
HAL Id: hal-00985741
https://hal.science/hal-00985741v1

Submitted on 30 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VERTEX NIM PLAYED ON GRAPHS
Eric Duchene, Gabriel Renault

To cite this version:
Eric Duchene, Gabriel Renault. VERTEX NIM PLAYED ON GRAPHS. Theoretical Computer Sci-
ence, 2014, 516, pp.20-27. �hal-00985741�

https://hal.science/hal-00985741v1
https://hal.archives-ouvertes.fr

VERTEX NIM PLAYED ON GRAPHS

ERIC DUCHÊNE AND GABRIEL RENAULT

Abstract. Given a graph G with positive integer weights on the vertices,

and a token placed on some current vertex u, two players alternately remove a
positive integer weight from u and then move the token to a new current vertex
adjacent to u. When the weight of a vertex is set to 0, it is removed and its
neighborhood becomes a clique. The player making the last move wins. This
adaptation of Nim on graphs is called Vertexnim, and slightly differs from
the game Vertex NimG introduced by Stockman in 2004. Vertexnim can
be played on both directed or undirected graphs. In this paper, we study the
complexity of deciding whether a given game position of Vertexnim is winning
for the first or second player. In particular, we show that for undirected graphs,

this problem can be solved in quadratic time. Our algorithm is also available
for the game Vertex NimG, thus improving Stockman’s exptime algorithm. In

the directed case, we are able to compute the winning strategy in polynomial
time for several instances, including circuits or digraphs with self loops.

Keywords: Combinatorial games; Nim; graph theory

1. Background and definitions

We assume that the reader has some knowledge in combinatorial game theory.
Basic definitions can be found in [1]. We only remind that a P position denotes a
position from which the second player has a winning strategy, while an N position
means that the first player to move can win. Graph theoretical notions used in this
paper will be standard and according to [2]. In particular, given a graph G = (V,E)
and a vertex v of V , we set N(v) = {w ∈ V : (v, w) ∈ E}.

The original idea of this work is the study of a variant of Nim, called Adja-

cent Nim, in which both players are forced to play on the heaps in a specific
cyclic order: given N heaps of tokens of respective sizes (n1, . . . , nN), play the
game of Nim under the constrainst that if your opponent has moved on heap i, you
must move on heap i + 1 (or on the smallest next non-empty heap, in a circular
way). Actually, our investigations led us to consider Adjacent Nim as a particular
instance of the game NimG (for ”Nim on Graphs”) introduced by Stockman in [19].

As a brief story of the game, we remind the reader that the game of Nim was
introduced and solved by Bouton in 1904 [3]. Since then, lots of variations were con-
sidered in the literature, the most famous one being Wythoff’s game [20, 10]. One
can also mention [6, 13, 12, 11, 15] as a non-exhaustive list. One of the most recent
variant of Nim provides a topology to the heaps, which are organized as the edges of
an undirected graph. This game was proposed by Fukuyama in 2003 [17, 18]. More
precisely, an instance of its game is an undirected graph G = (V,E) with an integer
weight function on E. A token is set on an arbitrary vertex. Then two players

1

2 E. DUCHÊNE AND G. RENAULT

alternately move the token along a positive adjacent edge e and decrease the label
of e to any strictly smaller non-negative integer. The first player unable to move
loses the game (this happens when the token has all its adjacent edges with a label
equal to zero). In his papers, Fukuyama gives necessary and sufficient conditions
for a position on a bipartite graph to be P. He also computes the Grundy values
of this game for some specific families of bipartite graphs, including trees, paths
or cycles. In [9], a larger set of graphs is investigated (including complete graphs),
but only for the weight fonction f : E 7→ {1}.

In 2004, Stockman considered another generalization of Nim on graphs that she
called Vertex NimG. The main difference with Fukuyama’s work is that the Nim
heaps are embedded into the vertices of a graph. This definition raises a natural
question when playing the game: does the player first remove some weight from a
vertex and then move to another one, or does he first move to a vertex and then
remove weight from it?

