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Abstract

In the field of multicriteria decision aid, considerable attention has
been paid to supervised classification problems, especially to so-called
sorting problems, where an order is assumed on the predefined classes.
Recently, some non-supervised multicriteria classification procedures, also
known as multicriteria clustering procedures, have been proposed aiming
to discover data structures from a multicriteria perspective. We enlighten
some properties of such approaches and their differences with regards to
classical procedures, and we propose a taxonomy of this family of proce-
dures. Moreover, we analyze extend to which these procedures differ from
the multicriteria ranking problematic.

Keywords: Multicriteria clustering; Taxonomy; MCDA; Clustering;
Multiple criteria analysis.

Introduction

Classification problems are commonly encountered in various application fields
such as health care, biology, finance, marketing, agriculture, etc.

[DHS01,

Zop02]. Two main problems are usually distinguished: the supervised and the
unsupervised classification or clustering problem.

In supervised classification problems the purpose is to assign a new object to

homogeneous groups (so-called classes) which are defined a priori. We may think

for instance about the medical diagnosis problem where a new patient has to be
assigned to a known pathology-class on the basis of a set of symptoms. A lot of

*corresponding author: olivier.cailloux@ulb.ac.be
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supervised classification procedures have been proposed such as the k-nearest
neighbor algorithm or the Bayes classifier [ELLO1, DBF05].

On the other hand, there may be no information available about the groups
(which are then often called clusters) and the purpose is then to elicit a structure
in the data set. For instance, one may consider a marketing problem where the
aim is to discover similar customer behaviors in the retail industry. Among the
most common clustering procedures, one may cite the K-means, hierarchical or
finite mixture densities algorithms [JMF99]. Multicriteria tools have also been
considered. Bisdorff proposes an Electre-like clustering procedure based on the
L-valued kernels [Bis02].

In the multicriteria decision aid field, a lot of attention has been paid to super-
vised classification. Moreover, a distinction is made between nominal classifica-
tion and ordinal classification, also called sorting [ZD02b]. In the former case,
there is no order on the classes whereas in the latter, the classes (also called
categories) are completely ordered from the best to the worst. For instance,
the evaluation of the creditworthiness of a company is a sorting problem. A
bank will assign a request for a new credit into one of the following classes:
the classes of accepted credits (the “creditworthy” clients), the classes of clients
for which some more information is needed and the classes of refused credits
(“untrustworthy” clients). In sorting problems the procedures explicitly take
into account preference information (using criteria, weights, indifference and
preference thresholds, etc.). Among others, we may cite Electre-Tri [Yu92],
FlowSort [NLO7], UTA-DIS [ZD02a].

Recently, some new multicriteria clustering procedures have been proposed who
aim to discover data structures from a multicriteria perspective. De Smet and
Guzman [SG04] and Figueira et al. [FSMB04] have extended the classical K-
means in a multicriteria framework, explicitly taking into account a preference
structure. The question of the positioning of these new research problems with
respect to both the classical clustering field and multicriteria problematics such
as ranking has, to the best of our knowledge, not been addressed yet. A first
answer is provided in this paper.

To this aim, we define some properties of clustering procedures. The fact of
working with criteria instead of attributes (like in classical approaches) is a first
distinctive feature that is analyzed. Furthermore, obtaining a partition with
a (possibly transitive) relation on the clusters is considered as well. Based on
these considerations, we propose a taxonomy of clustering procedures.

Such a clarification opens up some perspectives for designing new multicrite-
ria clustering procedures. We propose some broad strategies to achieve this.
Besides, we discuss how such approaches could help a decision maker.

The paper is organized as follows. After having described the general context in
which we place in this paper, we describe in section 3 our taxonomy proposition.
We first propose a property to distinguish classical clustering from multicriteria
clustering, then, propose to distinguish the case where the multicriteria cluster-
ing procedure contains a relation, then point the fact that this relation could



be transitive, and discuss the particularities of each of these branches. We com-
pare in section 4 the multicriteria clustering to the ranking problematic, and we
conclude by suggesting some paths which exploration may prove interresting.

2 Context

To simplify the context, we will restrict here to the clustering procedures taking
attribute values in the set of reals numbers, and we restrict to crisp clustering,
i.e. to the procedures assigning an object to exactly one cluster. Let us define
the context more precisely.

