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We are interested in the functions from F 2 m to itself which are Almost Perfectly Nonlinear over infinitely many extensions of F 2 , namely, the exceptional APN functions. In particular, we study the case of the polynomial functions of degree 4e with e odd and we give a necessary condition on an associated multivariate polynomial for the function to be exceptional APN. We use this condition to confirm the conjecture of Aubry, McGuire and Rodier in some new cases.

Introduction

A vectorial Boolean function is a function f : F 2 m → F 2 m . It is well known that all those functions admit a polynomial representation. Throughout this paper, we will refer to f as a function as well as a polynomial. These objects arise in fields like cryptography and coding theory and are of particular interest in the study of block-ciphers using a substitution-permutation network (SP-network) since they can represent a Substition Box (S-Box). In 1990 Biham and Shamir introduced the differential cryptanalysis in [START_REF] Biham | Differential Cryptanalysis of DES-like Cryptosystems[END_REF]. The basic idea is to analyze how a difference between two inputs of an S-box will influence the difference between the two outputs. This attack was the motivation for Nyberg to introduce the notion of Almost Perfectly Nonlinear (APN) function [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] which are the function providing the S-Boxes with best resistance against differential cryptanalysis. An APN function is a vectorial Boolean function such that ∀a = 0, b ∈ F 2 m there exist at most two solutions to the equation: f (x + a) + f (x) = b. A complete classification of APN function is an interesting open problem that has been widely studied by many authors. A first approach toward the classification was to consider only power functions and the studies was recently extended to polynomial functions (Carlet, Pott and al [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF][START_REF] Edel | A new APN function which is not equivalent to a power mapping[END_REF][START_REF] Edel | A new almost perfect nonlinear function which is not quadratic[END_REF]) or polynomials on small fields (Dillon [START_REF] Dillon | APN Polynomials: An Update. Fq9[END_REF]). On the other hand, several authors (Berger, Canteaut, Charpin, Laigle-Chapuy [START_REF] Berger | On almost perfect nonlinear functions over F 2 n[END_REF], Byrne, McGuire [START_REF] Byrne | Quadratic Binomial APN Functions and Absolutely Irreducible Polynomials[END_REF] or Jedlicka [START_REF] Browning | An APN permutation in dimension six[END_REF]) showed that APN functions cannot exist in certain cases. Some also studied the APN functions on fields of odd characteristic (Leducq [19], Pott and al. [START_REF] Dobbertin | APN functions in odd characteristic[END_REF][START_REF] Poinsot | Non-Boolean almost perfect nonlinear functions on non-Abelian groups[END_REF], Ness, Helleseth [START_REF] Ness | Tor A new family of ternary almost perfect nonlinear mappings[END_REF] or Wang, Zha [START_REF] Zha | Power functions with low uniformity on odd characteristic nite elds[END_REF][START_REF] Zha | Almost perfect nonlinear power functions in odd characteristic[END_REF] ).

One way to face the problem of the classification is to consider the function APN over infinitely many extensions of F 2 , namely, the exceptional APN functions. The two best known classes of exceptional APN functions are the Gold functions: f (x) = x 2 i +1 and the Kasami functions f (x) = x 4 i -2 i +1 , both are APN whenever i and m are coprime. We will refer to 2 i + 1 and 4 i -2 i + 1 respectively as the Gold and Kasami exponent. Hernando and McGuire proved that those two functions are the only monomial exceptional APN functions [START_REF] Hernando | Gary Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions[END_REF]. It was the starting point for Aubry, McGuire and Rodier to formulate the following conjecture:

Conjecture 1 ([1]
). The only exceptional APN functions are, up to Carlet Charpin Zinoviev-equivalence (as defined below), the Gold and Kasami functions.

We provide the definition of the Carlet Charpin Zinoviev equivalence: Definition 1.1 ([8]). Two functions f and g are Carlet Charpin Zinoviev (CCZ-)equivalent if there exist a linear permutation between their graphs (i.e. the sets {x, f (x)} and {x, g(x)}).

