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In the past few years, a lot of attention has been devoted to multimedia indexing by fusing multimodal informations. Two kinds of fusion schemes are generally considered: The early fusion and the late fusion. We focus on late classifier fusion, where one combines the scores of each modality at the decision level.

To tackle this problem, we investigate a recent and elegant well-founded quadratic program named MinCq coming from the machine learning PAC-Bayesian theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters, leading to the lowest misclassification rate, while maximizing the voters' diversity. We propose an extension of MinCq tailored to multimedia indexing. Our method is based on an order-preserving pairwise loss adapted to ranking that allows us to improve Mean Averaged Precision measure while taking into account the diversity of the voters that we want to fuse. We provide evidence that this method is naturally adapted to late fusion procedures and confirm the good behavior of our approach on the challenging PASCAL VOC'07 benchmark.

Introduction

Combining multimodal information is an important issue in pattern recognition. Indeed, the fusion of multimodal inputs can bring complementary information from various sources, useful for improving the quality of the final decision. In this paper, we focus on multimodal fusion for image analysis in multimedia systems (see [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF] for a survey). The different modalities correspond generally to a relevant set of features that can be grouped into views. Once these features have been extracted, another step consists in using machine learning methods in order to build voters-or classifiers-able to discriminate a given concept. In this context, two main schemes are generally considered [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. On the one hand, in the early fusion approach, all the available features are merged into one feature vector before the learning and classification steps. This can be seen as a unimodal classification. However, this kind of approach has to deal with many heterogeneous features which are sometimes hard to combine. On the other hand, the late fusion 4 works at the decision level by combining the prediction scores available for each modality (see Fig. 1). Even if late fusion may not always outperform early fusion 5 , it tends to give better results in multimedia analysis [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. Several methods based on a fixed decision rule have been proposed for combining classifiers such as max, min, sum, etc [START_REF] Kittler | On combining classifiers[END_REF]. Other approaches, often referred to as stacking [START_REF] Wolpert | Stacked generalization[END_REF], need of an extra learning step.

In this paper, we address the problem of late fusion with stacking. Let h i be the function that gives the score associated with the i th modality for any instance x. A classical method consists in looking for a weighted linear combination of the scores seen as a majority vote and defined by: H(x)= n i=1 q i h i (x), where q i is the weight associated with h i . This approach is widely used because of its robustness, simplicity and scalability due to small computational costs [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF]. It is also more appropriate when there exist dependencies between the views through the classifiers [START_REF] Wu | Optimal multimodal fusion for multimedia data analysis[END_REF][START_REF] Ma | Linear dependency modeling for classifier fusion and feature combination[END_REF]. The objective is then to find an optimal combination of the classifiers' scores by taking into account these dependencies. One solution is to use machine learning methods to assess automatically the weights [START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Dietterich | Ensemble methods in machine learning[END_REF][START_REF] Re | Ensemble methods: a review[END_REF][START_REF] Sun | A survey of multi-view machine learning[END_REF]. Indeed, from a theoretical machine learning standpoint: considering a set of classifiers with a high diversity is a desirable property [START_REF] Dietterich | Ensemble methods in machine learning[END_REF]. One illustration is given by the algorithm AdaBoost [START_REF] Freund | Experiments with a new boosting algorithm[END_REF] that weights weak classifiers according to different distributions of the training data, introducing some diversity. However, AdaBoost degrades the fusion performance when combining strong classifiers [START_REF] Wickramaratna | Performance degradation in boosting[END_REF].