• The variant Move then remove of Vertex NimG was recently investigated
by Burke & George in [4]. They showed that in the case where each vertex
of the input graph G has a self loop, then this game is PSPACE-hard. To
the best of our knowledge, nothing was proved in the general case yet.

• The variant Remove then move of Vertex NimG is the one that was
considerd by Stockman in [19]. In the case where the weight function is
bounded by a constant, she gave a polynomial time algorithm to decide
whether a given position is P or N . The same algorithm can be applied in
the general case, but becomes exponential according to the order of G.

In Fukuyama’s or Stockman’s definitions, the game ends when the player is blocked
because of a null weight. This means that unlike the original game of Nim, their
variants may end with remaining weight on the graph. To be closer to the original
Nim, we have defined the rules of our variant of Vertex NimG in such a way that
the game ends only when all the weight is removed from the graph. This variant
was introduced on both directed and undirected graphs with possible loops, and
under the remove then move convention. Multiple edges are not considered, since
the weight is set on the vertices. We start by giving the definition of our game on
undirected graphs, which is called Undirected vertexnim.

Definition 1. Undirected vertexnim. Let G = (V,E) be an undirected con-
nected graph, let w : V → N>0 be a function which assigns to each vertex a positive
integer. Let u ∈ V be a starting current vertex. In this game, two players alter-
nately decrease the value of the current vertex u and choose an adjacent vertex of u
as the new current vertex. When the value w(v) of a vertex v is set to 0, then v and
its incident edges are removed from G, the subgraph N(v) of G becomes a clique,
and a loop is added on each vertex of N(v). The game ends when G is empty. The
player who makes the last move wins the game.

In this definition, we make N(v) become a clique after v reaches zero to prevent
the graph to be disconnected. In other words, we can say that in order to choose
the next current vertex, it suffices to follow any path of zero vertices ending on a
non zero vertex. We also add loops to prevent a player to be blocked on a vertex.
The example below shows an execution of the game, the current vertex being the
one with the triangle.

VERTEX NIM PLAYED ON GRAPHS 3

Figure 1. Playing undirected vertexnim

This game can naturally be extended to directed graphs, with some constraints
ensuring that all the weight is removed in the end. In particular, arcs are added
when the weight of a vertex goes to zero (by the same way that a clique is build
in the undirected case). We also need to play on a strong connected digraph, to
avoid to be blocked on a vertex having a null outdegree. Recall that in a strong
connected digraph, for every couple of vertices (u, v) there exists a path from u to
v. This directed variant will be called Directed vertexnim.

Definition 2. Directed vertexnim. Let G = (V,E) be a strong connected di-
graph, and let w : V → N>0 be a function which assigns to each vertex a positive
integer. Let u ∈ V be the starting current vertex. In this game, two players al-
ternately decrease the value of the current vertex u and choose an adjacent vertex
of u as the new current vertex. When the value of a vertex v is set to 0, then
v is removed from G and all the pairs of arcs (p, v) and (v, s) (with p and s not
necessarily distinct) are replaced by an arc (p, s). The game ends when G is empty.
The player who made the last move wins the game.

Note that in Definition 2, the strong connectivity of G is preserved when deleting
a vertex. Hence it is always possible to play whenever G is not empty. Figure
1 illustrates a sequence of moves of Directed vertexnim, where both players
remove all the weight of the current vertex at their turn.

Figure 2. Playing directed vertexnim

The current paper deals with the complexity of both versions of vertexnim,
in the sense of Fraenkel [16]. In particular, we will prove the tractability of the
game, which implies to show that the outcome (P or N) of a game position can
be computed in polynomial time. In Section 2, we will solve the game Adjacent

4 E. DUCHÊNE AND G. RENAULT

Nim, which is actually an instance of directed vertexnim on circuits. Section 3
will be devoted to the resolution of directed vertexnim for any strong connected
digraph having a loop on each vertex. Section 4 concerns undirected vertexnim,
whose tractability is proved in the general case. As a corollary, we will show that
our algorithm also solves Stockman’s Vertex NimG in quadratic time, improving
the results presented in [19]. In Section 5, we finally mention how our results can
be adapted to misère versions of vertexnim.