It is worth pointing out that all the functions CCZ-equivalent to an APN function are also APN [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like crypto-systems[END_REF].

By means of a simple rewriting of the definition of APN function in terms of algebraic geometry, Rodier was able to prove that, if the projective closure of the surface X defined by the equation:

f (x) + f (y) + f (z) + f (x + y + z) (x + y)(y + z)(z + x) = 0
has an absolutely irreducible component defined over F 2 m , then f is not an exceptional APN function [START_REF] Rodier | Borne sur le degré des polynômes presque parfaitement non-linéaires[END_REF]. We will denote by X the projective closure of X.

From now on we let

q = 2 m , φ(x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y)(y + z)(z + x) , φ i (x, y, z) = x i + y i + z i + (x + y + z) i (x + y)(y + z)(z + x) . and A = (x + y)(y + z)(z + x).
Writing f = d i=0 a i x i with d the degree of f , we have φ = d i=0 a i φ i and so the homogeneous equation of X is given by

ϕ(x, y, z, h) = d i=0 a i φ i h d-i .
The idea is to use the fact that if X ∩ H, where H is an hyperplane, has a reduced absolutely irreducible component then X has an absolutely irreducible component (see [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF]). We wish to exploit this criterion to prove that the functions which are not CCZ-equivalent to a Gold or Kasami monomial are not exceptional APN. This approach enabled Aubry, McGuire and Rodier to state, for example, that there is no exceptional APN function of degree odd not a Gold or Kasami exponent as well as functions of degree 2e with e an odd number [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF].

The next step was to study the polynomials of degree 4e. Under the assumption that φ e is absolutely irreducible, Rodier proved that an exceptional APN function should have its associated polynomial φ divisible by another polynomial with a specific form (see [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]). In the same paper, he treated the case of exceptional APN function of degree 12. It was later showed in [START_REF] Caullery | The exceptional APN functions of degree 4e[END_REF] that there is no exceptional APN polynomial functions of degree 4e with e > 3 such that φ e is absolutely irreducible.

At this point, a natural question is: what happens when φ e , with e odd, is not absolutely irreducible? Using the symmetry in the variables x, y and z of the polynomial φ and the language of Weil divisors, we will determine all the possible divisors of the surface X. This result includes the main result of [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF] as a corollary and gives what I believe to be the limit of this kind of reasoning. With this tool, we will treat the smallest untreated example, namely e = 5 and confirm the correctness of the conjecture in this case.

The state of the art

Using the approach described in the introduction Aubry, McGuire and Rodier obtained the following results in [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF].

Theorem 2.1 ( [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF]). If the degree of the polynomial function f is odd and not an exceptional number then f is not an exceptional APN function.

Theorem 2.2 ([1]

). If the degree of the polynomial function f is 2e with e odd and if f contains a term of odd degree, then f is not an exceptional APN function.

There are some results in the case of Gold degree 2 i + 1:

Theorem 2.3 ([1]). Suppose f (x) = x 2 i +1 + g (x) where deg (g) ≤ 2 i-1 + 1. Let g (x) = 2 i-1 +1 j=0
a j x j . Suppose moreover that there exists a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible. Then f is not an exceptional APN function.

This result has been extended by Delgado and Janwa in [START_REF] Delgado | On the Conjecture on APN Functions[END_REF] with the two following theorems:

Theorem 2.4 ([11]). For k ≥ 2, let f (x) = x 2 i +1 +h(x) ∈ F q where deg(h) ≡ 3 (mod 4) < 2 i + 1. Then f is not an exceptional APN function. and Theorem 2.5 ([11]). For k ≥ 2, let f (x) = x 2 i +1 + h(x) ∈ F q where deg(h) = d ≡ 1 (mod 4) < 2 i + 1. If φ 2 i +1 and φ d are relatively prime, then f is not an exceptional APN function.
There also exist a result for polynomials of Kasami degree 2 2i -2 i + 1:

Theorem 2.6 ([16]). Suppose f (x) = x 2 2i -2 i +1 +g (x) where deg (g) ≤ 2 2k-1 - 2 k-1 + 1. Let g (x) = 2 2k-1 -2 k-1 +1 j=0
a j x j . Suppose moreover that there exist a nonzero coefficient a j of g such that φ j (x, y, z) is absolutely irreducible. Then f is not an exceptional APN function.