To tackle the late fusion by taking into account the diversity between score functions of strong classifiers, we propose a new framework based on a recent machine learning algorithm called MinCq [START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF]. MinCq is expressed as a quadratic program for learning a weighted majority vote over real-valued functions called voters (such as score functions of classifiers). The algorithm is based on the minimization of a generalization bound that takes into account both the risk of committing an error and the diversity of the voters, offering strong theoretical guarantees on the learned majority vote. In this article, our aim is to show the usefulness of MinCq-based methods for classifier fusion. We provide evidence that they are able to find good linear weightings, and also performing non-linear combination with an extra kernel layer over the scores. Moreover, since in multimedia retrieval, the performance measure is related to the rank of positive examples, we extend MinCq to optimize the Mean Average Precision. We base this extension on an additional order-preserving loss for verifying ranking pairwise constraints.

The paper is organized as follows. The framework of MinCq is introduced in Section 2. Our extension for late classifier fusion is presented in Section 3 and it is evaluated on an image annotation task in Section 4. We conclude in Section 5.

MinCq: A Quadratic Program for Majority Votes

We start from the presentation of MinCq [START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF], a quadratic program for learning a weighted majority vote of real-valued functions for binary classification. Note that this method is based on the machine learning PAC-Bayesian theory, first introduced in [START_REF] Mcallester | PAC-bayesian model averaging[END_REF].

We consider binary classification tasks over a feature space X ⊆ R d of dimension d. The label space (or output space) is Y = {-1, 1}. The training sample of size m is S = {(x i , y i )} m i=1 where each example (x i , y i ) is drawn i.i.d. from a fixed-but unknown-probability distribution D defined over X ×Y . We consider a set of n realvalued voters H, such that: ∀h i ∈ H, h i : X → R. Given a voter h i ∈ H, the predicted label of x ∈ X is given by sign[h i (x)], where sign[a] = 1 if a ≥ 0 and -1 otherwise. Then, the learner aims at choosing the weights q i , leading to the Q-weighted majority vote B Q with the lowest risk. In the specific setting of MinCq6 , B Q is defined by,

B Q (x) = sign [H Q (x)] , with H Q (x) = n i=1 q i h i (x),
where ∀i ∈ {1, . . . , n},

n i=1 |q i | = 1 and -1 ≤ q i ≤ 1. Its true risk R D (B Q ) is defined as the probability that B Q misclassifies an example drawn according to D, R D (B Q ) = P (x,y)∼D (B Q (x) = y) .
The core of MinCq is the minimization of the empirical version of a bound-the C-Bound [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the gibbs classifier[END_REF][START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF]-over R D (B Q ). The C-Bound is based on the notion of Q-margin, which is defined for every example (x, y) ∼ D by: yH Q (x), and models the confidence on its label. Before expounding the C-Bound, we introduce the following notations respectively for the first moment M D Q and for the second moment

M D Q 2 of the Q-margin, M D Q = E (x,y)∼D yH Q (x) = E (x,y)∼D n i=1 yq i h i (x), M D Q 2 = E (x,y)∼D (yH Q (x)) 2 = E (x,y)∼D n i=1 n i ′ =1 q i q i ′ h i (x)h i ′ (x). (1) 
By definition, B Q correctly classifies an example x if the Q-margin is strictly positive. Thus, under the convention that if yE h∼Q h(x) = 0, then B Q errs on (x, y), we have:

∀D over X × Y, R D (B Q ) = Pr (x,y)∼D yH Q (x) ≤ 0 .
Knowing this, the authors of [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the gibbs classifier[END_REF][START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF] have proven the following C-bound over R D (B Q ) by making use of the Cantelli-Chebitchev inequality.

Theorem 1 (The C-bound). Given H a class of n functions, for any weights {q i } n i=1 , and any distribution

D over X×Y , if E (x,y)∼D H Q (x) > 0 then R D (B Q ) ≤ C D Q where, C D Q = Var (x,y)∼D (yH Q (x)) E (x,y)∼D (yH Q (x)) 2 = 1 - (M D Q ) 2 M D Q 2 .
In the supervised binary classification setting, [START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF] have then proposed to minimize the empirical counterpart of the C-bound for learning a good majority vote over H, justified by an elegant PAC-Bayesian generalization bound. Following this principle the authors have derived the following quadratic program called MinCq.

