A+ σ (P (x, y, z)))
(

A+ σ2 (P (x, y, z))
)

,

where P (x, y, z) is a symmetric polynomial of degree 2 defined over Fq3 .
(2) The polynomial φ is divisible by

(Ψ(x, y, z) + L(x, y, z)) (AΨ(x, y, z) +R(x, y, z))σ (AΨ +R(x, y, z))

σ2 (AΨ(x, y, z) + (R(x, y, z)) ,

where Ψ(x, y, z) is a non absolutely irreducible symmetric factor of φe de-
fined over Fq3 but not over Fq and R(x, y, z) and L(x, y, z) are symmetric
polynomials of degree respectively less than deg(AΨ) and deg(Ψ) defined
respectively over Fq3 and Fq.
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(3) The polynomial φ is divisible by

(

Aψ3(x, y, z) + S(x, y, z)
)

σ
(

Aψ3(x, y, z) + S(x, y, z)
)

σ2
(

Aψ3(x, y, z) + S(x, y, z)
)

,

where ψ(x, y, z) is a square-free non absolutely irreducible symmetric fac-
tor of φe defined over Fq3 such that ψ, σ(ψ) and σ2(ψ) are coprime.

Remark 3.2. If φe is absolutely irreducible, then we get directly theorem 2.9
as there is clearly no polynomial satisfying the conditions (2) and (3).

In section 6, we give a direct application of the last result to the case of poly-
nomial APN function of degree 20.

Theorem 3.3. Let f : F2m → F2m be an exceptional APN function of degree
d = 20. Then m is odd and f is CCZ-equivalent to x5.

4. Preliminary lemmata

We will need the following lemmas:

Lemma 4.1. ([25]) The kernel of the mapping ̟ : f → φ is made of q-affine
polynomials.

Lemma 4.2. ([25]) The class of APN functions is invariant under the addition
of q-affine polynomials.

In particular, this result means that we can restrict ourselves to polynomials
without any term of degree a power of 2.

Lemma 4.3. ([1]) Writing i = 2jk we have:

φi = A2j−1φ2
j

k .

In particular, φi is reduced if i is odd.

Proposition 1. ([18]) The polynomial φ2i+1 decomposes into absolutely irre-
ducible factors as follow:

φ2i+1(x, y, z) =
∏

α∈F
2i
−F2

(x+ αy + (α+ 1) z) .

Lemma 4.4 ([18]). The polynomial φe is absolutely irreducible if e ≡ 3 (mod 4).

Lemma 4.5 ([1]). The polynomials φe and A are coprime if and only if e is
odd.

Our proof of theorem 3.1 relies on the two following propositions:

Proposition 2 ([24]). The surface X̄ associated to an exceptional APN func-
tion does not contain any absolutely irreducible component defined over Fq different
from x+ y = 0, y + z = 0 or z + x = 0.

Lemma 4.6 ([1]). Let H be an hyperplane in P
3 (Fq). If the curve X̄ ∩H has a

reduced absolutely irreducible component defined over Fq then X̄ has an absolutely
irreducible component defined over Fq.
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5. Proof of theorem 3.1

The goal of this proof is to describe how an absolutely irreducible factors of
φ should look like under the assumption that f is an exceptional APN function.
The key idea is to use lemma 4.6 along with the fact that the equation of the
intersection of the surface X̄ with the hyperplane infinity is known. For the sake
of clarity, we will use the language of Weil divisors (see [26] for an introduction to
Weil divisors) but one could directly translate this proof into terms of absolutely
irreducible factors of polynomials.

Let f be an exceptional APN function of degree d = 4e. From proposition
2, its associated projective surface X̄ does not contain any absolutely irreducible
component defined over Fq excepted perhaps x+ y = 0, x+ z = 0 or y + z = 0.

Let H∞ be the plane at infinity in P
3 (Fq) (i.e. the plane of equation h = 0).

By lemma 4.6, the intersection X̄ ∩ H∞ cannot contain any reduced absolutely
irreducible component defined over Fq different from x + y = 0, y + z = 0 or
z + x = 0. From lemma 4.3 we have:

(5.1) φd = A3φ4e,

meaning that X̄ ∩H∞ is defined by the equation A3φ4e = 0.

Let D be the divisor associated to the hyperplane section X̄ ∩H∞. We denote
by A0, A1 and A2 the divisors associated, respectively, to the section of the planes
of equation x + y = 0, y + z = 0 and z + x = 0 with the plane H∞. Let pi be
an absolutely irreducible factor of φe. We will denote by Ci the divisors associated
to the section of the surface of equation pi(x, y, z) = 0 with the plane H∞. Then,
from (5.1) and lemma 4.3:

D = 3(A0 +A1 +A2) + 4
∑

i

Ci.