Rodier proved the following results in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF].

Theorem 2.7 ( [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]). Let f : F q → F q be an exceptional APN function of degree 4e with e such that φ e is absolutely irreducible. Then the polynomials of the form

(x + y) (x + z) (y + z) + P, with P (x, y, z) = c 1 x 2 + y 2 + z 2 + c 4 (xy + xz + zy) + b 1 (x + y + z) + d 1 , for c 1 , c 4 , b 1 , d 1 ∈ F q 3 , divides φ.
Remark 2.8. This theorem is originally stated for e ≡ 3 (mod 4) but its proof is also valid with e such that φ e is absolutely irreducible (see [START_REF] Caullery | The exceptional APN functions of degree 4e[END_REF]).

There are more precise results for polynomials of degree 12.

Theorem 2.9 ( [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]). If the degree of the polynomial f defined over F q is 12, then either f is not an exceptional APN function or f is CCZ-equivalent to the Gold function x 3 . Also, using the same approach, the present author proved the following: Theorem 2.10 ( [START_REF] Caullery | The exceptional APN functions of degree 4e[END_REF]). If the degree of the polynomial f defined over F q is 4e with e > 3 and such that φ e is absolutely irreducible, then f is not an exceptional APN function.

In particular, φ e is absolutely irreducible when e ≡ 3 (mod 4) (see lemma 4.4) so there is no exceptional APN function of degree 4e with e ≡ 3 (mod 4).

New Results

The main result of this paper is: Theorem 3.1. Let f : F q → F q be an exceptional APN function of degree 4e with e odd and let

φ(x, y, z) = f (x) + f (y) + f (z) + f (x + y + z) (x + y)(y + z)(z + x)
be its associated polynomial. Let σ be a generator of the Galois group Gal(F q 3 /F q ). One of these three conditions holds

(1) The polynomial φ is divisible by

(A + P (x, y, z)) (A + σ (P (x, y, z))) A + σ 2 (P (x, y, z)) ,
where P (x, y, z) is a symmetric polynomial of degree 2 defined over F q 3 . (2) The polynomial φ is divisible by

(Ψ(x, y, z) + L(x, y, z)) (AΨ(x, y, z) + R(x, y, z)) σ (AΨ + R(x, y, z)) σ 2 (AΨ(x, y, z) + (R(x, y, z)) ,
where Ψ(x, y, z) is a non absolutely irreducible symmetric factor of φ e defined over F q 3 but not over F q and R(x, y, z) and L(x, y, z) are symmetric polynomials of degree respectively less than deg(AΨ) and deg(Ψ) defined respectively over F q 3 and F q .

(3) The polynomial φ is divisible by Aψ 3 (x, y, z) + S(x, y, z) σ Aψ 3 (x, y, z) + S(x, y, z) σ 2 Aψ 3 (x, y, z) + S(x, y, z) , where ψ(x, y, z) is a square-free non absolutely irreducible symmetric factor of φ e defined over F q 3 such that ψ, σ(ψ) and σ 2 (ψ) are coprime. Remark 3.2. If φ e is absolutely irreducible, then we get directly theorem 2.9 as there is clearly no polynomial satisfying the conditions ( 2) and ( 3).

In section 6, we give a direct application of the last result to the case of polynomial APN function of degree 20.

Theorem 3.3. Let f : F 2 m → F 2 m be an exceptional APN function of degree d = 20.
Then m is odd and f is CCZ-equivalent to x 5 .

Preliminary lemmata

We will need the following lemmas: Lemma 4.1. ( [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]) The kernel of the mapping ̟ : f → φ is made of q-affine polynomials.

Lemma 4.2. ( [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF]) The class of APN functions is invariant under the addition of q-affine polynomials.