argmin Q Q t S M S Q -A t S Q, (2) 
s.t. m t S Q = µ 2 + 1 nm m j=1 n i=1 y j h i (x j ), (3) 
and ∀i ∈ {1, . . . , n}, 0

≤ q ′ i ≤ 1 n , (4) 
(M inCq) where t is the transposed function, Q = (q ′ 1 , . . . , q ′ n ) t is the vector of the first n weights q i , M S is the n×n matrix formed by 1 m m j=1 h i (x j )h i ′ (x j ) for (i, i ′ ) in {1, . . . , n} 2 , A S = 1 nm n i=1 m j=1 h 1 (x j )h i (x j ), . . . , 1 nm n i=1 m j=1 h n (x j )h i (x j ) t
, and,

m S = 1 m m j=1 y j h 1 (x j ), . . . , 1 m m j=1 y j h n (x j ) t .
Finally, the majority vote learned by MinCq is

B Q (x) = sign[H Q (x)], with, H Q (x) = n i=1 2q ′ i -1 n qi h i (x).
Concretely, MinCq minimizes the denominator of the C-bound (Eq. ( 2)), given a fixed numerator, i.e. a fixed Q-margin (Eq. ( 3)), under a particular regularization (Eq. ( 4)) 7 .

Note that, MinCq has showed good performances for binary classification.

A New Framework for Classifier Late Fusion

MinCq stands in the particular context of machine learning binary classification. In this section, we propose to extend it for designing a new framework for multimedia late fusion. We actually consider two extensions for dealing with ranking, one with pairwise preferences and a second based on a relaxation of these pairwise preferences to lighten the process. First of all, we discuss in the next section the usefulness of MinCq in the context of multimedia late fusion.

Justification of MinCq as a Classifier Late Fusion Algorithm

It is well known that diversity is a key element in the success of classifier combination [START_REF] Atrey | Multimodal fusion for multimedia analysis: a survey[END_REF][START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Dietterich | Ensemble methods in machine learning[END_REF][START_REF] Fakeri-Tabrizi | Multiview semi-supervised ranking for automatic image annotation[END_REF]. From a multimedia indexing standpoint, fuzing diverse voters is thus necessary for leading to good performances. We quickly justify that this is exactly what MinCq does by favoring majority votes with maximally uncorrelated voters.

In the literature, a general definition of diversity does not exist. However, there are popular diversity metrics based on pairwise difference on every pair of individual classifiers, such as Q-statistics, correlation coefficient, disagreement measure, etc. [START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF][START_REF] Leonard | Applying machine learning diversity metrics to data fusion in information retrieval[END_REF] We consider the following diversity measure assessing the disagreement between the predictions of a pair of voters according to the distribution D,

diff D (h i , h i ′ ) = E (x,y)∼D h i (x)h i ′ (x).
7 For more technical details on MinCq please see [START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF].

We then can rewrite the second moment of the Q-margin (see Eq.( 1)),

M D Q 2 = n i=1 n i ′ =1 qiq i ′ diff D (h i , h i ′ ). (5) 
The first objective of MinCq is to reduce this second moment, implying a direct optimization of Eq. ( 5). This implies a maximization of the diversity between voters: MinCq favors maximally uncorrelated voters and appears to be a natural way for late fusion to combine the predictions of classifiers separately trained from various modalities.

MinCq for Ranking

In many applications, such as information retrieval, it is well known that ranking documents is a key point to help users browsing results. The traditional measures to evaluate the ranking ability of algorithms are related to precision and recall. Since a low-error vote is not necessarily a good ranker, we propose in this section an adaptation of MinCq to allow optimization of the Mean Averaged Precision (MAP) measure.

