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Abstract. In the past few years, a lot of attention has been devoted to multime-

dia indexing by fusing multimodal informations. Two kinds of fusion schemes are

generally considered: The early fusion and the late fusion. We focus on late classi-

fier fusion, where one combines the scores of each modality at the decision level.

To tackle this problem, we investigate a recent and elegant well-founded quadratic

program named MinCq coming from the machine learning PAC-Bayesian theory.

MinCq looks for the weighted combination, over a set of real-valued functions

seen as voters, leading to the lowest misclassification rate, while maximizing the

voters’ diversity. We propose an extension of MinCq tailored to multimedia in-

dexing. Our method is based on an order-preserving pairwise loss adapted to

ranking that allows us to improve Mean Averaged Precision measure while taking

into account the diversity of the voters that we want to fuse. We provide evidence

that this method is naturally adapted to late fusion procedures and confirm the

good behavior of our approach on the challenging PASCAL VOC’07 benchmark.
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1 Introduction

Combining multimodal information is an important issue in pattern recognition. Indeed,

the fusion of multimodal inputs can bring complementary information from various

sources, useful for improving the quality of the final decision. In this paper, we focus

on multimodal fusion for image analysis in multimedia systems (see [1] for a survey).

The different modalities correspond generally to a relevant set of features that can be

grouped into views. Once these features have been extracted, another step consists in

using machine learning methods in order to build voters—or classifiers—able to dis-

criminate a given concept. In this context, two main schemes are generally considered

[17]. On the one hand, in the early fusion approach, all the available features are merged

into one feature vector before the learning and classification steps. This can be seen as

a unimodal classification. However, this kind of approach has to deal with many het-

erogeneous features which are sometimes hard to combine. On the other hand, the late

fusion4 works at the decision level by combining the prediction scores available for each

modality (see Fig. 1). Even if late fusion may not always outperform early fusion5, it

tends to give better results in multimedia analysis [17]. Several methods based on a fixed

4 The late fusion is sometimes called multimodal classification or classifier fusion.
5 For example, when one modality provides significantly better results than others.
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Fig. 1. Classical late classifier fusion scheme.

decision rule have been proposed for combining classifiers such as max, min, sum, etc

[9]. Other approaches, often referred to as stacking [20], need of an extra learning step.

In this paper, we address the problem of late fusion with stacking. Let hi be the

function that gives the score associated with the ith modality for any instance x. A clas-

sical method consists in looking for a weighted linear combination of the scores seen as

a majority vote and defined by: H(x)=
∑n

i=1 qihi(x), where qi is the weight associated

with hi. This approach is widely used because of its robustness, simplicity and scala-

bility due to small computational costs [1]. It is also more appropriate when there exist

dependencies between the views through the classifiers [21, 14]. The objective is then

to find an optimal combination of the classifiers’ scores by taking into account these de-

pendencies. One solution is to use machine learning methods to assess automatically the

weights [10, 4, 16, 18]. Indeed, from a theoretical machine learning standpoint: consid-

ering a set of classifiers with a high diversity is a desirable property [4]. One illustration

is given by the algorithm AdaBoost [7] that weights weak classifiers according to dif-

ferent distributions of the training data, introducing some diversity. However, AdaBoost

degrades the fusion performance when combining strong classifiers [19].

To tackle the late fusion by taking into account the diversity between score functions

of strong classifiers, we propose a new framework based on a recent machine learning

algorithm called MinCq [12]. MinCq is expressed as a quadratic program for learning a

weighted majority vote over real-valued functions called voters (such as score functions

of classifiers). The algorithm is based on the minimization of a generalization bound

that takes into account both the risk of committing an error and the diversity of the vot-

ers, offering strong theoretical guarantees on the learned majority vote. In this article,

our aim is to show the usefulness of MinCq-based methods for classifier fusion. We

provide evidence that they are able to find good linear weightings, and also performing

non-linear combination with an extra kernel layer over the scores. Moreover, since in

multimedia retrieval, the performance measure is related to the rank of positive exam-

ples, we extend MinCq to optimize the Mean Average Precision. We base this extension

on an additional order-preserving loss for verifying ranking pairwise constraints.

The paper is organized as follows. The framework of MinCq is introduced in Sec-

tion 2. Our extension for late classifier fusion is presented in Section 3 and it is evaluated

on an image annotation task in Section 4. We conclude in Section 5.