Now let X0 be an absolutely irreducible component of X̄ which contains the
line x+ y = 0 in H∞. As we have supposed that f is an exceptional APN function,
X0 is defined over an extension of Fq, say Fqt . We choose t to be the smallest
possible. Throughout this paper we will refer to σ as a generator of the Galois
group Gal(Fqt/Fq). We set X0 to be the divisor associated to the section X0 ∩H∞,
as X0 is a component of X̄ , X0 is a subdivisor of D, and as X0 contains the line
x+ y = 0 in H∞ we have X0 ≥ A0. Our goal is to find the possible forms for X0.

5.1. The case where X0 ≥ 2A0.

In that case we have:

X0 + Xσ
0 ≥ 4A0.

But that is a contradiction since X0+Xσ
0 must be a subdivisor of D and D contains

only three times A0.

5.2. The case where X0 contains only one time A0.

From the previous section, we know that X0 is of the form A0 + D0 where
D0 is a subdivisor of D which does not contain A0. Thus there exists two other
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absolutely irreducible components of X̄ , say X1 and X2, with associated divisors
respectively X1 and X2, that contains only one time A0.

Let G be the Galois group Gal(Fqt/Fq), since G fixes the line x+y = 0 in H∞ ,
the group G acts on the Xi and let us consider the orbit of X0 under this action. If
it contains just X0 , then X0 is defined over Fq which is impossible from proposition
2. If it contains X0 and X1 then G fixes X2 and X2 is then defined over Fq, that is
again in contradiction with proposition 2. Finally, that means that it contains the
three components. Then G acts transitively on these three components. Let G1

the stabilizer of X0 . Then the group G/G1 is isomorphic to Z/3Z, and G1 is the
only subgroup of G of index 3. The same is true for the lines y+z = 0 and z+x = 0.

5.2.1. The case X0 = A0 +
∑

i niCi.

First suppose that all the nis are zero, hence X0 = A0 and then the equation
of X0 would be x + y + b = 0 with b ∈ Fqt and b 6∈ Fq . In this case x + y + b
would divide f(x) + f(y) + f(z) + f(x + y + z). As b 6∈ Fq , by the action of G,
x+y+σ(b) would be a distinct plane containing the line x+y = 0 in H∞. As there
are only three distinct components of X̄ containing the line x + y = 0 in H∞ and
as t is minimal, this implies that t = 3. By symmetry of the variables x, y, z in the
expression of f(x) + f(y) + f(z) + f(x+ y + z), z + y+ b and x+ z + b divide also
f(x)+f(y)+f(z)+f(x+y+z). Finally f(x)+f(y)+f(z)+f(x+y+z) is divisible by
(x+y+b)(z+y+b)(x+z+b) = (x+y)(y+z)(z+x)+b(x2+y2+z2+xy+xz+zy)+b3

which is of the form given in 1 in theorem 3.1.

Now suppose that there exist at least one nonzero ni. Thus we have:

X1 = A0 +
∑

i

niC
σ
i

and

X2 = A0 +
∑

i

niC
σ2

i .

Now suppose that X0 is not invariant under the transposition (x, y), then the
divisor

X4 = A0 +
∑

i

niC
(x,y)
i

is different from the precedents and
∑

j Xj = 4A0+D1 should be a subdivisor of D

(we recall that φ is symmetric). That is a contradiction to the fact that D contains
only three times A0 and hence X0 is invariant under (x, y).

Denote Y0 (respectively Z0) the image of X0 by the permutation (x, y, z) (re-

spectively (x, z, y)) and define Y1 = Yσ
0 and Y2 = Yσ2

0 . With the same argument
as before, Y0 should be invariant under (y, z), that is

∑

i niCi is invariant under
(x, z). Thus

∑

i niCi (i.e. the product ψ =
∏

i pi(x, y, z)
ni) is symmetric.

For the sake of contradiction, suppose now that there exists an i and k such
that nk and ni are nonzero and Ck = Cσ

i . Hence, X0 +X1+Y0+Y1+Z0 contains
at least five times Ck which cannot happens since D contains it only four times.
The same is true when we consider σ2.
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Now suppose that one of the ni, namely nk, is greater than 1. Then X0 +
Y0 + Z0 > A0 + A1 + A2 + 6Ck, but there is only four times Ck in D because φe
is reduced (see lemma 4.3), so that is a contradiction and all the nis are maximum 1.