2. Adjacent Nim

As explained in the introduction, this game was the original motivation of our
work. With the above formalism, it can be expressed as an instance of directed
vertexim on an elementary circuit CN = (v1, v2, . . . , vN) with the orientation
(vi, vi+1) : 1 ≤ i < N and (vN , v1) of the arcs. In Theorem 3, we fully solve adja-

cent Nim in the case where all the weights are strictly greater than 1. Without
loss of generality, we will assume that the starting position is always v1.

Theorem 3. Let (CN , w, v1) : N ≥ 3 be an instance of adjacent Nim with
w : V → N>1.

• If N is odd, then (CN , w, v1) is an N position.
• If N is even, then (CN , w, v1) is an N position iff min{argmin

1≤i≤N

w(vi)} is

even.

Proof. • If N is odd, then the first player can apply the following strategy to win:
first play w(v1) → 1. Then for all 1 ≤ i < (N − 1)/2: if the second player empties
v2i, then the first player also empties the following vertex v2i+1. Otherwise play
w(v2i+1) → 1. The strategy is different for the last two vertices of CN : if the
second player empties vN−1, then play w(vN) → 1, otherwise play w(vN) → 0. As
w(v1) = 1, the second player is now forced to empty v1. Since an even number
of vertices was deleted since then, we still have an odd circuit to play on. It now
suffices for the first player to empty all the vertices on the second run. Indeed, the
second player is also forced to set each weight to 0 since he has to play on vertices
satisfying w = 1. Since the circuit is odd, the first player is guaranteed to make
the last move on vN or vN−1.
• If N is even, we claim that who must play the first vertex of minimum weight
will lose the game. The winning strategy of the other player consists in decreasing
by 1 the weight of each vertex at his turn. Without loss of generality, assume that
min{argmin

1≤i≤N

w(vi)} is odd. If the strategy of the second player always consists in

moving w(vi) → w(vi) − 1, then the first player will be the first to set a weight
to 0 or 1. If he sets a vertex to 0, then the second player now faces an instance
(C ′

N−1, w
′) with w′ : V ′ → N>1, which is winning according to the previous item. If

he sets a vertex to 1, then the second player will empty the following vertex, leaving
to the first player a position (C ′

N−1 = (v′1, v
′
2, . . . , v

′
N−1), w

′) with w′ : V ′ → N>1

except on w′(v′N−1) = 1. This position corresponds to the one of the previous item
after the first move, and is thus losing. �

Problem 4. The question of deciding whether a given position is P or N remains
open in the cases where some vertices have a weight equal to 1. Indeed the previous
strategy cannot be applied anymore, and we did not manage to get satisfying results
when the 1′s are owned by different players.

VERTEX NIM PLAYED ON GRAPHS 5

Remark 5. What if we adapt Stockman’s Vertex NimG to directed graphs ?
Recall that it means that vertices of null weight are never removed, and a player
who must play from a 0 loses. In the case of circuits, it is easy to see that Theorem
3 remains true, even if there are vertices of weight 1. On a general graph, we
conjecture that this game should be at least as hard as the game Geography [14]
(nevertheless the reduction needs to be done).

3. Directed graphs with all loops

Dealing with directed vertexnim on any strong connected digraph is much
harder. We managed to decide whether a position is P or N only in the case where
there is a loop on each vertex. This is somehow a way to consider NimG with the
extended neighborhood, as proposed in [4].

Theorem 6. Let (G,w, u) be an instance of directed vertexnim where G is
strongly connected with a loop on each vertex. Deciding whether (G,w,u) is P or
N can be done in time O(|V (G)||E(G)|).