2 MinCq: A Quadratic Program for Majority Votes

We start from the presentation of MinCq [12], a quadratic program for learning a

weighted majority vote of real-valued functions for binary classification. Note that this

method is based on the machine learning PAC-Bayesian theory, first introduced in [15].
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We consider binary classification tasks over a feature space X ⊆ R
d of dimen-

sion d. The label space (or output space) is Y = {−1, 1}. The training sample of size

m is S = {(xi, yi)}
m
i=1 where each example (xi, yi) is drawn i.i.d. from a fixed—but

unknown—probability distribution D defined over X×Y . We consider a set of n real-

valued voters H, such that: ∀hi ∈ H, hi :X 7→R. Given a voter hi ∈ H, the predicted

label of x ∈X is given by sign[hi(x)], where sign[a] = 1 if a≥ 0 and −1 otherwise.

Then, the learner aims at choosing the weights qi, leading to the Q-weighted major-

ity vote BQ with the lowest risk. In the specific setting of MinCq6, BQ is defined by,

BQ(x) = sign [HQ(x)] , with HQ(x) =

n∑

i=1

qihi(x),

where ∀i ∈ {1, . . . , n},
∑n

i=1 |qi| = 1 and −1 ≤ qi ≤ 1. Its true risk RD(BQ) is

defined as the probability that BQ misclassifies an example drawn according to D,

RD(BQ) = P(x,y)∼D (BQ(x) 6= y) .

The core of MinCq is the minimization of the empirical version of a bound—the

C-Bound [11, 12]—over RD(BQ). The C-Bound is based on the notion of Q-margin,

which is defined for every example (x, y) ∼ D by: yHQ(x), and models the confidence

on its label. Before expounding the C-Bound, we introduce the following notations re-

spectively for the first moment MD
Q and for the second moment MD

Q2 of the Q-margin,

MD
Q = E

(x,y)∼D
yHQ(x) = E

(x,y)∼D

n∑

i=1

yqihi(x),

MD
Q2 = E

(x,y)∼D
(yHQ(x))

2
= E

(x,y)∼D

n∑

i=1

n∑

i′=1

qiqi′hi(x)hi′(x). (1)

By definition, BQ correctly classifies an example x if the Q-margin is strictly positive.

Thus, under the convention that if yEh∼Q h(x) = 0, then BQ errs on (x, y), we have:

∀D over X × Y, RD(BQ) = Pr
(x,y)∼D

(

yHQ(x) ≤ 0
)

.

Knowing this, the authors of [11, 12] have proven the following C-bound over RD(BQ)
by making use of the Cantelli-Chebitchev inequality.

Theorem 1 (The C-bound). Given H a class of n functions, for any weights {qi}
n
i=1,

and any distribution D over X×Y , if E(x,y)∼D HQ(x)>0 then RD(BQ)≤CD
Q where,

CD
Q =

Var(x,y)∼D(yHQ(x))

E(x,y)∼D (yHQ(x))
2 = 1−

(MD
Q)

2

MD
Q2

.

In the supervised binary classification setting, [12] have then proposed to minimize the

empirical counterpart of the C-bound for learning a good majority vote over H, justified

by an elegant PAC-Bayesian generalization bound. Following this principle the authors

6 In PAC-Bayes these weights are modeled by a distribution Q over H s.t. ∀hi ∈ H, qi=Q(hi).
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have derived the following quadratic program called MinCq.

argminQ Qt
SMSQ−At

SQ, (2)

s.t. mt
SQ =

µ

2
+

1

nm

m∑

j=1

n∑

i=1

yjhi(xj), (3)

and ∀i ∈ {1, . . . , n}, 0 ≤ q′i ≤
1
n
, (4)

(MinCq)
where t is the transposed function, Q=(q′1, . . . , q

′
n)

t is the vector of the first n weights

qi, MS is the n×n matrix formed by 1
m

∑m

j=1 hi(xj)hi′(xj) for (i, i′) in {1, . . . , n}2,

AS =
(

1
nm

∑n

i=1

∑m

j=1 h1(xj)hi(xj), . . . ,
1

nm

∑n

i=1

∑m

j=1 hn(xj)hi(xj)
)t

, and,

mS =
(

1
m

∑m

j=1 yjh1(xj), . . . ,
1
m

∑m

j=1 yjhn(xj)
)t

.

Finally, the majority vote learned by MinCq is BQ(x)=sign[HQ(x)], with,

HQ(x) =

n∑

i=1

(
2q′i−

1
n

)

︸ ︷︷ ︸

qi

hi(x).

