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The effective potential acting on particles in plasmas being essentially the Debye-shielded Coulomb potential, the particles collisional transport in thermal equilibrium is calculated for all impact parameters b, with a convergent expression reducing to Rutherford scattering for small b. No cutoff at the Debye length scale is needed, and the Coulomb logarithm is only slightly modified.

For the following discussion, it is useful to introduce the characteristic lengths : (i) the interparticle distance d = n -1/3 where n is the plasma density ; (ii) the classical distance of minimum approach λ cma = e 2 /(4πǫ 0 k B T ) where ǫ 0 is the vacuum permittivity, k B is the Boltzmann constant, T is the temperature, and e is the electron charge ; (iii) the Debye length λ D = [(ǫ 0 k B T )/(ne 2 )] 1/2 = d 3/2 /(4πλ cma ) 1/2 . Recall that λ cma ≪ d ≪ λ D in a plasma with a large number of particles in the Debye sphere. Now, we can point out that each of the above works on collisional transport has a difficulty in describing the interactions at distances of the order of the typical interparticle distance d. Indeed, the mean-field approach cannot describe the graininess of these scales, and the Rutherford picture cannot describe the simultaneous collisions with several particles. Consequently, the mean-field approach is suited to describing scales larger than d, and should be used with a corresponding ultraviolet cutoff, while the Rutherford picture holds for scales smaller than d, and should be used with a corresponding infrared cutoff. Fortunately, in both approaches the transport coefficients depend only logarithmically on these cutoffs. Furthermore, forgetting about the latter ones, and considering in both cases the scales typically between λ cma and λ D , the two results are found to agree [START_REF] Gasiorowicz | Dynamics of ionized media[END_REF][START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF]. This provided confidence in these complementary extrapolations which are the present basis of the description of collisional transport in plasmas, as presented in many plasma physics textbooks.

However, as yet a calculation of the contribution of scales about d to collisional transport has been missing, and no theory provides a calculation of this transport covering all scales between λ cma and λ D . It is this gap that the present paper aims at filling. The basic idea of the new derivation is to substitute the bare Coulomb potential of a particle with its "dressed" Debye-shielded potential. Kinetic theory is traditionally used to introduce this shielded potential [START_REF] Balescu | Statistical mechanics of charged particles[END_REF][START_REF] Gasiorowicz | Dynamics of ionized media[END_REF][START_REF] Rostoker | Superposition of dressed test particles[END_REF][START_REF] Rostoker | Test particles in a completely ionized plasma[END_REF], but this can also be done by using a direct, perturbative analysis of the particles motion in an N -body description of the plasma without needing to introduce any test particle [START_REF] Escande | New foundations and unification of basic plasma physics by means of classical mechanics[END_REF]. Here, by using the shielded potential in the plasma, the trace T D of the velocity diffusion tensor of a given particle is computed by a convergent expression including the particle deflections for all impact parameters. These deflections are computed by first order perturbation theory in the total electric field, except for those due to close encounters. The contribution to T D of the former ones is matched with that of the latter ones computed by Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF]. The detailed matching procedure includes the scale of the inter-particle distance, and is reminiscent of that of Hubbard [START_REF] Hubbard | The friction and diffusion coefficients of the Fokker-Planck equation in a plasma[END_REF], however without invoking the cancellation of three infinite integrals. It leads to the same expression as Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF], except for the Coulomb logarithm which is modified by a velocity dependent quantity of the order of 1. The structure of the derivation is outlined just before Sec. II A.

II. COLLISIONAL TRANSPORT IN PLASMAS

Consider a plasma in thermal equilibrium, with a uniform density, in which the particles have random initial positions. Then the dynamics of particles has no collective aspect, but is ruled by the cumulative effect of two-body deflections. More specifically, we choose random initial positions r l0 's and assign to each particle a well defined velocity v l0 , in such a way that the overall initial smooth velocity distribution is close to some given function. To formulate the dynamics as a finite-dimensional system of differential equations, we consider N electrons in a cube with size L, with periodic boundary conditions (this is equivalent to immersing the electrons in a uniform neutralizing background), and let L → ∞, N → ∞ with constant particle density n = N/L 3 (and hence constant Debye length λ D ).