Concretely, given a training sample of size 2m we split it randomly into two subsets S ′ and S = {(x j , y j )} m j=1 of the same size. Let n be the number of modalities. For each modality i, we train a classifier h i from S ′ . Let H = {h 1 , . . . , h n } be the set of the n associated prediction functions and their opposite. Now at this step, the fusion is achieved by MinCq: We learn from S the weighted majority vote over H with the lowest risk. We now recall the definition of the MAP measured on S for a given real-valued function h. Let S + = {(x j , y j ) : (x j , y j ) ∈ S ∧y j = 1} = {(x j + , 1)} m + j + =1 be the set of the m + positive examples from S and S -= {(x j , y j ) :

(x j , y j ) ∈ S ∧ y j = -1} = {(x j -, -1)} m - j -=1
the set of the m -negative examples from S (m + +m -= m). For evaluating the MAP, one ranks the examples in descending order of the scores. The MAP of h over S is,

M AP S (h) = 1 |m + | j:y j =1
P rec@j, where P rec@j is the percentage of positive examples in the top j. The intuition is that we prefer positive examples with a score higher than negative ones.

MinCq with Pairwise Preference. To achieve this goal, we propose to make use of pairwise preferences [START_REF]Preference Learning[END_REF] on pairs of positive-negative instances. Indeed, pairwise methods are known to be a good compromise between accuracy and more complex performance measure like MAP. Especially, the notion of order-preserving pairwise loss was introduced in [START_REF] Zhang | Statistical analysis of some multi-category large margin classification methods[END_REF] in the context of multiclass classification. Following this idea, [START_REF] Yue | A support vector method for optimizing average precision[END_REF] have proposed a SVM-based method with a hinge-loss relaxation of a MAP-loss. In our specific case of MinCq for late fusion, we design an order-preserving pairwise loss for correctly ranking the positive examples. For each pair (x j +, x j -) ∈ S + ×S -, we want,

H Q (x j + ) > H Q (x j -) ⇔ H Q (x j -)-H Q (x j + ) < 0.
This can be forced by minimizing (according to the weights) the following hinge-loss relaxation of the previous equation (where [a] + = max(a, 0) is the hinge-loss),

1 m + m - m + j + =1 m - j -=1 n i=1 2qi -1 n hi(x j -) -hi(x j + ) H Q (x j -)-H Q (x j + ) + . (6) 
To deal with the hinge-loss of ( 6), we consider m + × m -additional slack variables ξ S + ×S -= (ξ j + j -) 1≤j + ≤m + ,1≤j -≤m -weighted by a parameter β > 0. We make a little abuse of notation to highlight the difference with (M inCq): Since ξ S + ×S -appear only in the linear term, we obtain the following quadratic program (M inCq P W ),

argmin Q,ξ S + ×S -Q t S MSQ -A t S Q + β Id t ξ S + ×S -, s.t. m t S Q = µ 2 + 1 nm m j=1 n i=1 yjhi(xj), ∀(j + , j -) ∈ {1, .., m + }×{1, .., m -}, ξ j + j -≥ 0, ξ j + j -≥ 1 m + m - n i=1 2q ′ i -1 n hi(x j -)-hi(x j + ) ,
and ∀i ∈ {1, . . . , n}, 0

≤ q ′ i ≤ 1 n , (M inCqP W )
where Id = (1, . . . , 1) of size (m + ×m -). However, one drawback of this method is the incorporation of a quadratic number of additive variables (m + ×m -) which makes the problem harder to solve. To overcome this problem, we relax this approach as follows.