The proof of this theorem requires several definitions that we present here.

Definition 7. Let G = (V,E) be a directed graph. We define a labeling loG :
V (G) → {P,N} as follows :
Let S ⊆ V (G) be a non-empty set of vertices such that the graph induced by S is
strongly connected and ∀u ∈ S, ∀v ∈ (V (G)\S), (u, v) /∈ E(G).
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.
Let Ge be the graph induced by V (G)\S and Go the graph induced by V (G)\(S∪T).
If |S| is even, ∀u ∈ S, loG(u) = N , and ∀v ∈ G\S, loG(v) = loGe

(v).
If |S| is odd, ∀u ∈ S, loG(u) = P, ∀v ∈ T , loG(v) = N and ∀w ∈ G\(S ∪ T),
loG(w) = loGo

(w).

When decomposing the graph into strongly connected components, S is one of
those with no out-arc. The choice of S is not unique, unlike the loG function: if S1

and S2 are both strongly connected components without out-arcs, the one which is
not chosen as first will remain a strongly connected component after the removal
of the other, and as it has no out-arc, none of its vertices will be in the T set.

Proof. Let G′ be the induced subgraph of G such that V (G′) = {v ∈ V (G) | w(v) =
1}.
If G = G′, then (G,w, u) is an N position if and only if |V (G)| is odd since the
problem reduces to “She loves move, she loves me not”. We will now suppose that
G 6= G′, and consider two cases about w(u):
• Assume w(u) > 2. If there is a winning move which reduces u to 0, then we can
play it and win. Otherwise, reducing u to 1 and staying on u is a winning move.
Hence (G,w, u) is an N position.
• Assume w(u) = 1, i.e., u ∈ G′. According to Definition 7, computing loG′ yields
a sequence of couples of sets (Si, Ti) (which is not unique). Note that some Ti may
be empty (this happens when the corresponding Si has an even size). Thus the
following assertions hold: if u ∈ Si for some i, then any direct successor v of u is in
a set Sj or Tk with j 6 i and k < i, and if u ∈ Ti 6= ∅ for some i, then there exists
a direct successor v of u in the set Si, with loG′(v) = P.
Our goal is to show that (G,w, u) is an N position if and only if loG′(u) = N
by induction on |V (G′)|. If |V (G′)| = 1, then V (G′) = {u} and loG′(u) = P.

6 E. DUCHÊNE AND G. RENAULT

Hence we are forced to reduce u to 0 and go to a vertex v such that w(v) > 2,
which we previously proved to be a losing move. Assume |V (G′)| > 2. First, note
that when one reduce the weight of a vertex v to 0, the replacement of the arcs
makes the strongly connected components remain the same (except the component
containing v of course, which loses one vertex). Consequently, if u ∈ Si for some
i, then for any vertex v ∈ ∪i−1

l=1(Tl ∪ Sl), loG′\{u}(v) = loG′(v) and for any vertex
w ∈ Si\{u}, loG′\{u}(w) 6= loG′(w). If u ∈ Ti for some i, then for any vertex

v ∈ (∪i−1
l=1(Tl ∪ Sl)) ∪ Si, loG′\{u}(v) = loG′(v).

We now consider two cases about u: first assume that loG′(u) = P, with u ∈ Si

for some i. We reduce u to 0 and we are forced to move to a direct successor
v. If w(v) > 2, we previously proved this is a losing move. If v ∈ ∪i−1

l=1(Tl ∪ Sl),
then loG′\{u}(v) = loG′(v) = N and it is a losing move by induction hypothesis.
If v ∈ Si, then loG′\{u}(v) 6= loG′(v) = P and it is a losing move by induction
hypothesis.
Now assume that loG′(u) = N . If u ∈ Ti for some i, we can reduce u to 0 and move
to a vertex v ∈ Si, which is a winning move by induction hypothesis. If u ∈ Si for
some i, it means that |Si| is even, we can reduce u to 0 and move to a vertex v ∈ Si,
with loG′\{u}(v) 6= loG′(v) = N . This is a winning move by induction hypothesis.
Hence, (G,w, u) is an N position if and only if loG′(u) = N . Figure 3 illustrates
the computation of the lo function. �

Figure 3. Exemple of lo labeling function

Problem 8. Can one provide a characterization of the P and N positions in the
general case where self loops are optional?
Note that one of the reasons for which we have slightly changed Stockman’s rules
is that we assumed that our current game had a lower complexity than Vertex

NimG or Geography [14] on directed graphs. The previous theorem shows that
our assumption was somehow true, since we remind the reader that Vertex NimG

was proved to be PSPACE-hard with all loops (for the move then remove convention
[4], the other convention being trivial with all loops).

4. Undirected graphs

In the undirected case, it is easy to show that if each vertex has a self loop,
deciding whether a position is P or not only depends on the size of the subset
{v ∈ V | w(v) = 1}. Remark that this game can be solved by Theorem 6, by
saying that it suffices to replace each edge (u, v) by two arcs (u, v) and (v, u). Yet,
the following proposition improves the complexity of the method, which becomes
linear.

VERTEX NIM PLAYED ON GRAPHS 7

Proposition 9. Let (G = (V,E), w, u) be an instance of undirected vertexnim

such that there is a loop on each vertex of G. Deciding whether (G,w, u) is P or
N can be done in time O(|V |).

Proof. Let G′ be the induced subgraph of G such that V (G′) = {v ∈ V (G) | w(v) =
1}.
If G = G′, then (G,w, u) is an N position if and only if |V (G)| is odd since the
problem reduces to “She loves move, she loves me not”. In the rest of the proof,
assume G 6= G′.
• We first consider the case where w(u) > 2. If there is a winning move which
reduces u to 0, then we play it and win. Otherwise, reducing u to 1 and staying on
u is a winning move. Hence (G,w, u) is an N position.
• Assume w(u) = 1. Let nu be the number of vertices of the connected component
of G′ which contains u. We show that (G,w, u) is an N position if and only if nu is
even by induction on nu. If nu = 1, then we are forced to reduce u to 0 and move
to another vertex v having w(v) > 2, which we previously proved to be a losing
move. Now assume nu > 2. If nu is even, we reduce u to 0 and move to an adjacent
vertex v with w(v) = 1, which is a winning move by induction hypothesis. If nu is
odd, then we reduce u to 0 and we are forced to move to an adjacent vertex v. If
w(v) > 2, then we previously proved it is a losing move. If w(v) = 1, this is also
a losing move by induction hypothesis. Therefore in that case, (G,w, u) is an N
position if and only if nu is even. �

In the general case where the loops are optional, the tractability of the game is
still guaranteed, even though the previous linear time algorithm is no more available.

Theorem 10. Let (G,w, u) be an instance of undirected vertexnim. Deciding
whether (G,w, u) is P or N can be done in O(|V (G)||E(G)|) time.

The proof of this theorem requires several definitions that we present here.

Definition 11. Let G = (V,E) be an undirected graph with a weight function
w : V → N>0 defined on its vertices.
Let S = {u ∈ V (G) | ∀v ∈ N(u), w(u) 6 w(v)}.
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.
Let G′ be the graph induced by G\(S ∪ T).
We define a labeling luG,w of its vertices as follows :
∀u ∈ S, luG,w(u) = P, ∀v ∈ T , luG,w(v) = N and ∀t ∈ G\(S ∪ T), luG,w(t) =
luG′,w(t).