The first effect of Coulomb repulsion between the electrons is to slightly alter their motions, r l (t) = r l0 +v l0 t+δr l (t), in such a way that their interaction is well described by the shielded Coulomb interactions [START_REF] Escande | New foundations and unification of basic plasma physics by means of classical mechanics[END_REF], i.e. we write

δr l = j∈S;j =l a(r l -r j , v j ), (1) 
with S denoting the set of integers from 1 to N labeling particles, and

a(r, v) = e m e ∇Φ(r, v), (2) 
with -e and m e the electron charge and mass, and with the effective potential

Φ(r, v) = - e L 3 ǫ 0 m exp(ik m • r) k 2 m ǫ(m, k m • v) . (3) 
Here, ǫ(k m , ω) is the dielectric function of the plasma. The space Fourier transform is defined with the wave vectors k m = 2π m/L (and k m = k m ), where the sum runs over all vectors m = (m x , m y , m z ) with three integer components. For simplicity, we focus below on slow particles, so that ǫ(m, 0) = 1 + (k m λ D ) -2 and Φ reduces to the Yukawa potential with decay length λ D . We compute the deflection of particle l in a sequence of steps. In Sec. II A, we use first order perturbation theory in Φ, which shows the total deflection to be the sum of the individual deflections due to all other particles. For an impact parameter much smaller than λ D , the deflection due to a particle reduces to the Rutherford deflection due to this particle as if it were alone. In Sec. II B, for a close encounter with particle j, we show that the deflection of particle l is exactly the one it would undergo if the other N -2 particles were absent. In Sec. II C, we show that the deflection for an impact parameter of the order of λ D is given by the Rutherford expression multiplied by some function of the impact parameter reflecting shielding. Finally, since the individual deflections due to impact parameters b exceeding λ D decay rapidly with b, these three steps yield an analytical expression for deflection whatever the impact parameter, as discussed in Sec. II D.

A. Perturbative approximation to trajectories

We first compute δr l by first order perturbation theory in Φ, taking the ballistic motion r (0) l (t) = r l0 + v l0 t as zeroth order approximation. This yields

δ ṙl (t) = j∈S;j =l δ ṙlj (0, t), (4) 
where

δ ṙlj (t 1 , t 2 ) = t2 t1 a[r (0) l (t ′ ) -r (0) j (t ′ ), v j ] dt ′ . (5) 
It is convenient to write

r (0) l (t ′ ) -r (0) j (t ′ ) = b lj + ∆v lj (t ′ -t lj ), (6) 
where t lj is the time of closest approach of the two ballistic orbits, and b lj is the vector joining particle j to particle l at this time. Then b lj = b lj is the impact parameter of these two orbits when singled out. The initial random positions of the particles translate into random values for b lj and t lj . The typical duration of the deflection of particle l given by Eq. ( 5) is ∆t lj ≡ b lj /∆v lj where ∆v lj = ∆v lj , but a certain number, say α, of ∆t lj 's are necessary for the deflection to be mostly completed. For a given b lj and for t ≫ ∆t lj in Eq. ( 4), the deflection of particle l given by Eq. ( 5) is maximum if t lj is in the interval [α∆t lj , t -α∆t lj ]. We notice that ∆t lj is about the inverse of the plasma frequency for b lj ∼ λ D and ∆v lj on the order of the thermal velocity.

For brevity, we compute here only the trace of the diffusion tensor for the particle velocities. To this end, we perform an average over all the r l0 's to get

δ ṙl (t) 2 = j∈S;j =l δ ṙlj (t) 2 , (7) 
taking into account Eq. ( 3), and the fact that the initial positions are independently random, as well as the r ir j 's for i = j. Therefore, though being due to the simultaneous scattering of particle l with the many particles inside its Debye sphere, δ ṙl (t) 2 turns out to be the sum of individual two-body deflections for b lj 's such that first order perturbation theory is correct. Hence the contribution to δ ṙl (t) 2 of particles with given b lj and ∆v lj can be computed as if it would result from successive two-body collisions, as was done by Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF] and in many textbooks.