Definition 1 A real-valued attribute function g, defined in the context of
a clustering procedure using a set of actions A = {a1,...,a,}, is a function
taking its input in A and giving an output in R. O

We call here “action” what is usually called in the classical clustering domain
“object”, because the main concern of this paper is the multicriteria domain.

Definition 2 A real-valued clustering procedure is a procedure which
takes as input a set A of actions to be clusterized and a set F of real-valued
attribute functions, and gives as output a partition p on the set of actions, or
such a partition p and a binary relation on p. 0

We use the symbol F to refer to what is usually called in the multicriteria
decision aid field a criteria family. We include in this rather general definition
the case where the procedure’s output includes a binary relation on the resulting
partition. This is needed to include the Relational Multicriteria Clustering
procedures, which are defined in Section 3.2.

We will study in this paper the procedures which are deterministic and can be
modeled as a function f(A,F) giving the resultant partition p (and the resultant
partition relation if appliable).

Some clustering procedures are not deterministic because they use heuristics to
guess the possibly best partition (e.g., K-means). In that case, we will consider
a deterministic version of the same procedure which always selects the best
partition instead of the one chosen by the heuristic. We thus assume that
some algorithm to deterministically break the ties is used. An example of such
reasoning applied to a multicriteria clustering procedure is shown in Appendix

A.



3 Taxonomy

3.1 Criteria dependency

Some clustering procedures [SG04, FSMB04] have been proposed in the multi-
criteria decision aid domain. These procedures are a bit particular in the sense
that they use criteria instead of attributes. To the best of our knowledge, no
formal separation between these procedures and classical clustering procedures
(using attributes without preferencial information) has been proposed yet. In
this section, we propose a way to differenciate these particular procedures from
the classical ones, by the way of a property called “criteria-dependancy”.

A criteria is an attribute including a preferential information on the set of
considered actions. For example, a criterion ¢ is often defined using a binary
transitive relation S, on the set of actions such that for any two actions a and
b, we have aS,b if and only if a is preferred or indifferent to b.

In order to include situations where only a binary relation S, is provided to
describe a criterion, we assume here that such an ordinal criterion is first nu-
merically represented: if S, is a semi order, then a real-valued function g and
a constant € can be defined such that g(a) > ¢g(b) — € iff aSyb. Such a transfor-
mation is always possible [PV97]. The function g can then be considered as an
input of any real-valued clustering procedure.

It should be noted that a “direction” of preference on the set of actions can
be deduced from the preference information associated with a criterion. For
example, a “price” attribute, used for a seller, would become a “sell price”
criterion, having the same values as the price, but including the information
that it should be maximized. In a multicriteria procedure used by a buyer,
the “buying price” (or cost) criterion should rather be used, where it should be
minimized.

Formally, such a “criteria-dependant” procedure satisfies the definition given
here above and is thus a real-valued clustering procedure. But not all real-valued
clustering procedures are criteria-dependant procedures: to be so, a procedure
must somehow take into account the criterion-nature of the attributes it is
dealing with. This is reflected by the “criteria-dependancy” property that we
define hereunder. This property captures the fact that the qualified procedure
depends, or not, on the criteria it uses. It is satisfied when the procedure’s
results sometimes change when the criteria information change.

Let us define the INV(F, g*) function, which for any attribute set F and at-
tribute ¢* € F, transforms F to another set of attributes, similar to the first, but
where the attribute ¢g* has been inverted by inverting the sign of its attribute
values.

VF Vg* € F: INV(F,g*) = (F\ {g"} U{g*'}), where g*'(a) = —g*(a) Va € A.

In the case where the criterion which we invert has been initially ordinal (only a



binary relation Sg- is provided), then this construction consistently inverts the
order. Assume that aSg+b and therefore build a real-valued function g* such
that ¢*(a) > ¢*(b) —e. Applying the transformation to ¢g* yields a new criterion
function ¢g*’ such that ¢*’(a) = —g*(a) and ¢g*'(b) = —g*(a). That is why we
now have that ¢g*'(b) > ¢g*'(a) — €. The criterion g*’ then models a semi-order
S+ such that bS .- a.

If a clustering procedure does not use the added informations of the criteria,
transforming the attributes set using the TNV function will not change the pro-
cedure’s output. In the opposite case, the procedure’s output should change,
at least for some input sets, because the countrary would mean that the pref-
erencial information is never really taken into account. It should be noted that
the fact that the output changes does not tell us how the criteria information
has actually been exploited. An example of a procedure whose output changes
when the INV function is applied is given in Appendix B (see Figures 3 and
4).