In particular, this result means that we can restrict ourselves to polynomials without any term of degree a power of 2.

Lemma 4.3. ( [START_REF] Aubry | A few more functions that are not APN infinitely often, Finite Fields Theory and applications[END_REF]) Writing i = 2 j k we have:

φ i = A 2 j -1 φ 2 j k . In particular, φ i is reduced if i is odd. Proposition 1. ([ 18 
]) The polynomial φ 2 i +1 decomposes into absolutely irreducible factors as follow:

φ 2 i +1 (x, y, z) = α∈F 2 i -F2 (x + αy + (α + 1) z) .
Lemma 4.4 ([18]). The polynomial φ e is absolutely irreducible if e ≡ 3 (mod 4).

Lemma 4.5 ([1]

). The polynomials φ e and A are coprime if and only if e is odd.

Our proof of theorem 3.1 relies on the two following propositions: Proposition 2 ( [START_REF] Rodier | Borne sur le degré des polynômes presque parfaitement non-linéaires[END_REF]). The surface X associated to an exceptional APN function does not contain any absolutely irreducible component defined over F q different from x + y = 0, y + z = 0 or z + x = 0.

Lemma 4.6 ([1]

). Let H be an hyperplane in P 3 (F q ). If the curve X ∩ H has a reduced absolutely irreducible component defined over F q then X has an absolutely irreducible component defined over F q .

Proof of theorem 3.1

The goal of this proof is to describe how an absolutely irreducible factors of φ should look like under the assumption that f is an exceptional APN function.

The key idea is to use lemma 4.6 along with the fact that the equation of the intersection of the surface X with the hyperplane infinity is known. For the sake of clarity, we will use the language of Weil divisors (see [START_REF] Shafarevich | Basic Algebraic Geometry[END_REF] for an introduction to Weil divisors) but one could directly translate this proof into terms of absolutely irreducible factors of polynomials.

Let f be an exceptional APN function of degree d = 4e. From proposition 2, its associated projective surface X does not contain any absolutely irreducible component defined over F q excepted perhaps x + y = 0, x + z = 0 or y + z = 0.

Let H ∞ be the plane at infinity in P 3 (F q ) (i.e. the plane of equation h = 0). By lemma 4.6, the intersection X ∩ H ∞ cannot contain any reduced absolutely irreducible component defined over F q different from x + y = 0, y + z = 0 or z + x = 0. From lemma 4.3 we have:

(5.1)

φ d = A 3 φ 4 e , meaning that X ∩ H ∞ is defined by the equation A 3 φ 4 e = 0.
Let D be the divisor associated to the hyperplane section X ∩ H ∞ . We denote by A 0 , A 1 and A 2 the divisors associated, respectively, to the section of the planes of equation x + y = 0, y + z = 0 and z + x = 0 with the plane H ∞ . Let p i be an absolutely irreducible factor of φ e . We will denote by C i the divisors associated to the section of the surface of equation p i (x, y, z) = 0 with the plane H ∞ . Then, from (5.1) and lemma 4.3:

D = 3(A 0 + A 1 + A 2 ) + 4 i C i .
Now let X 0 be an absolutely irreducible component of X which contains the line x + y = 0 in H ∞ . As we have supposed that f is an exceptional APN function, X 0 is defined over an extension of F q , say F q t . We choose t to be the smallest possible. Throughout this paper we will refer to σ as a generator of the Galois group Gal(F q t /F q ). We set X 0 to be the divisor associated to the section X 0 ∩ H ∞ , as X 0 is a component of X, X 0 is a subdivisor of D, and as X 0 contains the line x + y = 0 in H ∞ we have X 0 ≥ A 0 . Our goal is to find the possible forms for X 0 .

5.1. The case where X 0 ≥ 2A 0 .

In that case we have:

X 0 + X σ 0 ≥ 4A 0 .
But that is a contradiction since X 0 + X σ 0 must be a subdivisor of D and D contains only three times A 0 . 5.2. The case where X 0 contains only one time A 0 .