To summarize, X0 should be of the form A0 +
∑

i niCi where ni ≤ 1 and
∑

i niCi is invariant under the action of the symmetry group and does not share

any common component with
∑

i niC
σ
i or

∑

i niC
σ2

i . By the argument of [25, sec-
tion 5.9] (see also 5.2.3 in the present paper), we get the condition (3) of theorem 3.1.

5.2.2. The case X0 = A0 +A1 +
∑

i niCi.

If X0 = A0+A1+
∑

i niCi we get X1 = A0+A1+
∑

i niC
σ
i and X2 = A0+A1+

∑

i niC
σ2

i . With the notations above we also have Y0 = A1 + A2 +
∑

i niC
(x,y,z)
i .

Now we just have to remark that the subdivisor of D, X0+X1+X2+Y0 is greater
than 3A0 + 4A1 + A2. That is impossible since D contains only three times A1.
Hence X0 cannot be of the form A0 + A1. In the same way, we eliminate the case
X0 = A0 +A2 +

∑

i niCi.

5.2.3. The case X0 = A0 +A1 +A2 +
∑

i niCi.

First suppose that the nis are all zero. That is the case 5.9 in [25], we copy the
proof here for the sake of completeness. In this case, the equation of suchX0 is of the
form (x+y)(x+z)(y+z)+P (x, y, z) where P is a polynomial of degree at most 2. Let
σ be a generator of G. The equation of X1 is (x+y)(x+z)(y+z)+σ(P )(x, y, z) and
the equation ofX2 is (x+y)(x+z)(y+z)+σ

2(P )(x, y, z). Since these polynomials are
irreducible (we have supposed that X0 is irreducible) and distinct, they are prime
with each other. Therefore f(x0) + f(x1) + f(x2) + f(x0 + x1 + x2) is divisible by

(5.2)

2
∏

i=0

(

(x+ y)(x+ z)(y + z) + σi(P )(x, y, z)
)

The equation of the curve X∞ is

((x+ y)(x+ z)(y + z))
3
φ4e = 0

so we find that the product (5.2) can contain only three summands, hence σ3(P ) =
P . Hence P is defined on Fq3 and X0 also. The product (5.2) must be symmetric
in the variables x, y, z, since if it were not, the image of the product (5.2) by some
element of the symmetry group G of the 3 variables would be different, and also
divide f(x) + f(y)+ f(z)+ f(x+ y+ z), therefore forcing the curve X∞ to contain
more than 3 time the line x+ y = 0. If P is not symmetric in the variables x, y, z,
then the orbit of P by the symmetry group G of the 3 variables would be contained
in the set {P, σ(P ), σ2(P )} since the product (5.2) is symmetric. The orbit of P
under G is not reduced to {P} since P is not symmetric. It is not either reduced
to two elements, because the third element would be symmetric, so it is equal to
the set {P, σ(P ), σ2(P )}. The stabilizer of P in G would then be reduced to a
transposition. But the stabilizer of σ(P ) would contain a conjugate transposition,
and this transposition would also fix P , as the action of G and G commute. So it
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is impossible, which proves that P must be symmetric. Therefore P is of the form

P (x, y, z) = c1(x
2 + y2 + z2) + c4(xy + xz + zy) + b1(x+ y + z) + d1.

That is the condition (1) of theorem 3.1.
So the only case left is when at least one of the nis is non-zero. In this case we

have:

X1 = A0 +A1 +A2 +
∑

i

niC
σ
i ,

and

X2 = A0 +A1 +A2 +
∑

i

niC
σ2

i .

If
∑

i niCi is not invariant under the action of the symmetry group, then there exist
a divisor X3 > A0 + A1 + A2 different from X0, X1 and X2. Then

∑

j Xj > D,

which is a contradiction and
∑

i niCi is invariant under the action of the symmetry
group.

Moreover, if
∑

i niCi lies over Fq and corresponds to an absolutely irreducible
factor of φi (i.e. only one of the ni’s is equal to one and all the others are zero),
there exists a divisor X4 which is defined over Fq and which contains Ci, leading
again to a contradiction.

This corresponds to the condition (2) of theorem 3.1.