Definition 3 A real-valued clustering function f is criteria-dependant iff
JAF, 9" | f(AF) # F(AINV(F, g7)).
O

Definition 4 A Multicriteria Clustering procedure, or MCC! procedure,
is a real-valued clustering procedure which is criteria-dependant. Otherwize,
the procedure is said to be a Classical Clustering procedure. 0

Having a formal way to distinguish between these two types of procedures has an
additional benefit: we can ensure whether a procedure used in the multicriteria
domain, such as those ones already published in the literature, is really using
the criteria information.

Indeed, it is interesting to note that some, if not most, Classical Cluster-
ing procedures define their partition quality measure by aggregating distances
(which are symetric measures) on each attribute, for example the least-square
error quality measure, whereas well-known multicriteria procedures such as
PROMETHEE [BVM&6] (on which PROMETHEE Cluster is based) use a non-
symetric m preference function to discriminate between actions.

It is thus more natural for a Multicriteria Clustering procedure to be criteria-
dependant than for a classical one. This reasoning is confirmed if looking at the
MC-K-means procedure, which is proved to be criteria-dependant in Appendix
B. But the link between being called multicriteria, or using non-symetric pref-
erence functions such as 7, and being criteria-dependant, is not guaranteed, as
can be seen by examining the PROMETHEE-Cluster procedure. We prove in
Appendix A that this procedure, altough based on PROMETHEE, is in fact not
criteria-dependant. Another example of a clearly non criteria-dependent pro-
cedure is presented by Bisdorfl [Bis02] who, although using multicriteria tools,
makes no use of preference directions. Instead, the procedure is based on a
symmetric similarity index.

"'We use in this paper the conventional “MC” abbreviation for the word “multicriteria”.
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Figure 1: Example of a partition with a relation on the clusters.

3.2 Relational Multicriteria Clustering

Among all the criteria-dependent clustering procedures, the second point of
interest is the presence of a relation between the clusters.

In the multicriteria context, actions are generally compared by defining a pref-
erence structure. A decision maker who compares two actions may express a
preference, an indifference or an incomparability statement between these two
actions [RV85]. It is thus natural to somehow incorporate this information into
the clustering results.

Classical clustering procedures typically do not propose a preferencial relation
between the obtained clusters because they are not criteria-dependant. Indeed,
the absence of preference statements between action pairs makes it difficult to
infer a preference statement between two group of actions, i.e. clusters.

On the contrary, one may imagine to enrich a partition obtained by a MCC
procedure with a binary preference relation between its clusters.

Definition 5 A Relational Multicriteria Clustering (RMCC) procedure
is a MCC procedure which ouputs a partition p and a binary relation on p. [

This relation may for instance be an “at least as good” relation and will be noted
S. In a general framework, this permits to obtain preferred, incomparable or
indifferent clusters: C7PC5 means that cluster C7 is preferred to cluster Cs
(C15C5 and Cy—SCy), C11Cy that cluster C4 is indifferent to Co (C1.5Cs and
(C3S5C) and C1JC5 that Cq and Cy are incomparable (C;—SCy and Cy—SCh).

In the example (see Fig. 1), we have that cluster C1 is preferred to cluster Cs,
Cs preferred to Cy and Cy to C7. Finally we have that clusters C3 and Cy are
indifferent.

Although the extension of the K-means proposed by De Smet and Guzman
[SGO4] (defined in Appendix B) explicitly uses a preference relation between
the actions, there does not exist a relation on the clusters. The use of rich



preference information as input for achieving a classical “output” induces a
loss of information and may be criticized. The two applications given in their
paper illustrate this concern. For instance, in the first application, countries are
grouped according to their level of creditworthiness. The resulting clusters are
then treated as if they were ordered whereas no ordering appears in the results
of the procedure.

The following strategy can be pursued in order to obtain a RMCC procedure.
First, a classical clustering algorithm (such as the K-means algorithm) is applied
on the data such that each cluster can be characterized with a centroid. In a
second step, any multicriteria pairwise comparison procedure can be applied on
these centroids in order to come up with an “at least as good” relation on the
clusters. The outranking relation computed in ELECTRE I [RB93] can be used
for this purpose.