From the previous section, we know that X 0 is of the form A 0 + D 0 where D 0 is a subdivisor of D which does not contain A 0 . Thus there exists two other absolutely irreducible components of X, say X 1 and X 2 , with associated divisors respectively X 1 and X 2 , that contains only one time A 0 .

Let G be the Galois group Gal(F q t /F q ), since G fixes the line x + y = 0 in H ∞ , the group G acts on the X i and let us consider the orbit of X 0 under this action. If it contains just X 0 , then X 0 is defined over F q which is impossible from proposition 2. If it contains X 0 and X 1 then G fixes X 2 and X 2 is then defined over F q , that is again in contradiction with proposition 2. Finally, that means that it contains the three components. Then G acts transitively on these three components. Let G 1 the stabilizer of X 0 . Then the group G/G 1 is isomorphic to Z/3Z, and G 1 is the only subgroup of G of index 3. The same is true for the lines y +z = 0 and z +x = 0.

The case X

0 = A 0 + i n i C i .
First suppose that all the n i s are zero, hence X 0 = A 0 and then the equation of X 0 would be x + y + b = 0 with b ∈ F q t and b ∈ F q . In this case x + y + b would divide f (x) + f (y) + f (z) + f (x + y + z). As b ∈ F q , by the action of G, x + y + σ(b) would be a distinct plane containing the line x + y = 0 in H ∞ . As there are only three distinct components of X containing the line x + y = 0 in H ∞ and as t is minimal, this implies that t = 3. By symmetry of the variables x, y, z in the expression of 3 which is of the form given in 1 in theorem 3.1. Now suppose that there exist at least one nonzero n i . Thus we have:

f (x) + f (y) + f (z) + f (x + y + z), z + y + b and x + z + b divide also f (x)+f (y)+f (z)+f (x+y+z). Finally f (x)+f (y)+f (z)+f (x+y+z) is divisible by (x+y+b)(z +y+b)(x+z +b) = (x+y)(y+z)(z +x)+b(x 2 +y 2 +z 2 +xy+xz +zy)+b
X 1 = A 0 + i n i C σ i and X 2 = A 0 + i n i C σ 2 i .
Now suppose that X 0 is not invariant under the transposition (x, y), then the divisor

X 4 = A 0 + i n i C (x,y) i
is different from the precedents and j X j = 4A 0 + D 1 should be a subdivisor of D (we recall that φ is symmetric). That is a contradiction to the fact that D contains only three times A 0 and hence X 0 is invariant under (x, y).

Denote Y 0 (respectively Z 0 ) the image of X 0 by the permutation (x, y, z) (respectively (x, z, y)) and define

Y 1 = Y σ 0 and Y 2 = Y σ 2 0 . With the same argument as before, Y 0 should be invariant under (y, z), that is i n i C i is invariant under (x, z). Thus i n i C i (i.e. the product ψ = i p i (x, y, z) ni ) is symmetric.
For the sake of contradiction, suppose now that there exists an i and k such that n k and n i are nonzero and C k = C σ i . Hence, X 0 + X 1 + Y 0 + Y 1 + Z 0 contains at least five times C k which cannot happens since D contains it only four times. The same is true when we consider σ 2 . Now suppose that one of the n i , namely n k , is greater than 1. Then X 0 + Y 0 + Z 0 > A 0 + A 1 + A 2 + 6C k , but there is only four times C k in D because φ e is reduced (see lemma 4.3), so that is a contradiction and all the n i s are maximum 1.

To summarize, X 0 should be of the form A 0 + i n i C i where n i ≤ 1 and i n i C i is invariant under the action of the symmetry group and does not share any common component with i n i C σ i or i n i C σ 2 i . By the argument of [25, section 5.9] (see also 5.2.3 in the present paper), we get the condition (3) of theorem 3.1.