6. Some applications

6.1. Exceptional APN polynomials of degree 20.

In this section, we will use the theorem 3.1 to investigate the case where e = 5.
The decomposition of φ5 is given by proposition 1:

φ5 = (x+ αy + α2z)(x+ α2y + αz),

where α is in F4 − F2. Hence, the only symmetric factor of φ5 is φ5 itself and then
the condition (3) of theorem 3.1 cannot hold. Also, the condition (1) is already
treated in [10] and the conclusion is that f is CCZ-equivalent to x5. So we only
have to study the consequences of condition (2) on f . That is

φ = (φ5 + L(x, y, z)) (Aφ5 +R(x, y, z)) (Aφ5 + σ (R(x, y, z)))
(

Aφ5 + σ2 (R(x, y, z))
)

,

where L is a symmetrical polynomial of Fq of degree 1 and R is a symmetrical
polynomial of Fq3 of degree 4.

The first thing we show is that L(x, y, z) = a(x + y + z) + b = 0. As φ does
not have any absolutely irreducible component, (φ5 + L) cannot be absolutely irre-
ducible. Hence, there exist two polynomials G(x, y, z) and H(x, y, z) in F̄2[x, y, z]
such that G×H = φ5 + as1 + b. Writing Gi and Hi the homogeneous components
of degree i of G and H respectively, we get:

φ5 = G1 ×H1.

Without loss of generality we can assume that G1 = x + αy + α2z and H1 =
x+ α2y + αz. Also,

a(x+ y + z) = G0(x+ α2y + αz) +H0(x + αy + α2z),
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and hence

G0 +H0 = a

G0α+H0α
2 = a

G0α
2 +H0α = a

Plugging G0 = H0 + a into the last two equations we get H0 = aα and H0 =
a(α+ 1), that is a = H0 = G0 = 0 and thus b = 0, so L(x, y, z) = 0.

Now, as φ =
∑20

j=0 ajφj , we have for every j = 0, . . . , 20, φ5 divides ajφj .
Hence

φ = a20φ20 + a10φ10 + a5φ5.

That is f is equal to a20x
20+a16x

16+a10x
10+a8x

8+a5x
5+a4x

4+a2x
2+a1x+a0.

As the class of APN polynomial is invariant under the addition of q-affine polyno-
mial, we can restrict ourselves to f = a20x

20 + a10x
10 + a5x

5. Clearly, f is of the
form ϕ(x5) where ϕ(x) is a q-affine polynomial of degree 4, hence f is EA (thus
CCZ) equivalent to the polynomial x5.

To sum up, what we proved is that the exceptional APN function of degree
20 are CCZ-equivalent to the function x5. As this function is APN only on every
extension of F2 of odd degree we get that m is an odd number and this concludes
the proof of theorem 3.3.

6.2. Other examples.

The case e = 9 can be solved in the same way than the precedent one. But
the impossibility of showing that φ9 +L(x, y, z) is not absolutely irreducible if and
only if L is zero leads to a long calculation which is not of real interest here but
one can prove that f is CCZ-equivalent to x9.

One can also ask if there exist e such that the condition (3) can happen. We
provide an example here.

Take e = 26 + 1. Clearly, e is a Gold exponent so the decomposition of φ65 is
given by proposition 1. That is

φ65 =
∏

α∈F
26

−F2

(x+ αy + (α+ 1)z).

Now, let β be a generator of F26 , then the polynomial

ψ = (x + βy + (β + 1)z)(x+ β7y + (β7 + 1)z)(x+ β8y + (β8 + 1)z)

(x+ β56y + (β56 + 1)z)(x+ β55y + (β55 + 1)z)(x+ β62y + (β62 + 1)z)

is symmetric, defined over F23 (and then on Fq3) and ψ, σ(ψ) and σ
2(ψ) are rela-

tively prime if Fq does not contain F23 . That means that the polynomial ψ meets
the condition (3) of theorem 3.1. Again, some long calculations would be necessary
to investigate the consequences of this division.

In conclusion, I think that this method reaches its limit here and I would suggest
to try a different approach to solve the remaining cases.



A DIVISIBILITY CRITERION FOR EXCEPTIONAL APN FUNCTIONS 11

References

[1] Y. Aubry, G. McGuire, F. Rodier, A few more functions that are not APN infinitely often,
Finite Fields Theory and applications, Ninth International conference Finite Fields and Appli-
cations, McGu & al.editors, Contemporary Math. n◦518, AMS, Providence (RI), USA, 2010,
pp23-31.

[2] T. Berger, A. Canteaut, P. Charpin, Y. Laigle-Chapuy On almost perfect nonlinear functions
over F2n . IEEE Trans. Inform. Theory 52 (2006), no. 9, 4160-4170.

[3] Biham, E. and A. Shamir. (1990). Differential Cryptanalysis of DES-like Cryptosystems. Ad-
vances in Cryptology CRYPTO ’90. Springer-Verlag. 221.
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