Concretely, MinCq minimizes the denominator of the C-bound (Eq. (2)), given a fixed

numerator, i.e. a fixed Q-margin (Eq. (3)), under a particular regularization (Eq. (4))7.

Note that, MinCq has showed good performances for binary classification.

3 A New Framework for Classifier Late Fusion

MinCq stands in the particular context of machine learning binary classification. In

this section, we propose to extend it for designing a new framework for multimedia late

fusion. We actually consider two extensions for dealing with ranking, one with pairwise

preferences and a second based on a relaxation of these pairwise preferences to lighten

the process. First of all, we discuss in the next section the usefulness of MinCq in the

context of multimedia late fusion.

3.1 Justification of MinCq as a Classifier Late Fusion Algorithm

It is well known that diversity is a key element in the success of classifier combination

[1, 10, 4, 6]. From a multimedia indexing standpoint, fuzing diverse voters is thus nec-

essary for leading to good performances. We quickly justify that this is exactly what

MinCq does by favoring majority votes with maximally uncorrelated voters.

In the literature, a general definition of diversity does not exist. However, there are

popular diversity metrics based on pairwise difference on every pair of individual clas-

sifiers, such as Q-statistics, correlation coefficient, disagreement measure, etc. [10, 13]

We consider the following diversity measure assessing the disagreement between the

predictions of a pair of voters according to the distribution D,

diffD(hi, hi′) = E
(x,y)∼D

hi(x)hi′(x).

7 For more technical details on MinCq please see [12].
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We then can rewrite the second moment of the Q-margin (see Eq.(1)),

MD
Q2 =

n∑

i=1

n∑

i′=1

qiqi′ diffD(hi, hi′). (5)

The first objective of MinCq is to reduce this second moment, implying a direct opti-

mization of Eq. (5). This implies a maximization of the diversity between voters: MinCq

favors maximally uncorrelated voters and appears to be a natural way for late fusion to

combine the predictions of classifiers separately trained from various modalities.

3.2 MinCq for Ranking

In many applications, such as information retrieval, it is well known that ranking docu-

ments is a key point to help users browsing results. The traditional measures to evaluate

the ranking ability of algorithms are related to precision and recall. Since a low-error

vote is not necessarily a good ranker, we propose in this section an adaptation of MinCq

to allow optimization of the Mean Averaged Precision (MAP) measure.

Concretely, given a training sample of size 2m we split it randomly into two subsets

S′ and S={(xj , yj)}
m
j=1 of the same size. Let n be the number of modalities. For each

modality i, we train a classifier hi from S′. Let H={h1, . . . , hn} be the set of the n as-

sociated prediction functions and their opposite. Now at this step, the fusion is achieved

by MinCq: We learn from S the weighted majority vote over H with the lowest risk.

We now recall the definition of the MAP measured on S for a given real-valued function

h. Let S+={(xj , yj) : (xj , yj)∈S∧yj=1}={(xj+ , 1)}
m+

j+=1 be the set of the m+ pos-

itive examples from S and S−={(xj , yj) : (xj , yj)∈S ∧ yj=−1}={(xj− ,−1)}m
−

j−=1

the set of the m− negative examples from S (m++m−=m). For evaluating the MAP,

one ranks the examples in descending order of the scores. The MAP of h over S is,

MAPS(h) =
1

|m+|

∑

j:yj=1

Prec@j,

where Prec@j is the percentage of positive examples in the top j. The intuition is that

we prefer positive examples with a score higher than negative ones.

MinCq with Pairwise Preference. To achieve this goal, we propose to make use of

pairwise preferences [8] on pairs of positive-negative instances. Indeed, pairwise meth-

ods are known to be a good compromise between accuracy and more complex perfor-

mance measure like MAP. Especially, the notion of order-preserving pairwise loss was

introduced in [23] in the context of multiclass classification. Following this idea, [22]

have proposed a SVM-based method with a hinge-loss relaxation of a MAP-loss. In our

specific case of MinCq for late fusion, we design an order-preserving pairwise loss for

correctly ranking the positive examples. For each pair (xj+,xj−)∈S+×S−, we want,

HQ(xj+)>HQ(xj−) ⇔ HQ(xj−)−HQ(xj+)<0.

