
HAL Id: hal-00985936
https://hal.science/hal-00985936v1

Submitted on 30 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulations of VANET Scenarios with OPNET and
SUMO

Florent Kaisser, Christophe Gransart, Marion Berbineau

To cite this version:
Florent Kaisser, Christophe Gransart, Marion Berbineau. Simulations of VANET Scenarios with
OPNET and SUMO. Nets4Cars/Nets4Trains, Apr 2012, France. 9p. �hal-00985936�

https://hal.science/hal-00985936v1
https://hal.archives-ouvertes.fr

Simulations of VANET scenarios

with OPNET and SUMO

Florent Kaisser, Christophe Gransart, and Marion Berbineau

Univ Lille Nord de France, F-59000, Lille,
IFSTTAR, LEOST, F-59650, Villeneuve d’Ascq

Email: florent.kaisser@ifsttar.fr, christophe.gransart@ifsttar.fr,
marion.berbineau@ifsttar.fr

Abstract. Vehicular Ad hoc Networks (vanet) are a special kind of Mo-
bile Ad-Hoc Networks (manet) adapted to the communications between
vehicles. Several specific protocols to vanets have been developed to
improve performances and satisfy vehicular application needs. To eval-
uate a protocol for vanet, some realistic mobility models are needed.
Unfortunately, such models are not provided by Opnet Modeler. In this
work, we propose a framework that enhances Opnet Modeler simulation
scenario using realistic vehicular mobility models. This framework makes
use of the open source software called “Simulation of Urban MObility”
(sumo) and the “input trajectory files” feature of Opnet Modeler.

Keywords: VANET, Opnet, SUMO, simulation, framework, dissemi-
nation.

1 Introduction

Starting with the idea of making driving safer by inter-vehicle communication,
the concept of vehicular networks or vehicular ad hoc networks (vanets) has
been extended to a large collection of various applications that can profit from
wireless communication between vehicles. Vehicles are not only communicating
between each other, but are also getting information from and sending data
to infrastructure units. This particular context has several specificities like the
deployment of safety applications that have critical requirements regarding com-
munications. Classical ad hoc routing protocol (aodv, olsr, gpsr) are usable
in vanet, but they are not adapted to the specificities of these networks.

Several specific protocols to vanets have been developed to improve perfor-
mances and satisfy vehicular application needs. To evaluate scalability and effi-
ciency of a protocol for vanet, some simulations with realistic mobility model
are needed. Numerous works use various tools to evaluates their proposals. In
this paper we propose to use Opnet Modeler to simulate vanet by associating
it with a vehicular mobility simulator.

In a first section, we propose an overview of vanet simulation by describ-
ing current simulation tools. Afterwards, in a second section, we introduce our
framework to simulate vanet with Opnet Modeler. Finally, we use our work to

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

2 Florent Kaisser, Christophe Gransart, and Marion Berbineau

evaluate a simple dissemination protocol for vanet by simulation of adapted
scenarios.

2 VANET simulation overview

In this section, we give a brief overview of vehicular ad hoc network and tools
to simulate them. Like other kind of networks, simulating vanet is necessary to
validate protocols and applications. In addition, the total number of vehicles in
a network can be large, so evaluating the scalability is central.

Many tools allow to simulate vanet. In many case, this tool is a vehicu-
lar mobility model associate with a network simulator. In some case, vehicular
mobility model is a simple random way point mobility model, but it restricts
the movement of vehicles to real roads. To improve realism of the simulation,
a car-following model can be added, allowing to compute the vehicle accelera-
tion (then speed and position) according to neighbor vehicles in the same lane
or adjacent lanes. Next, we describe some network simulators associated to a
vehicular mobility model. A more exhaustive list of tools to simulate vanet is
depicted in a dedicated book [?] and a paper [?].

swans++ [?] is the network simulator swans (from jist/swans [?] project)
extended with a vehicular mobility model, straw [?] (Street Random Way
point). straw uses a simple random way point mobility model but it takes
in account a real street map loaded from tiger [?] (Topologically Integrated
Geographic Encoding and Referencing, an us street database) data files.

GrooveNet [?] (originally known as GrooveSim) is a network and mobility
simulator for real and simulated vehicles. GrooveNet, originally as an extension
of RoadNav [?] open-source simulator, can load real street map from tiger

database and includes a car-following model.
TraNS [?] (Traffic and Network Simulation Environment) was the first work

to combine the network simulator ns-2 [?] with a vehicular mobility simulator
sumo. We introduce sumo below. The link between the two simulators is done
with a parser that reads the output of sumo and converts it to a suitable format
for ns-2. Other works like move [?] gui and traceexporter tool (module of sumo)
allow to link ns-2 with sumo.