3.3 Ordered Multicriteria Clustering

We treat in this section the special case when RMCC procedures always output
a transitive relation on the clusters.

Definition 6 An Ordered Multicriteria Clustering (OMCC) procedure
is a RMCC procedure which ouputs a partition p and a transitive binary relation
on p. O

The transitivity property is special in the sense that it unambiguously implies
an order on the clusters. If the relation is complete, then the clusters can be
totally ranked. If the relation is not complete, then the transitivity property
nevertheless implies a partial ranking, with some incomparable clusters.

OMCC procedures have the advantage over RMCC ones of providing less am-
biguous results. However, the decision maker may feel uncomfortable with forc-
ing transitivity. In such case, RMCC procedures would be more suitable. In a
multicriteria decision aid context, compare this to either only computing pair-
wise comparisons (which may lead to a non-transitive relation) or going on and
deriving a ranking from these pairwise comparisons.

Ordering clusters can be useful when some hierarchy has to be discovered in the
data. Consider for instance the problem where employees, evaluated on various
performance measures, have to be clustered. Depending on the data, one may
discover for instance three clusters: a cluster with the above average perfoming
employees, a cluster with the average performing employees and a cluster with
the below average performing employees.

The procedure proposed by Nemery [NS05] is an example of what we call OMCC.
It combines the ideas of both the clustering and the ranking problematics. First
pairwise preference degrees are computed. For any ordered partition, a homo-
geneity indicator measures to what extend the actions belonging to the same
cluster are similar and a heterogeneity indicator measures to what extend the
order on the clusters is compatible with the preference degrees.



Apart from this specific procedure, the strategy described in Section 3.2 can
also be adapted in order to build OMCC procedures: first, cluster the data,
then, rank the centroides using a multicriteria ranking procedure. Conversely,
a ranking procedure can be first applied on the data, then an ordered partition
compatible with that ranking can be built, effectively splitting up the initial
ranking.

OMCC procedures are also useful as a preprocessing step before applying a
sorting procedure, such as for instance Electre-Tri [Yu92]. In fact, the following
OMCC procedure could be imagined which is directly based on the sorting
procedure. Supose that all the parameters of that sorting procedure, except the
parameters defining the classes (for example the reference profiles in the case
of Electre-Tri) have been fixed by the decision maker. After generating a set of
reference profiles, the sorting procedure can be applied and each action can be
assigned to a class. A quality measure needs to be defined which evaluates how
“easy” these reference profiles allow to assign the actions. The resulting OMCC
procedure is the one which choses the optimal reference profiles set, i.e. the one
which yields the best assignments after applying the sorting procedure.

Apart from an ordered partition, such a procedure also provides good reference
profiles that come with the optimal ordered partition. This could support a
decision maker who would like to use a sorting procedure but is uncomfortable
with the definition of the classes.

4 Comparison with the ranking problematic

Ordered clustering is closely related to the problematic of ranking. According
to B. Roy [Roy85], the ranking problematic consists in partitioning the set of
actions into partially or totally ordered equivalence classes. By adopting such
a rather general definition, OMCC can be considered as a particular case of
the ranking problematic. In fact, an OMCC procedure, which partitions the
actions into ordered classes, can very naturally be seen as just another ranking
procedure. Despite this apparent similarity between OMCC and ranking, let us
however insist on some fundamental differences between these two problems.

On the one hand, a ranking procedure aims at discriminating the different ac-
tions. Consequently, a reasonable ranking procedure tends to maximize the
number of equivalence classes: the preferred case in a ranking procedure is usu-
ally to build a linear order whenever possible. In such a case, the number of
classes is maximal since it corresponds to the number of actions. Even if the
number of equivalence classes is not always equal to the number of actions, the
size of an equivalence class tends to be as small as the input data allows it to
be.

On the other hand, a clustering procedure also aims at discriminating the differ-
ent actions but at the same time it also tries to group together similar actions.
Whereas the first objective tends to maximize the number of classes, the second
objective tries to minimize it. The clustering solution finally adopted can usu-



Reference Type
[Bis02] CcC
[FSMBO04] CcC
SG04 NRMCC
NSO05 oMCC

Table 1: Some clustering procedures.

ally be seen as a compromise between these two contradictory objectives. This
observation will have several consequences.