This can be forced by minimizing (according to the weights) the following hinge-loss
relaxation of the previous equation (where [a]+=max(a, 0) is the hinge-loss),

1

m+m−

m+

∑

j+=1

m−
∑

j−=1

[ n∑

i=1

(
2qi −

1
n

) (
hi(xj−)− hi(xj+)

)

︸ ︷︷ ︸

HQ(x
j−

)−HQ(x
j+

)

]

+
. (6)
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To deal with the hinge-loss of (6), we consider m+×m− additional slack variables
ξS+×S− =(ξj+j−)1≤j+≤m+,1≤j−≤m− weighted by a parameter β>0. We make a little
abuse of notation to highlight the difference with (MinCq): Since ξS+×S− appear only
in the linear term, we obtain the following quadratic program (MinCqPW ),

argminQ,ξ
S+×S−

Q
t
SMSQ−A

t
SQ+ β Id

t
ξS+×S− ,

s.t. m
t
SQ =

µ

2
+

1

nm

m∑

j=1

n∑

i=1

yjhi(xj),

∀(j+, j−)∈{1, ..,m+}×{1, ..,m−}, ξj+j− ≥0, ξj+j−≥
1

m+m−

n∑

i=1

(
2q′i−

1
n

)(
hi(xj−)−hi(xj+)

)
,

and ∀i ∈ {1, . . . , n}, 0 ≤ q
′

i ≤
1
n
, (MinCqPW )

where Id = (1, . . . , 1) of size (m+×m−). However, one drawback of this method is the

incorporation of a quadratic number of additive variables (m+×m−) which makes the

problem harder to solve. To overcome this problem, we relax this approach as follows.

MinCq with Average Pairwise Preference. We relax the constraints by considering
the average score over the negative examples: we force the positive ones to be higher
than the average negative scores. This leads us to the following alternative problem
(MinCqPWav) with only m+ additional variables.

argminQ,ξ
S+

Q
t
SMSQ−A

t
SQ+ β Id

t
ξS+ ,

s.t. m
t
SQ =

µ

2
+

1

nm

m∑

j=1

n∑

i=1

yjhi(xj),

∀j+∈{1, . . . ,m+}, ξj+ ≥0, ξj+ ≥
1

m+m−

m−
∑

j−=1

n∑

i=1

(
2q′i−

1
n

)(
hi(xj−)−hi(xj+)

)
,

and ∀i ∈ {1, . . . , n}, 0 ≤ q
′

i ≤
1
n
, (MinCqPWav)

where Id = (1, . . . , 1) of size m+.

Note that the two approaches stand in the original framework of MinCq. In fact,

we regularize the search of the weights for majority vote leading to an higher MAP. To

conclude, our extension of MinCq aims at favoring Q-majority vote implying a good

trade-off between classifiers maximally uncorrelated and leading to a relevant ranking.

4 Experiments on PascalVOC’07 benchmark

Protocol. In this section, we show empirically the usefulness of late fusion MinCq-

based methods with stacking. We experiment these approaches on the PascalVOC’07

benchmark [5], where the objective is to perform the classification for 20 concepts. The

corpus is constituted of 10, 000 images split into train, validation and test sets. For most

of concepts, the ratio between positive and negative examples is less than 10%, which

leads to unbalanced dataset and requires to carefully train each classifier. For simplicity

reasons, we generate a training set constituted of all the training positive examples and

negative examples independently drawn such that the positive ratio is 1/3. We keep the

original test set. Indeed, our objective is not to provide the best results on this bench-

mark but rather to evaluate if the MinCq-based methods could be helpful for the late

fusion step in multimedia indexing. We consider 9 different visual features, that are
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concept MinCqPWav MinCqPW MinCq Σ ΣMAP best hbest

aeroplane 0.487 0.486 0.526 0.460 0.241 0.287 0.382
bicycle 0.195 0.204 0.221 0.077 0.086 0.051 0.121

bird 0.169 0.137 0.204 0.110 0.093 0.113 0.123
boat 0.159 0.154 0.159 0.206 0.132 0.079 0.258

bottle 0.112 0.126 0.118 0.023 0.025 0.017 0.066
bus 0.167 0.166 0.168 0.161 0.098 0.089 0.116
car 0.521 0.465 0.495 0.227 0.161 0.208 0.214
cat 0.230 0.219 0.220 0.074 0.075 0.065 0.116

chair 0.257 0.193 0.230 0.242 0.129 0.178 0.227
cow 0.102 0.101 0.118 0.078 0.068 0.06 0.101