MinCq with Average Pairwise Preference. We relax the constraints by considering the average score over the negative examples: we force the positive ones to be higher than the average negative scores. This leads us to the following alternative problem (M inCq P W av ) with only m + additional variables.

argmin Q,ξ S + Q t S MSQ -A t S Q + β Id t ξ S + , s.t. m t S Q = µ 2 + 1 nm m j=1 n i=1 yjhi(xj), ∀j + ∈ {1, . . . , m + }, ξ j + ≥ 0, ξ j + ≥ 1 m + m - m - j -=1 n i=1 2q ′ i -1 n hi(x j -)-hi(x j + ) ,
and ∀i ∈ {1, . . . , n}, 0

≤ q ′ i ≤ 1 n , (M inCqP W av )
where Id = (1, . . . , 1) of size m + . Note that the two approaches stand in the original framework of MinCq. In fact, we regularize the search of the weights for majority vote leading to an higher MAP. To conclude, our extension of MinCq aims at favoring Q-majority vote implying a good trade-off between classifiers maximally uncorrelated and leading to a relevant ranking.

Experiments on PascalVOC'07 benchmark

Protocol. In this section, we show empirically the usefulness of late fusion MinCqbased methods with stacking. We experiment these approaches on the PascalVOC'07 benchmark [START_REF] Everingham | The PASCAL visual object classes challenge[END_REF], where the objective is to perform the classification for 20 concepts. The corpus is constituted of 10, 000 images split into train, validation and test sets. For most of concepts, the ratio between positive and negative examples is less than 10%, which leads to unbalanced dataset and requires to carefully train each classifier. For simplicity reasons, we generate a training set constituted of all the training positive examples and negative examples independently drawn such that the positive ratio is 1/3. We keep the original test set. Indeed, our objective is not to provide the best results on this benchmark but rather to evaluate if the MinCq-based methods could be helpful for the late fusion step in multimedia indexing. We consider 9 different visual features, that are • LCH are 3×3×3 histogram on a grid of 8×6 or 4×3 blocs. Color Moments are represented by the two first moments on a grid of 8×6 or 4×3 blocs. • HOG is computed on a grid of 4 × 3 blocs. Each bin is defined as the sum of the magnitude gradients from 50 orientations. Thus, overall EDH feature has 600 dimensions. HOG feature is known to be invariant to scale and translation. • LBP is computed on grid of 2×2 blocs, leading to a 1, 024 dimensional vector. The LBP operator labels the pixels of an image by thresholding the 3×3-neighborhood of each pixel with the center value and considering the result as a decimal number.

LBP is known to be invariant to any monotonic change in gray level. • Percept features are similar to SIFT codebook where visual words are related to semantic classes at local level. There are 15 semantic classes such as 'sky', 'skin', 'greenery', 'rock', etc. We also considered SIFT features from a dense grid, then map it on a codebook of 1000 visual words generated with Kmeans.

We train a SVM-classifier for each feature with the LibSVM library [START_REF] Chang | LIBSVM: a library for support vector machines[END_REF] and a RBF kernel with parameters tuned by cross-validation. The set H is then constituted by the 9 score functions associated with the SVM-classifiers.

In a first series of experiments, the set of voters H is constituted by the 9 SVMclassifiers. We compare our 3 MinCq-based methods to the following 4 baselines:

• The best classifier of H:

h best = argmax hi∈H M AP S (h i ).
• The one with the highest confidence: best(x) = argmax hi∈H |h i (x)|.

• The sum of the classifiers (unweighted vote): • The MAP-weighted vote:

Σ(x) = hi∈H h i (x).
Σ M AP (x) = h i ∈H M AP S (hi) h i ′ ∈H M AP S (h i ′ ) h i (x).
In a second series, we propose to introduce non-linear information with a RBF kernel layer for increasing the diversity over the set H. We consider a larger H as follows. Each example is represented by the vector of its scores with the 9 SVM-classifiers and H is now the set of kernels over the sample S: Each x ∈ S is seen as a voter k(•, x). We compare this approach to classical stacking with SVM.