For b lj ≪ λ D , the main contribution of a[r

(0) l (t ′ ) -r (0) 
j (t ′ ), v j ] to the deflection of particle l comes from times t ′ at which r (0)

l (t ′ ) -r (0) j (t ′ ) ≪ λ D .
Therefore a(r, v) takes on its bare Coulombian value, and δ ṙl (t) is a first order approximation of the effect on particle l of a Rutherford collision with particle j. Both the approximate value and the Rutherford collision value for δ ṙlj scale like λ ma ∆v lj /b lj , where λ ma = e 2 /(π m e ǫ 0 ∆v 2 lj ) is the distance of minimum approach of two electrons in a Rutherford collision, as allowed by energy conservation. As the approximate value differs from the exact one by a factor O( δ ṙlj (-∞, +∞) /∆v lj ) = O(λ ma /b lj ), the perturbative calculation is seen to be correct for b lj ≫ λ ma , as long as the sum of deflections remains small compared with ∆v lj .

Summing over many collisions from 0 to t to estimate δ ṙl (t) 2 in Eq. ( 7) preserves the relative accuracy of the estimate for the contribution of these intermediate range (λ ma ≪ b lj ≪ λ D ) deflections to the diffusion coefficient.

Note also that the small deflections δ ṙlj are elastic, which implies that they are orthogonal to the relative velocities ∆v lj to first order (indeed they are parallel to their b lj 's to this order). Higher order perturbation theory finds the projection of δ ṙlj along ∆v lj to be of second order.

B. Close collisions

Second, we consider the case of a close approach of particle j to particle l, i.e. b lj ∼ λ ma . We write the acceleration of particle l as rl = a(r lr j , v j ) + p∈S;p =l,j a(r lr p , v p ). ( 8)

For particle j, we write the same equation by exchanging indices l and j. Since the two particles are at distances much smaller than the inter-particle distance d = n -1/3 = N -1/3 L, the accelerations imparted to them by all other particles are almost equal. Therefore, when subtracting the two complete equations of motion, the two summations over p almost cancel, leaving

d 2 (r l -r j ) dt 2 = 2a(r l -r j ), (9) 
which is the equation describing the Rutherford collision of these two particles in their centre-of-mass frame, in the absence of all other particles (at such distances the shielded potential is the bare Coulomb one). Since b lj ≪ d, ∆t lj is much smaller than the ∆t lp 's of the other particles. Therefore the latter produce a negligible deflection of the centre of mass during the Rutherford two-body collision, and the deflection of particle l during this collision is exactly that of a Rutherford two-body collision. The contribution of such collisions to δ ṙl (t) 2 was calculated by Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF]. Now, since the deflection of particle l due to particle j as computed by the perturbation theory of Sec. II A is an approximation to the Rutherford deflection for the same impact parameter, we may conversely approximate the perturbative deflection with the full Rutherford one, and obtain an obvious matching of the theories for b lj ∼ λ ma and for λ D ≫ b lj ≫ λ ma : we may thus use the estimate of Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF] in the whole domain b lj ≪ λ D .

C. Small deflections

Third, we deal with impact parameters of the order of λ D . Then the deflection due to particle j must be computed with Eq. ( 5). For simplicity, we do the calculation for the case where v j is small, so that Φ(r, v) ≃ Φ(r, 0) which is the Yukawa potential Φ Y (r) = -e (4π ǫ 0 r ) -1 exp(r /λ D ) [Eq. ( 18) of 17]. The first order correction in k m •v j to this approximation is a dipolar potential with an electric dipole moment proportional to v j . Since a Maxwell distribution is an even function of v, these individual dipolar contributions cancel globally. As a result, the first relevant correction to the Yukawa potential is of second order in k m • v j . This should make the Yukawa approximation relevant for a large part of the bulk of the Maxwell distribution.