diningtable 0.118 0.131 0.149 0.153 0.091 0.093 0.124
dog 0.260 0.259 0.253 0.004 0.064 0.028 0.126

horse 0.301 0.259 0.303 0.364 0.195 0.141 0.221
motorbike 0.141 0.113 0.162 0.193 0.115 0.076 0.130

person 0.624 0.617 0.604 0.001 0.053 0.037 0.246
pottedplant 0.067 0.061 0.061 0.057 0.04 0.046 0.073

sheep 0.067 0.096 0.0695 0.128 0.062 0.064 0.083
sofa 0.204 0.208 0.201 0.137 0.087 0.108 0.147
train 0.331 0.332 0.335 0.314 0.164 0.197 0.248

tvmonitor 0.281 0.281 0.256 0.015 0.102 0.069 0.171

Average 0.240 0.231 0.243 0.151 0.104 0.100 0.165

Table 1. MAP obtained on the PascalVOC’07 test sample.

SIFT, Local Binary Pattern (LBP), Percepts, 2 Histograms Of Gradient (HOG), 2 Local

Color Histograms (LCH) and 2 Color Moments (CM):

• LCH are 3×3×3 histogram on a grid of 8×6 or 4×3 blocs. Color Moments are

represented by the two first moments on a grid of 8×6 or 4×3 blocs.

• HOG is computed on a grid of 4×3 blocs. Each bin is defined as the sum of the

magnitude gradients from 50 orientations. Thus, overall EDH feature has 600 di-

mensions. HOG feature is known to be invariant to scale and translation.

• LBP is computed on grid of 2×2 blocs, leading to a 1, 024 dimensional vector. The

LBP operator labels the pixels of an image by thresholding the 3×3-neighborhood

of each pixel with the center value and considering the result as a decimal number.

LBP is known to be invariant to any monotonic change in gray level.

• Percept features are similar to SIFT codebook where visual words are related to

semantic classes at local level. There are 15 semantic classes such as ’sky’, ’skin’,

’greenery’, ’rock’, etc. We also considered SIFT features from a dense grid, then

map it on a codebook of 1000 visual words generated with Kmeans.

We train a SVM-classifier for each feature with the LibSVM library [2] and a RBF

kernel with parameters tuned by cross-validation. The set H is then constituted by the

9 score functions associated with the SVM-classifiers.

In a first series of experiments, the set of voters H is constituted by the 9 SVM-

classifiers. We compare our 3 MinCq-based methods to the following 4 baselines:

• The best classifier of H: hbest = argmaxhi∈H MAPS(hi).

• The one with the highest confidence: best(x) = argmaxhi∈H |hi(x)|.

• The sum of the classifiers (unweighted vote): Σ(x) =
∑

hi∈H hi(x).
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concept MinCq
rbf
PWav

MinCqrbf SVMrbf

aeroplane 0.513 0.513 0.497
bicycle 0.273 0.219 0.232

bird 0.266 0.264 0.196
boat 0.267 0.242 0.240

bottle 0.103 0.099 0.042
bus 0.261 0.261 0.212
car 0.530 0.530 0.399
cat 0.253 0.245 0.160

chair 0.397 0.397 0.312
cow 0.158 0.177 0.117

diningtable 0.263 0.227 0.245
dog 0.261 0.179 0.152

horse 0.495 0.450 0.437
motorbike 0.295 0.284 0.207

person 0.630 0.614 0.237
pottedplant 0.102 0.116 0.065

sheep 0.184 0.175 0.144
sofa 0.246 0.211 0.162
train 0.399 0.385 0.397

tvmonitor 0.272 0.257 0.230

Average 0.301 0.292 0.234

Table 2. MAP obtained on the PascalVOC’07 test sample with a RBF kernel layer.

• The MAP-weighted vote: ΣMAP (x) =
∑

hi∈H

MAPS(hi)∑
h
i′

∈H
MAPS(hi′ )

hi(x).

In a second series, we propose to introduce non-linear information with a RBF ker-

nel layer for increasing the diversity over the set H. We consider a larger H as follows.

Each example is represented by the vector of its scores with the 9 SVM-classifiers and

H is now the set of kernels over the sample S: Each x∈S is seen as a voter k(·,x). We

compare this approach to classical stacking with SVM.

Finally, for tuning the hyperparameters we use a 5-folds cross-validation process,

where instead of selecting the parameters leading to the lowest risk, we select the ones

leading to the best MAP. The MAP-performances are reported on Tab. 1 for the first

series and on Tab. 2 for the second series.