Proof. Let Gu be the induced subgraph of G such that V (Gu) = {v ∈ V (G) |
w(v) = 1 or v = u}, and G′ be the induced subgraph of G such that V (G′) = {v ∈
V (G) | w(v) > 2 and (v, v) /∈ E(G) and ∀t ∈ V (G), (v, t) ∈ E(G) ⇒ w(t) > 2}.
If G = Gu and w(u) = 1, then (G,w, u) is an N position if and only if |V (G)| is
odd since it reduces to “She loves move, she loves me not”.
If G = Gu and w(u) > 2, we reduce u to 0 and move to any vertex if |V (G)| is odd,
and we reduce u to 1 and move to any vertex if |V (G)| is even; both are winning
moves, hence (G,w, u) is an N position.
In the rest of the proof we will assume that G 6= Gu. In the next three cases, we
consider the case u /∈ G′.
• Case (1) Assume w(u) > 2 and there is a loop on u. If there is a winning move
which reduces u to 0, then we can play it and win. Otherwise, reducing u to 1 and

8 E. DUCHÊNE AND G. RENAULT

staying on u is a winning move. Therefore (G,w, u) is an N position.
• Case (2) Assume w(u) = 1.
Let n be the number of vertices of the connected component of Gu which contains u.
We will show that (G,w, u) is an N position if and only if n is even by induction on
n. If n = 1, then we are forced to reduce u to 0 and move to another vertex v, with
w(v) > 2, which was proved to be a losing move since it creates a loop on v. Now
assume n > 2. If n is even, we reduce u to 0 and move to a vertex v satisfying w(v) =
1, which is a winning move by induction hypothesis (the connected component of
Gu containing u being unchanged, except the removal of u). If n is odd, we reduce
u to 0 and move to some vertex v, creating a loop on it. If w(v) > 2, we already
proved this is a losing move. If w(v) = 1, it is a losing move by induction hypothesis.
We can therefore conclude that (G,w, u) is an N position if and only if n is even.
Figure 4 illustrates this case.
• Case (3) Assume w(u) > 2 and there is a vertex v such that (u, v) ∈ E(G) and
w(v) = 1. Let n be the number of vertices of the connected component of Gu which
contains u. If n is odd, we reduce u to 1 and we move to v, which we proved to
be a winning move. If n is even, we reduce u to 0 and we move to v, which we
also proved to be winning. Hence (G,w, u) is an N position in that case. Figure 4
illustrates this case.
• Case (4) Assume u ∈ G′. We will show that (G,w, u) is N if and only if

Figure 4. Case 2: the
connected component
containing u has an
odd size: this is a P po-
sition.

Figure 5. Case 3: an
N position since u of
weight w(u) > 1 has a
neighbor of weight 1.

luG′,w(u) = N by induction on
∑

v∈V (G′) w(v). If
∑

v∈V (G′) w(v) = 2, we get G′ =

{u} and we are forced to play to a vertex v such that w(v) > 2 and v /∈ V (G′), which
we proved to be a losing move. Assume

∑
v∈V (G′) w(v) > 2. If luG′,w(u) = N , we

reduce u to w(u) − 1 and move to a vertex v of G′ such that w(v) < w(u) and
luG′,w(v) = P. Such a vertex exists by definition of lu. Let (G1, w1, v) be the
resulting position after such a move. Hence luG′

1
,w1

(v) = luG′,w(v) = P since the
only weight that has been reduced remains greater or equal to the one of v. And
(G1, w1, v) is a P position by induction hypothesis. If luG′,w(u) = P, the first
player is forced to reduce u and to move to some vertex v. Let (G1, w1, v) be the
resulting position. First remark that w1(v) > 2 since u ∈ G′. If he reduces u to 0,
he will lose since v now has a self loop. If he reduces u to 1, he will also lose since
(u, v) ∈ E(G1) and w1(u) = 1 (according to case (3)).