The case X

0 = A 0 + A 1 + i n i C i . If X 0 = A 0 + A 1 + i n i C i we get X 1 = A 0 + A 1 + i n i C σ i and X 2 = A 0 + A 1 + i n i C σ 2
i . With the notations above we also have

Y 0 = A 1 + A 2 + i n i C (x,y,z) i
. Now we just have to remark that the subdivisor of D,

X 0 + X 1 + X 2 + Y 0 is greater than 3A 0 + 4A 1 + A 2 .
That is impossible since D contains only three times A 1 . Hence X 0 cannot be of the form A 0 + A 1 . In the same way, we eliminate the case

X 0 = A 0 + A 2 + i n i C i . 5.2.3. The case X 0 = A 0 + A 1 + A 2 + i n i C i .
First suppose that the n i s are all zero. That is the case 5.9 in [START_REF] Rodier | Functions of degree 4e that are not APN infinitely often[END_REF], we copy the proof here for the sake of completeness. In this case, the equation of such X 0 is of the form (x+y)(x+z)(y+z)+P (x, y, z) where P is a polynomial of degree at most 2. Let σ be a generator of G. The equation of X 1 is (x+y)(x+z)(y +z)+σ(P )(x, y, z) and the equation of X 2 is (x+y)(x+z)(y+z)+σ 2 (P )(x, y, z). Since these polynomials are irreducible (we have supposed that X 0 is irreducible) and distinct, they are prime with each other. Therefore f (x 0 ) + f (x 1 ) + f (x 2 ) + f (x 0 + x 1 + x 2 ) is divisible by (5.2)

2 i=0 (x + y)(x + z)(y + z) + σ i (P )(x, y, z)
The equation of the curve X ∞ is ((x + y)(x + z)(y + z))

3 φ 4 e = 0 so we find that the product (5.2) can contain only three summands, hence σ 3 (P ) = P . Hence P is defined on F q 3 and X 0 also. The product (5.2) must be symmetric in the variables x, y, z, since if it were not, the image of the product (5.2) by some element of the symmetry group G of the 3 variables would be different, and also divide f (x) + f (y) + f (z) + f (x + y + z), therefore forcing the curve X ∞ to contain more than 3 time the line x + y = 0. If P is not symmetric in the variables x, y, z, then the orbit of P by the symmetry group G of the 3 variables would be contained in the set {P, σ(P ), σ 2 (P )} since the product (5.2) is symmetric. The orbit of P under G is not reduced to {P } since P is not symmetric. It is not either reduced to two elements, because the third element would be symmetric, so it is equal to the set {P, σ(P ), σ 2 (P )}. The stabilizer of P in G would then be reduced to a transposition. But the stabilizer of σ(P ) would contain a conjugate transposition, and this transposition would also fix P , as the action of G and G commute. So it is impossible, which proves that P must be symmetric. Therefore P is of the form

P (x, y, z) = c 1 (x 2 + y 2 + z 2 ) + c 4 (xy + xz + zy) + b 1 (x + y + z) + d 1 .
That is the condition (1) of theorem 3.1.

So the only case left is when at least one of the n i s is non-zero. In this case we have:

X 1 = A 0 + A 1 + A 2 + i n i C σ i ,
and

X 2 = A 0 + A 1 + A 2 + i n i C σ 2 i .
If i n i C i is not invariant under the action of the symmetry group, then there exist a divisor X 3 > A 0 + A 1 + A 2 different from X 0 , X 1 and X 2 . Then j X j > D, which is a contradiction and i n i C i is invariant under the action of the symmetry group. Moreover, if i n i C i lies over F q and corresponds to an absolutely irreducible factor of φ i (i.e. only one of the n i 's is equal to one and all the others are zero), there exists a divisor X 4 which is defined over F q and which contains C i , leading again to a contradiction. This corresponds to the condition (2) of theorem 3.1.