Let us imagine a trivial problem with one criterion. Applying any reasonable
ranking procedure to this data, we expect the output to be exactly the preference
relation given by that criterion. Indeed, it is hardly conceivable that two actions
are in the same equivalence class in the output ranking when the input data
clearly states that the first action is preferred to the second one. Applying
a OMCC procedure to the trivial one criterion problem, one could however
imagine that the output is different from the initial criterion since some actions
can possibly be put together. For example in a problem with three actions,
where g(a) = 1,¢g(b) = 2 and g(c) = 1000, ¢ being preferred by far to b and b
being slightly preferred to a, a and b could be put together.

This example shows another difference between a solution obtained with a rank-
ing procedure and one obtained with an OMCC procedure. In the first case,
using the semantics of a {P, I, J} preference structure [RV85], an equivalence
class can be interpreted as a set of actions which are indifferent between them-
selves. Consequently, there is no preference nor incomparability between actions
of the same equivalence class. In the second case, there is no clear link anymore
between the cluster obtained in the OMCC procedure and such an indifference
relation. In the example above, a and b could belong to the same cluster, even
so a is preferred to b.

Moreover, in a ranking procedure, the decision maker usually does not fix the
number of equivalence classes: it will be implicitly determined by that particular
ranking mechanism. It does not usually make sense to fix it because it should
be maximized. This is not true in the OMCC domain, where some procedures
require to fix the number of clusters in advance.

5 Conclusion

The taxonomy of clustering procedures which we have presented in this paper
is summarized in Figure 2. First criteria-dependency is used to distinguish be-
tween Classical Clustering and what we call Multicriteria Clustering. We then
further classify MCC procedures into those which do not additionally yield a
preference structure on the clusters and those which do. This distinction leads
to either Non-Relational Clustering or Relational Clustering. Finally, the transi-
tivity of this possible preference structure on the clusters characterizes Ordered



Clustering Method

Criteria—dependent ?

A

Classical Clustering Multicriteria Clustering

Relational ?

N

Non-Relational Multicriteria Clusteri+; Relational Multicriteria Clusterin

Transitive ?

Yes

Ordered Multicriteria Clustering

Figure 2: A taxonomy of clustering procedures.

Multicriteria Clustering. We recapitulate in Table 1 how some clustering pro-
cedures developped by the multicriteria community fit into this taxonomy.

The main goal of this paper was to clarify the meaning and the distinctive
features of Multicriteria Clustering. Criteria-dependency is an important aspect
since it imposes that the clustering procedure takes into account the preference
scale implied by the criteria. Surprisingly, a procedure such as PROMETHEE
Cluster, which nevertheless assumes a criteria input, is not criteria-dependent.

Non-relational Multicriteria Clustering procedures are peculiar since, on the
one hand, they take into account the preferential information contained in the
criteria, but, on the other hand, they output a result without any preferential
information between the clusters. Seen from this angle, the interpretation of
the partition obtained by these type of procedures is not entirely clear yet.

Relational Multicriteria Clustering procedures overcome this limitation by pro-
viding a preference structure on the clusters. However, only a few RMCC proce-
dures have been proposed so far. The next step will now be to actually develop
particular RMCC procedures (OMCC or not), following for instance one of the
strategies explained in this paper. This will also help to analyze and under-
stand more easily the results obtained by this type of clustering procedures.
For instance, using OMCC procedures raises the question of monotonicity. The
impact of improving some evaluations on the resulting ordered partition could
be investigated.
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Finally, the different types of clustering procedures defined in this taxonomy
answer different types of decision problems. These different decision problems
still need to be better described and their added value for the decision maker
should be more clearly highlighted.
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Appendixes

A PROMETHEE Cluster

We show in this appendix that the PROMETHEE Cluster clustering proce-
dure, defined by Figueira et al. [FSMB04] and slightly modified here to make it
deterministic, is not criteria-dependant.

A.1 Definition of the procedure

We first decribe the (modified) PROMETHEE Cluster procedure.

Context

The PROMETHEE Cluster procedure, defined for a given number of clusters K,
takes as input a set of actions A and a set of criterion F = {¢1,...,g,} defined
on A, and finds the partition p on A which minimises the badness criterion F
measuring the partition heterogeneity. This section explains how this partition
heterogeneity measure F(p) is computed.

A partition p is a set of clusters. A cluster, denoted by C, is a set of actions.