In Veins [?] (Vehicles in Network Simulation), sumo is paired with an other
network simulator omnet++ [?]. It creates a bidirectional communication be-
tween sumo and omnet++. Thus, the network simulator can react to events
from the mobility simulator.

itetris simulation platform [?] use ns-3 [?] as network simulator and sumo.
The two open source simulation platforms are connected with a central module
called itetris Control System (ics). This approach permits to have the best
performance in terms of scalability and modularity.

Opnet Modeler enables both random mobility and trajectory mobility. The
last-mentioned is setting with one trajectory file per node. This method allows to
elaborate complex node movements. Unfortunately, interaction between nodes
are not taken in account, so realistic mobility is limited. To the best of our

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

Simulations of VANET scenarios with OPNET and SUMO 3

knowledge, no tool for Opnet Modeler exists allowing to simulate vanet with a
realistic mobility model.

In this paper we propose a framework for Opnet Modeler to simulate complex
mobility, in our case moving vehicles on a road, using an extern microscopic
traffic simulation called sumo.

3 A framework to simulate VANET

A microscopic traffic simulator computes the position of all vehicles on road
at some time t from vehicles and road characteristics. These positions are used
to show vehicles on a graphical user interface (gui) or written in a file (dump

file). These simulators use a realistic model to describe the vehicles moving. This
model computes the ideal acceleration, velocity and position for each vehicle any
time, therefore avoid the physical collisions between vehicle.

Input data can be initials positions, vehicle characteristics (acceleration, max-
imum speed, etc), road network,way to go, position of destination, speed limits,
etc. sumo [?] is a free implementation of such a simulator and supports car-
following model (issue of [?,?,?,?]). sumo implementation consists of several
modules (or commands), with the sumo module in the center (Figure ??). Input
data of sumo is one or several road network files and one route file. The road
network file can be generated from various input formats with netconvert mod-
ule. These input formats can be osm files, from Open Street Map [?] database,
or shape files, from tiger [?] database. Many other formats are available.

A route file describes both the characteristics of vehicles on the road and
the path taken by the cars (edge sets of network road). Like road network files,
route files can be generated with a other module called duarouter from two
kinds of input: trip or flow definition. Each trip consists at least of the starting,
the ending edge and the departure time. Then duarouter computes the shortest
path between theses edges. Each trip is associated with one vehicle. Flow is
mostly the same approach as using trip definitions, but one may join vehicles
having the same departure and arrival edge using this method. Moreover, initial
position of all vehicles are computed randomly (from a simple discrete uniform
distribution).

3.1 Generate simple scenario

From network and route files, sumo module simulates all the positions at several
times (e.g. every seconds). These positions are written in a dump file. This file is
used to generate file(s) in a format understood by network simulator softwares.
In our case, we need a converter to generate files for Opnet Modeler. This is
achieved by developing our extension traceexporter 1. This extension implement
the data flow diagram shown in Figure ??. In addition of dump file, two other

1 Extension traceexporter already exists, but it only for ns-2. We have preferred re-
develop a similar extension for both ns-2 and Opnet Modeler simulators. Moreover
our implementation is more modular and therefore more easier to extend.

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

4 Florent Kaisser, Christophe Gransart, and Marion Berbineau

Fig. 1. Process to generate vehicular mobility with sumo

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

Simulations of VANET scenarios with OPNET and SUMO 5

Fig. 2. Topology import with new scenario assistant

input xml files are added: node attributes and include objects. The scheme of
these xml files are the same as the files generated by Modeler exporter feature.
The node attribute file contains the attributes of each vehicle node (model name,
parameters, icon, etc). The include object file contains the description of all
objects to be added to the scenario, e.g. a backbone or statics equipments.

traceexporter generates one trajectories file for each vehicle and one topol-

ogy file. The trajectories file is the same file generated by the gui of Modeler
when user defines a trajectory for a node. Topology file contains the scenario de-
scription with nodes description (name and initial vehicles position from sumo

dump file, and attributes from node attribute file) and other objects description
(from include object file). In addition of this file, a background bitmap can be
generated from network road file with adequate tool (e.g. mapnick for osm file).

Once trajectories files are copied to a Opnet model directory, the user calls
the Topology importer feature from Opnet Modeler (Topology menu, Topology
import, from xml files...), or creates a new scenario with xml import option
(Figure ??). User should obtain a results like shown in Figure ??. Discrete Event
Simulation can be run from this point.