6. Some applications 6.1. Exceptional APN polynomials of degree 20.

In this section, we will use the theorem 3.1 to investigate the case where e = 5. The decomposition of φ 5 is given by proposition 1:

φ 5 = (x + αy + α 2 z)(x + α 2 y + αz),
where α is in F 4 -F 2 . Hence, the only symmetric factor of φ 5 is φ 5 itself and then the condition (3) of theorem 3.1 cannot hold. Also, the condition (1) is already treated in [START_REF] Caullery | The exceptional APN functions of degree 4e[END_REF] and the conclusion is that f is CCZ-equivalent to x 5 . So we only have to study the consequences of condition (2) on f . That is

φ = (φ 5 + L(x, y, z)) (Aφ 5 + R(x, y, z)) (Aφ 5 + σ (R(x, y, z))) Aφ 5 + σ 2 (R(x, y, z)) ,
where L is a symmetrical polynomial of F q of degree 1 and R is a symmetrical polynomial of F q 3 of degree 4.

The first thing we show is that L(x, y, z) = a(x + y + z) + b = 0. As φ does not have any absolutely irreducible component, (φ 5 + L) cannot be absolutely irreducible. Hence, there exist two polynomials G(x, y, z) and H(x, y, z) in F2 [x, y, z] such that G × H = φ 5 + as 1 + b. Writing G i and H i the homogeneous components of degree i of G and H respectively, we get:

φ 5 = G 1 × H 1 .
Without loss of generality we can assume that G 1 = x + αy + α 2 z and H 1 = x + α 2 y + αz. Also,

a(x + y + z) = G 0 (x + α 2 y + αz) + H 0 (x + αy + α 2 z),
and hence

G 0 + H 0 = a G 0 α + H 0 α 2 = a G 0 α 2 + H 0 α = a
Plugging G 0 = H 0 + a into the last two equations we get H 0 = aα and H 0 = a(α + 1), that is a = H 0 = G 0 = 0 and thus b = 0, so L(x, y, z) = 0. Now, as φ = 20 j=0 a j φ j , we have for every j = 0, . . . , 20, φ 5 divides a j φ j . Hence φ = a 20 φ 20 + a 10 φ 10 + a 5 φ 5 .

That is f is equal to a 20 x 20 +a 16 x 16 +a 10 x 10 +a 8 x 8 +a 5 x 5 +a 4 x 4 +a 2 x 2 +a 1 x+a 0 . As the class of APN polynomial is invariant under the addition of q-affine polynomial, we can restrict ourselves to f = a 20 x 20 + a 10 x 10 + a 5 x 5 . Clearly, f is of the form ϕ(x 5 ) where ϕ(x) is a q-affine polynomial of degree 4, hence f is EA (thus CCZ) equivalent to the polynomial x 5 .

To sum up, what we proved is that the exceptional APN function of degree 20 are CCZ-equivalent to the function x 5 . As this function is APN only on every extension of F 2 of odd degree we get that m is an odd number and this concludes the proof of theorem 3.3.

Other examples.

The case e = 9 can be solved in the same way than the precedent one. But the impossibility of showing that φ 9 + L(x, y, z) is not absolutely irreducible if and only if L is zero leads to a long calculation which is not of real interest here but one can prove that f is CCZ-equivalent to x 9 .

One can also ask if there exist e such that the condition (3) can happen. We provide an example here.

Take e = 2 6 + 1. Clearly, e is a Gold exponent so the decomposition of φ 65 is given by proposition 1. That is φ 65 = α∈F 2 6 -F2 (x + αy + (α + 1)z). Now, let β be a generator of F 2 6 , then the polynomial ψ = (x + βy + (β + 1)z)(x + β 7 y + (β 7 + 1)z)(x + β 8 y + (β 8 + 1)z) (x + β 56 y + (β 56 + 1)z)(x + β 55 y + (β 55 + 1)z)(x + β 62 y + (β 62 + 1)z) is symmetric, defined over F 2 3 (and then on F q 3 ) and ψ, σ(ψ) and σ 2 (ψ) are relatively prime if F q does not contain F 2 3 . That means that the polynomial ψ meets the condition (3) of theorem 3.1. Again, some long calculations would be necessary to investigate the consequences of this division.

In conclusion, I think that this method reaches its limit here and I would suggest to try a different approach to solve the remaining cases.