In the small deflection limit, a standard calculation using the fact that the force derives from a central potential shows the full deflection of particle l due to particle j to be

δ ṙlj (-∞, +∞) = e 2 4πm e ǫ 0 b lj +∞ -∞ 1 r 3 (t) + 1 λ D r 2 (t) exp[- r(t) λ D ] dt, ( 10 
)
where r(t) = (b 2 lj + ∆v 2 lj t 2 ) 1/2 and b lj was defined with Eq. ( 6). On introducing the angle θ = arcsin[∆v lj t/r(t)], this integral becomes

δ ṙlj (-∞, +∞) = - 2e 2 4πm e ǫ 0 ∆v lj h(b lj ) b 2 lj b lj , (11) 
where

h(b) = π/2 0 cos θ + b λ D exp[- b λ D cos θ ] dθ (12) 
During time t ≫ ∆t lj , a volume 2π ∆v lj t b lj δb lj of particles with velocity v j and impact parameters between b lj and b lj + δb lj produce the deflection of particle l given by Eq. ( 11), and a contribution scaling like [h 2 (b lj )/b lj ]δb lj to δ ṙl (t) 2 .

D. Synthesis over all collision scales

Let b min be such that λ D ≫ b min ≫ λ ma . The contribution of all impact parameters between b min and some b max is thus scaling like the integral bmax bmin [h 2 (b)/b] db. Since h(0) ≃ 1 for b small, if b max ≪ λ D , this is the non-shielded contribution of orbits relevant to the above perturbative calculation. Now recall that, on approximating it with the Rutherford-like result of Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF], this contribution matches the contribution of impact parameters on the order of λ ma . Thus the contribution of all impact parameters between λ ma and some b max (small with respect to λ D ) is scaling like the integral bmax λma (1/b) db as was computed by Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF]. The matching of this result for b max > ∼ λ D is simply accomplished by keeping the factor h 2 (b) in the integrand, which makes the integral converge for b → ∞. Taking this limit, one finds (see Appendix) that the Coulomb logarithm ln(λ D /λ ma ) of the second Eq. ( 14) of Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse-square force[END_REF] becomes ln(λ D /λ ma ) + C where C is of order unity. If the full dependence of the shielding on v j were taken into account [see e.g. [START_REF] Dewar | The screened field of a test particle[END_REF][START_REF] Dewar | Dressed test particles, oscillation centres and pseudo-orbits[END_REF], the modification to the Coulomb logarithm would be velocity dependent.

III. SUMMARY AND PERSPECTIVES

It is known that, in plasmas, the Coulomb interaction spontaneously generates particle motions which alter the "bare" Coulomb pair interaction [START_REF] Balescu | Statistical mechanics of charged particles[END_REF][START_REF] Escande | New foundations and unification of basic plasma physics by means of classical mechanics[END_REF][START_REF] Gasiorowicz | Dynamics of ionized media[END_REF][START_REF] Rostoker | Superposition of dressed test particles[END_REF][START_REF] Rostoker | Test particles in a completely ionized plasma[END_REF]. In dilute, warm plasmas, particle trajectories are almost ballistic, but any electron, say j, slightly affects all other electrons, so that r p (t) = r p0 + v p0 t + δr p (t). As a result, the total force on an electron l due to electron j is, to dominant order, the sum of their direct Coulomb interaction m e a C (r l -r j ) (with a C (r) = e 2 r/(4πǫ 0 m e r

3 )) and of the force on l summing corrections to the Coulomb interaction with all other electrons -m e p =l,j ∇a C (r jr p ) • δr p [START_REF] Escande | New foundations and unification of basic plasma physics by means of classical mechanics[END_REF]. The balance of these effects generates dynamically the Debye screening, which thus results from the Coulomb interaction mediated by the plasma. In a sense, Debye screening is the result of small deflections, which one is tempted to call collisions.

It is somewhat startling that, in turn, the resulting Debye screened effective potential yields a description of pair interaction which provides a direct calculation of particle deflections, viz. of collisional transport. Screening and collisions are thus intimately linked, and our ability to calculate collisional transport rests on this link.