We warn the reader about the fact that in the original paper, the authors define
the PROMETHEE Cluster procedure with a heuristic trying to find the opti-
mal partition (i.e., a K-means using the given deviation measure). As we need
a deterministic procedure to apply the criteria-dependance property, we present
here a variant which always finds the optimal procedure, and thus do not talk
about the heuristic. To make this PROMETHEE Cluster variant deterministic,
we also suppose it uses some algorithm to deterministically choose an optimal
partition in case of ex-sequo. The way the procedure chooses between these

11



equal-qualities partitions is not important for the proof, as long as the deter-
ministic rule is based solely on the distance measure defined in the procedure
and not directly on the criteria values.

Central profiles

Having a cluster C, we note r¢ the central profile of that cluster. Its evaluation
values on each criterion g are computed as the average of the evaluations, on
the same criterion of the actions belonging to the same cluster, as follows:

g(re) |C| Zg , Vg (where |C| is the number of actions in C).
aeC

For a given partition p, we note R the set of all central profiles of that partition:
R = {re,VC € p}. We have |R| =

Preference intensities

To each criterion g is associated a preference function f, : R — [0, 1], used to
compute the preference intensity Py, P,(x,y) measuring how z is preferred to

Y.

Vg € F,P,: AURXAUR — [0,1] | Yo,y € AUR: Py(a,y) = f, (g(x) — g(1)).

Net flow functions

The per criteria net flow is computed using two different formulas.

The per criteria net flow (bIg{, for a criterion g and an object a € A, measures
to which extend a is preferred over a set of reference objects, from the point of
view of g.

1
d)lg)” A —[0,1] |Vae A: qﬁ?(a) = | E (Py(a, ") —Py(r",a)).
r*€R

The per criterion net flow of an reference action r € R is defined similarily.

1

¢gZRH[O,1]|VTERZ¢g(T):W

Z (Pg(rar*) _Pg(r*a'r))'

T*GR\{T}

The authors do not describe the case where |R| = 1. We will thus consider that
R| > 1.

12



Deviation measure

The per criterion net flow are used to compute the deviation of an action
compared to a reference profile:

P
Va e A,r € R:d(a,r) ng}gbR }
geF
Heterogeneity measure
We can now define the heterogeneity measure: FE(p Z Z d(a,r¢). The
CepacC

optimal partition p is the one minimizing that measure (recall that we assume
the procedure has a deterministic way of chosing between ex-sequos).

A.2 PROMETHEE-Cluster is not criteria-dependent

Let us show that VA, F,g* : f(A,F) = f(A,F'), with F' = INV(F, g*). This
proves that the procedure is not criteria-dependant.

To show that the procedure’s output is equal, it is sufficient to show that the
distance measure they use are equal. Let us write d’, gbg”, ¢4’ P}, the distance
measure, the net flow on the action set, the net flow on the reference profiles
set, and the preference function computed from the input F’. We thus have to
show that d(a,r) and d’(a,r) are equal VF,g*, a,7. To do this we need two
intermediary results.

First, we have, Vz,y € AUR :

) _ | folg(@) = g(y)) = Py(z,y) Vg # g,
Py(@y) = { - (9(y) —g(z)) =Py(y,z) forg=g"

Thus7 P;* (:L'a y) 7P/g* (yv SC) = Pg* (ya ZL') 7Pg* (:L'a y) == (Pg* (SC, y) - Pg* (yv SC)) :
Using that we can deduce a second result.

Va € A,r € R,g € F: ’qﬁR’( (r)] = }qﬁR ¢g(r)|. This is trivially true
when g # ¢*. When g = ¢g*, we have

13



qﬁgi’(a) — ¢>g*’(r)‘ = |}F| Z (P;* (a,r*) — P;* (r*,a))

r*eR
1 . *
- ®T Z (P’g*(r,r ) =P (r ,r))
r*eR\{r}
1 . *
= | 2~ Pr(@r) =Py(,a)
r*eR
1 * *
TR Z — Py (r,r*) = Py (r*, 1))
r*eR\{r}
1 ” *
= ] Z (Pge(a,r*) = Py (r*, a))
r*eR
1 . *
sl > (Pye(rrt) = Py(r*,7))
r*eR\{r}

65 (0) = 0, (7).