Finally, for tuning the hyperparameters we use a 5-folds cross-validation process, where instead of selecting the parameters leading to the lowest risk, we select the ones leading to the best MAP. The MAP-performances are reported on Tab. 1 for the first series and on Tab. 2 for the second series. Results. Firstly, the performance of Σ M AP fusion is lower than Σ, which means that the performance of single classifiers is not correlated linearly with its importance on the fusion step. On Tab. 1, for the first experiments, we clearly see that the linear MinCqbased algorithms outperform on average the linear baselines. MinCq-based method produces the highest MAP for 16 out of 20 concepts. Using a Student paired t-test, this result is statistically confirmed with a p-value < 0.001 in comparison with Σ M AP , best and h best . In comparison of Σ, the p-values respectively associated with (M inCq P W av ), (M inCq P W ) and (M inCq P W ) are 0.0139, 0.0232 and 0.0088. We can remark that (M inCq P W ) implies lower performances than its relaxation (M inCq P W av ). A Student test leads to a p-value of 0.223, which statistically means that the two approaches produce similar results. Thus, when our objective is to rank the positive examples before the negative examples, the average constraints appear to be a good solution. However, we note that the order-preserving hinge-loss is not really helpful: The classical (M inCq) shows the best MAP results (with a p-value of 0.2574). Indeed, the trade-off between diversity and ranking is difficult to apply here since the 9 voters are probably not enough expressive. On the one hand, the preference constraints appear hard to satisfy, on the other hand, the voters' diversity do not really vary. The addition of a kernel layer allows us to increase this expressivity. Indeed, Tab. 2 shows that the MinCq-based methods achieve the highest MAP for every concept in comparison with SVM classifier. This confirms that the diversity between voters is well modeled by MinCq algorithm. Especially, M inCq rbf P W av with the averaged pairwise preference is significantly the best: a Student paired test implies a p-value of 0.0003 when we compare M inCq rbf P W av to SVM, and the p-value is 0.0038 when it is compared to M inCq rbf . Thus, the the order-preserving loss is a good compromise between improving the MAP and keeping a reasonable computational cost. Note that we do not report the results for (M inCq P W ) in this context, because the computational cost is much higher and the performance is lower. The full pairwise version implies too many variables which penalize the resolution of (M inCq P W ). Finally, it appears that at least one MinCq-based approach is the best for each concept, showing that MinCq methods outperform the other compared methods. Moreover, a Student test implies a pvalue < 0.001 when we compare M inCq rbf P W av to the approaches without kernel layer. M inCq rbf P W av is significantly then the best approach in our experiments. We conclude from these experiments that MinCq-based approaches are a good alternative for late classifiers fusion as it takes into account the diversity of the voters. In the context of multimedia documents retrieval, the diversity of the voters comes from either the variability of input features or by the variability of first layer classifiers.

Conclusion and Perspectives

In this paper, we proposed to make use of a well-founded learning quadratic program called MinCq for multimedia late fusion tasks. MinCq was originally developed for binary classification, aiming at minimizing the error rate of the weighted majority vote by considering the diversity of the voters [START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF]. We designed an adaptation of MinCq able to deal with ranking problems by considering pairwise preferences while taking into account the diversity of the models. In the context of multimedia indexing, this extension of MinCq appears naturally appropriate for combining the predictions of classifiers trained from various modalities in a late classifier fusion setting. Our experiments have confirmed that MinCq is a very competitive alternative for classifier fusion in the context of an image indexing task. Beyond these results, this work gives rise to many interesting remarks, among which the following ones. Taking advantage of a margin constraint for late classifier fusion may allow us to prove a new C-bound specific to ranking problems, and thus to derive other algorithms for classifier fusion by maximizing the diversity between the classifiers. This could be done by investigating some theoretical results using the Cantelli-Chebychev's inequality [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF] as in [START_REF] Laviolette | From PAC-Bayes bounds to quadratic programs for majority votes[END_REF]. Additionally, it might be interesting to study the impact of using other diversity metrics [START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms[END_REF] on performances for image and video retrieval. Such an analysis would be useful for assessing a trade-off between the quality of the ranking results and the diversity of the inputs for information retrieval. Finally, another perspective, directly founded on the general PAC-Bayes theory [START_REF] Mcallester | PAC-bayesian model averaging[END_REF], could be to take into account a prior belief on the classifiers of H. Indeed, general PAC-Bayesian theory allows one to obtain theoretical guarantees on majority votes with respect to the distance between the considered vote and the prior belief measured by the Kullback-Leibler divergence. The idea is then to take into account prior information for learning good majority votes for ranking problems.