Results. Firstly, the performance of ΣMAP fusion is lower than Σ, which means that

the performance of single classifiers is not correlated linearly with its importance on the

fusion step. On Tab. 1, for the first experiments, we clearly see that the linear MinCq-

based algorithms outperform on average the linear baselines. MinCq-based method pro-

duces the highest MAP for 16 out of 20 concepts. Using a Student paired t-test, this

result is statistically confirmed with a p-value < 0.001 in comparison with ΣMAP , best
and hbest. In comparison of Σ, the p-values respectively associated with (MinCqPWav),

(MinCqPW ) and (MinCqPW ) are 0.0139, 0.0232 and 0.0088. We can remark that

(MinCqPW ) implies lower performances than its relaxation (MinCqPWav). A Stu-

dent test leads to a p-value of 0.223, which statistically means that the two approaches

produce similar results. Thus, when our objective is to rank the positive examples be-

fore the negative examples, the average constraints appear to be a good solution. How-

ever, we note that the order-preserving hinge-loss is not really helpful: The classical

(MinCq) shows the best MAP results (with a p-value of 0.2574). Indeed, the trade-off

between diversity and ranking is difficult to apply here since the 9 voters are probably
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not enough expressive. On the one hand, the preference constraints appear hard to sat-

isfy, on the other hand, the voters’ diversity do not really vary.

The addition of a kernel layer allows us to increase this expressivity. Indeed, Tab. 2

shows that the MinCq-based methods achieve the highest MAP for every concept in

comparison with SVM classifier. This confirms that the diversity between voters is well

modeled by MinCq algorithm. Especially, MinCqrbfPWav with the averaged pairwise

preference is significantly the best: a Student paired test implies a p-value of 0.0003
when we compare MinCqrbfPWav to SVM, and the p-value is 0.0038 when it is com-

pared to MinCqrbf . Thus, the the order-preserving loss is a good compromise be-

tween improving the MAP and keeping a reasonable computational cost. Note that we

do not report the results for (MinCqPW ) in this context, because the computational

cost is much higher and the performance is lower. The full pairwise version implies too

many variables which penalize the resolution of (MinCqPW ). Finally, it appears that

at least one MinCq-based approach is the best for each concept, showing that MinCq

methods outperform the other compared methods. Moreover, a Student test implies a p-

value < 0.001 when we compare MinCqrbfPWav to the approaches without kernel layer.

MinCqrbfPWav is significantly then the best approach in our experiments.

We conclude from these experiments that MinCq-based approaches are a good al-

ternative for late classifiers fusion as it takes into account the diversity of the voters. In

the context of multimedia documents retrieval, the diversity of the voters comes from

either the variability of input features or by the variability of first layer classifiers.

5 Conclusion and Perspectives

In this paper, we proposed to make use of a well-founded learning quadratic program

called MinCq for multimedia late fusion tasks. MinCq was originally developed for bi-

nary classification, aiming at minimizing the error rate of the weighted majority vote by

considering the diversity of the voters [12]. We designed an adaptation of MinCq able

to deal with ranking problems by considering pairwise preferences while taking into

account the diversity of the models. In the context of multimedia indexing, this exten-

sion of MinCq appears naturally appropriate for combining the predictions of classifiers

trained from various modalities in a late classifier fusion setting. Our experiments have

confirmed that MinCq is a very competitive alternative for classifier fusion in the con-

text of an image indexing task. Beyond these results, this work gives rise to many in-

teresting remarks, among which the following ones. Taking advantage of a margin con-

straint for late classifier fusion may allow us to prove a new C-bound specific to ranking

problems, and thus to derive other algorithms for classifier fusion by maximizing the

diversity between the classifiers. This could be done by investigating some theoretical

results using the Cantelli-Chebychev’s inequality [3] as in [12]. Additionally, it might

be interesting to study the impact of using other diversity metrics [10] on performances

for image and video retrieval. Such an analysis would be useful for assessing a trade-off

between the quality of the ranking results and the diversity of the inputs for informa-

tion retrieval. Finally, another perspective, directly founded on the general PAC-Bayes

theory [15], could be to take into account a prior belief on the classifiers of H. Indeed,

general PAC-Bayesian theory allows one to obtain theoretical guarantees on majority
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votes with respect to the distance between the considered vote and the prior belief mea-

sured by the Kullback-Leibler divergence. The idea is then to take into account prior

information for learning good majority votes for ranking problems.
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