And finally: d’(a,r) » Z % |p8/ (a) — ¢g/(7")’p

geF

230 T o) - o) =d(a,m).

geF

B MC K-means

We analyze in this appendix the procedure, that we call “MC-K-means”, defined
by De Smet and Guzman [SG04]. After formally presenting the procedure, we
proof by an example that the procedure is criteria-dependent.

B.1 Definition of the procedure

The MC-K-means procedure assumes that a preference structure (P, I,.J) has
been built on the set of actions A = {a,b,...}. A preference structure is a
triplet of binary relations, where P models strict prefererence, I indifference
and J incomparability. Such a preference structure can be constructed by using
a multicriteria decision aid method.

Each action a € A is represented by the sets P*(a), P~ (a), I(a) and J(a) con-
taining the actions which are preferred by a, which prefer a, which are indifferent
with a and which are incomparable with a:

P*(a) ={be€ A:aPb}.
P~ (a) ={be A:bPa}.
I(a) = {be A: alb}.
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J(a) ={be A:alb}.

A distance between any two action a,b € A is defined as follows:

d(a,b) = 1— [PT(a) N PT(b)| + |P~(a) N P=(b)| + [I(a) NI(b)] + |J(a) N J(b)|.

n

This distance function measures the degree to which the two actions are similar
with respect to the other actions. A particularity of this distance is that it does
not only depend on the the two actions a and b, but on the whole set of actions

A.

Given a subset of actions A" C A, the sets PT(r), P~ (r), I(r), and J(r) of a
centroid r of A" are such that:
a€ Pt(r)if |{be A’ : bPa}|
> max{|{b € A" : aPb}|,|{be A" : alb}|,[{be A" : aJb}|}.

a€ P (r)if [{be A" : aPb}|
> max{|{b € A" : bPa}|,[{b € A" : alb}|,|{b € A" : aJb}|}.

acI(r)if|{be A :ala}|
> max{|{be€ A" : aPb}|,[{be A" :bPa}|,|{be A" : aJb}|}.

ac J(r)if|{be A" :aJa}|
> max{[{be€ A" : aPb}|,[{be A :bPa}|,|{be A" : alb}|}.

Furthermore, any action a € A can only belong to one of these four sets. If an
action could be assigned to more than one set, one of the possibilities is chosen
randomly.

The algorithm then follows a traditional K-means scheme, but we do not detail
it. We assume that the procedure always chooses one of the partitions minimiz-
ing the average distances within each cluster (which one is chosen when there
are several possibilities is not important for the proof).

B.2 MC K-means is criteria-dependent

We illustrate the procedure on an example with 4 actions which can be found in
Figure 3. We use the dominance relation in order to build the (P, I, J) structure.
That is why we have the following sets:

PrO [P~ ()[I0O) ][I0
a b,c,d a
b a d b c
c a d c b
d| a,b,c d
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Figure 3: A 2-Cluster solution with four actions.

If we are looking for two clusters, then the following solution minimizes the
average distance within the clusters:

{a,b,c} a d c 5/12

Cluster | PY(r) | P~ (r) | I(r) | J(r) || average distance
b
{d} a,b,c d 0

The distances between the actions of the first cluster and the centroid are

d(a,r) = T d(b,r) = 0 and d(c,r) = T which leads to an average distance

5
of 2 In the second clusters, the action d coincides with the centroid and con-

sequently the average distance in that cluster is 0. For this example, another
optimal solution with 2 clusters would be {a} and {b, ¢, d}. In order to check for
criteria-dependency, we must assume that the procedure deterministically out-
puts one of these two partitions. Whatever the tie-breaking mechanism used to
chose between these two optimal solutions, we will now see that the procedure
is criteria-dependent.

Let us now reverse the criterion on the vertical axis (see Figure 4). The prefer-
ence structures now change accordingly:

PrO) [P O IO ] JO
a a d,b,c
b c b a,d
c b c a,d
d d | a,b,c

If we are looking for two clusters, then the only solution which minimizes the
average distance within the clusters is:
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Figure 4: A 2-Cluster solution with four actions.

Cluster | PT(r) | P=(r) | I(r) | J(r) || average distance

{a,d} a | dbec 1/4
{b, ¢} c b a,d 1/4

Hence this solution is different from the two optimal solutions previously ob-
tained. This illustrates the fact that the procedure is criteria-dependent, what-
ever the tie-breaking mechanism used to discriminate between multiple optimal

solutions.
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