Fig. 1 .

 1 Fig. 1. Classical late classifier fusion scheme.

Table 1 .

 1 MAP obtained on the PascalVOC'07 test sample.

	concept	M inCq P W av	M inCq P W	M inCq	Σ	Σ M AP	best	h best
	aeroplane	0.487	0.486	0.526	0.460	0.241	0.287	0.382
	bicycle	0.195	0.204	0.221	0.077	0.086	0.051	0.121
	bird	0.169	0.137	0.204	0.110	0.093	0.113	0.123
	boat	0.159	0.154	0.159	0.206	0.132	0.079 0.258
	bottle	0.112	0.126	0.118	0.023	0.025	0.017	0.066
	bus	0.167	0.166	0.168	0.161	0.098	0.089	0.116
	car	0.521	0.465	0.495	0.227	0.161	0.208	0.214
	cat	0.230	0.219	0.220	0.074	0.075	0.065	0.116
	chair	0.257	0.193	0.230	0.242	0.129	0.178	0.227
	cow	0.102	0.101	0.118	0.078	0.068	0.06	0.101
	diningtable	0.118	0.131	0.149	0.153	0.091	0.093	0.124
	dog	0.260	0.259	0.253	0.004	0.064	0.028	0.126
	horse	0.301	0.259	0.303	0.364	0.195	0.141	0.221
	motorbike	0.141	0.113	0.162	0.193	0.115	0.076	0.130
	person	0.624	0.617	0.604	0.001	0.053	0.037	0.246
	pottedplant	0.067	0.061	0.061	0.057	0.04	0.046	0.073
	sheep	0.067	0.096	0.0695	0.128	0.062	0.064	0.083
	sofa	0.204	0.208	0.201	0.137	0.087	0.108	0.147
	train	0.331	0.332	0.335	0.314	0.164	0.197	0.248
	tvmonitor	0.281	0.281	0.256	0.015	0.102	0.069	0.171
	Average	0.240	0.231	0.243	0.151	0.104	0.100	0.165

SIFT, Local Binary Pattern (LBP), Percepts, 2 Histograms Of Gradient (HOG), 2 Local Color Histograms (LCH) and 2 Color Moments (CM):

Table 2 .

 2 MAP obtained on the PascalVOC'07 test sample with a RBF kernel layer.

	concept	M inCq rbf P W av	M inCq rbf	SVM rbf
	aeroplane	0.513	0.513	0.497
	bicycle	0.273	0.219	0.232
	bird	0.266	0.264	0.196
	boat	0.267	0.242	0.240
	bottle	0.103	0.099	0.042
	bus	0.261	0.261	0.212
	car	0.530	0.530	0.399
	cat	0.253	0.245	0.160
	chair	0.397	0.397	0.312
	cow	0.158	0.177	0.117
	diningtable	0.263	0.227	0.245
	dog	0.261	0.179	0.152
	horse	0.495	0.450	0.437
	motorbike	0.295	0.284	0.207
	person	0.630	0.614	0.237
	pottedplant	0.102	0.116	0.065
	sheep	0.184	0.175	0.144
	sofa	0.246	0.211	0.162
	train	0.399	0.385	0.397
	tvmonitor	0.272	0.257	0.230
	Average	0.301	0.292	0.234

The late fusion is sometimes called multimodal classification or classifier fusion.

For example, when one modality provides significantly better results than others.

In PAC-Bayes these weights are modeled by a distribution Q over H s.t. ∀hi ∈ H, qi = Q(hi).
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