3.2 Generate multiple scenarios

We added a feature to traceexporter allowing to generate multiple scenarios at
the same time. A scenario file defines all scenarios to generate. Each scenario
contain links to one input file for the road network (road network file), one for
the route definitions (route file, trip file or flow file), one for the include objects
and one for the node attributes (Figure ??). The different scenario can use
same or different input files. For examples, to generate scenarios with different
number of vehicles (50, 100, 150), three scenarios use the same network and
node attributes files, but three different flow files containing three number of
vehicles to generate. Moreover, traceexporter runs automatically the commands
like sumo and duarouter (for this reason, sumo does not appear on Figure ??).

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

6 Florent Kaisser, Christophe Gransart, and Marion Berbineau

Fig. 3. vanet in Opnet Modeler with our framework

After execution of traceexporter, one topology file is generated for each scenario
in different directories with their trajectories files associated.

4 Dissemination of informations in VANET

Several applications for vanet need to disseminate information on the network.
For security, an alert is spread to neighbor vehicles or the current informations
of vehicles (like the position, speed or other information from vehicle probes)
can be sent to all neighbors to increase driver visibility. We take this applica-
tion as an instance of a vanet simulation. Therefore, we add a process model
for Opnet Modeler to simulate a dissemination of information in vanet. This
process is above wireless lan mac. A new packet format is defined, containing:
vehicle id, type of information, position, number of hop, lifetime of the informa-
tion, sequence number. This packet is the payload of a mac packet sent by mac

layer. The process sends a packet every 500 ms. We define a simple forwarding
scheme (flooding): when the process receives a packet not received in the past,
the packet is re-sent to the neighbors. Thus, all nodes in the network receive
informations contained in the packet.

With a high density of vehicles, the number of packet sent in the network can
reach the network capacity, packets are no longer forwarded, then some vehicles
do not receive information. To avoid this, we define a forwarding scheme to
limit the number of packet sent. Several existing works [?,?,?,?] propose an

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

Simulations of VANET scenarios with OPNET and SUMO 7

Fig. 4. Multiple scenarios generation with traceexporter

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

8 Florent Kaisser, Christophe Gransart, and Marion Berbineau

achievement of dissemination in vanet. In this paper, we simulate (in addition
to flooding) a simple distance-based protocol (sdp) [?]. On message reception,
a vehicle starts a timer T inversely proportional to the distance from previous
sender :

T = tmax ∗ (1 −

d

R
)

with tmax the maximum waiting time, d the distance from previous sender,
R the radio range. In the simulation, R = 550 m and tmax = 50 ms. When the
timer reaching zero the node forward the packet. Other waiting nodes, receive
this packet and cancel their timer. Thus, we reduce the number of packet sent
in the network. We simulate flooding and sdp protocol with several number
of vehicles. In Figure ?? we see a good improvement with sdp protocol: the
maximum number of discovered neighbor with flooding is about 120, whereas
the maximum is close to 200 with sdp.

50 100 150 200 250 300
Number of neighbors reachable

40

60

80

100

120

140

160

180

200

Nu
m

be
r o

f n
ei

gh
bo

rs
 d

is
co

ve
re

d

SDP
Flooding

Fig. 5. Neighboor discovery with simple dissemination protocols

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

Simulations of VANET scenarios with OPNET and SUMO 9

5 Conclusion

In this paper we have proposed a framework to simulate vanet from Opnet
Modeler and sumo. Our proposal allows to use a realistic mobility model to
compute movement of vehicles on a real road with Opnet Modeler to effectively
simulate communication networks and with many existing models. The aim of
this framework is to be modular and easy to use by exploiting judicious feature
of Modeler like topology import.

But simulation of vanet with several number of vehicles or random seed
require many Opnet Modeler scenarios and an equivalent number of topology
import, which limits a good protocols evaluation. In future works, we wish to
integrate in Opnet Modeler a direct and bidirectional communication with sumo

allowing us to define more complex simulation scenarios.
Source code of this work can be downloaded at https://bitbucket.org/

florent_k/traceexporter.

In Communication Technologies for Vehicles, édité par Alexey Vinel, Rashid Mehmood, Marion Berbineau,

 Cristina Rico Garcia, Chung-Ming Huang, et Naveen Chilamkurti,

p103 112. Lecture Notes in Computer Science 7266. Springer Berlin Heidelberg, 2012. http://link.springer.com/chapter/10.1007/978-3-642-29667-3_9.