A second startling aspect of collisions in plasmas is that, although each particle interacts simultaneously with many other ones on the Debye length scale (suggesting the need for a collective description), the transport effect of these interactions is well approximated by a sum of independent binary estimates, because the deflections are so weak that they can be treated perturbatively. This paradox may lead to misunderstandings in the description of the calculations.

The calculation of dynamical friction, which requires second order perturbation theory, follows the same lines as those for the diffusion coefficient. For the sake of simplicity, we computed here only the trace of the diffusion tensor ; the same argument could be easily applied to the elements of the tensor. It also extends to the tensors corresponding to electron-ion collisions and to ion-ion collisions. For an inhomogeneous plasma, the acceleration of particle l may be split into a homogeneous and a wave part, so that the diffusion coefficient and the dynamical friction, estimated by perturbative calculation of the dynamics up to second order, are the sum of the collisional contribution and of a contribution due to waves, the latter as calculated for instance in Escande et al. [START_REF] Escande | Intuitive and rigorous microscopic description of spontaneous emission and Landau damping of Langmuir waves through classical mechanics[END_REF] and Elskens & Escande [START_REF] Elskens | Microscopic dynamics of plasmas and chaos[END_REF]. We defer these issues to a later publication.

We computed here only the contribution to the trace of the diffusion tensor coming from particles slow enough for a Yukawa potential to be a good approximation for their shielded potential, which made possible an analytical estimate. The contribution of faster particle involves a more intricate shape of the shielded potential that does not look as analytically tractable [START_REF] Dewar | The screened field of a test particle[END_REF][START_REF] Dewar | Dressed test particles, oscillation centres and pseudo-orbits[END_REF], and will probably require subtle computer integration. This means a large amount of work which is out of the scope of our present paper.

DFE acknowledges fruitful discussions with participants to the meeting "Equilibrium and out-of-equilibrium properties of systems with long-range interactions" at ENS-Lyon (August 2012). YE enjoyed discussions with participants to Vlasovia in Nancy (November 2013). Eqs (A4), (A6) and (A9) show that I 1 (0) is bounded by -B ≤ I 1 (0) ≤ A. Numerically, we find I 1 (0) = -0.38 . . . Finally, the inequality h 2 ≤ 1 implies that I 1 (λ ma ) is an increasing function of λ ma between 0 and λ D . Of course, the limit λ ma → 0 cannot be taken for the full integral I of Eq. (A3), for this limit is in the close collision regime.

Returning to Eq. (A1), we also note that the integral over v j , using spherical coordinates for v jv l , eliminates the denominator ∆v lj . The dependence of λ ma on ∆v lj implies that the trace T D of the diffusion tensor will finally depend on the temperature, leading to the dominant contribution ln(λ D /λ cma ) resulting from Eq. (A2). The overall result of taking the actual function h into account thus amounts to adding a finite constant C ′ to the Coulomb logarithm.

  with c = π/(2e) = 0.577 . . ., and we estimateI 11 using 1 ≥ h(b) ≥ 1 -cb/λ D ,

Appendix A: Convergent integral for large impact parameter

The contribution of small deflections to the sum in Eq. ( 7) is easily estimated. Given a particle l, for a plasma in thermal equilibrium, the relative velocity ∆v lj and the impact parameter b lj may be considered independent in first approximation. The contribution of all particles with a velocity v j to the velocity diffusion of particle l is then δ ṙl 

For the actual integral h defined in Eq. ( 12), the divergence for small λ ma is identical. Let us thus write

where we define for 0

Note that I 11 < 0 and I 12 > 0. We now estimate both integrals. The upper estimate (using 0 ≤ cos θ ≤ 1 in Eq. ( 12))

implies (setting b = λ D β and β = s -1)

s 2 e -2s ds = A = 13π 2 16e 2 = 1.085 . . .

(A6)

On the other hand, the derivative of h reads

where the divergent first factor is tamed by the exponential vanishing of the second factor for θ → π/2. Now, for 0 ≤ x < ∞, the function u(x) = xe -x is maximum at x = 1, so that