Assume we reduced u to a number w1(u) > 2. Thus luG′

1
,w1

(u) still equals P
since the only weight we modified is the one of u and it has been decreased. If
v /∈ G′, i.e., v has a loop or ∃t ∈ V (G1) s.t. (v, t) ∈ E(G1) and w1(t) = 1, then the
second player wins according to cases (1) and (3). If v ∈ G′ and luG′,w(v) = N , then

VERTEX NIM PLAYED ON GRAPHS 9

luG′

1
,w1

(v) is still N since the only weight we modified is the one of a vertex labeled
P. Consequently the resulting position makes the second player win by induction
hypothesis. If v ∈ G′ and luG′,w(v) = P, then we necessarily have w(v) = w(u) in
G′. As luG′

1
,w1

(u) = P and (u, v) ∈ E(G1), then luG′

1
,w1

(v) becomes N , implying
that the second player wins by induction hypothesis. Hence (G,w, u) is N if and
only if luG′,w(u) = N . Figure 4 shows an example of the lu labeling.

Concerning the complexity of the computation, note that all the cases except
(4) can be executed in O(|E(G)|) operations. Hence the computation of luG′,w(u)
to solve case (4) becomes crucial. It is rather straightforward to see that in the
worst case, the computation of S and T can be done in O(|E(G)|) time. And
the number of times where S and T are computed in the recursive definition of lu
is clearly bounded by |V (G)|. All of this leads to a global algorithm running in
O(|V (G)||E(G)|) time. �

Figure 6. Case 4: lu-labeling of the subgraph G′

The technique described above can also be applied to Stockman’s version of
the game Vertex NimG. In [19], an exptime algorithm is given to decide the
outcome of a given position. We here show that the complexity can be decreased
to O(|V ||E|).

Corollary 12. Let (G,w, u) be an instance of Vertex NimG with w : V → N>0.
Deciding whether (G,w, u) is P or N can be done in O(|V (G)||E(G)|) time.

Proof. The proof works similarly to the previous one, except that the subgraph Gu

is no more useful. Hence we have four cases:

• If w(u) = 1 and u has no self loop, then the position is P.
• If w(u) ≥ 1 and there is a loop on u, then it is N .
• If w(u) ≥ 2 and there is a vertex v such that (u, v) ∈ E and w(v) = 1, then
it is an N position.

• If u ∈ G′, then compute luG′,w(u) as in Theorem 4.

Note that the proof is still working if there exist vertices of null weight at the
beginning. It suffices to consider the two following properties: if w(u) = 0 then this
is P, and if u is adjacent to some v with w(v) = 0, then it is N . �

5. Misère versions

The misère version of a game is a game with the same rules except that the
winning condition is reversed, i.e., the last player to move loses the game. The
following results shows that in almost all cases, misère and normal versions of
Vertexnim have the same outcomes.

10 E. DUCHÊNE AND G. RENAULT

Theorem 13. Let (G,w, u) be an instance of undirected vertexnim under
the misère convention. Deciding whether (G,w, u) is P or N can be done in
O(|V (G)||E(G)|) time.

Proof. If all vertices have weight 1, then (G,w, u) is an N position if and only if
|V (G)| is even since it reduces to the misère version of “She loves move, she loves
me not”. Otherwise, we can use the same proof as the one of Theorem 4 to see that
(G,w, u) is N in the misère version if and only if it is N in the normal version. �

Theorem 14. Let (G,w, u) be an instance of directed vertexnim in the misère
version, where G is strongly connected, with a loop on each vertex. Deciding whether
(G,w,u) is P or N can be done in time O(|V (G)||E(G)|).

Proof. If all vertices have weight 1, then (G,w, u) is an N position if and only if
|V (G)| is even since it reduces to the misère version of “She loves move, she loves
me not”. Otherwise, we can use the same proof as the one of Theorem 6 to see that
(G,w, u) is N in the misère version if and only if it is N in the normal version. �

Remark 15. Though the algorithms we give for both Undirected Vertexnim

and Directed Vertexnim can easily be adapted for the misère version, it does
not seem to be the case with the algorithm we give for Vertex NimG.

Problem 16. This section showed that Vertex NimG and Undirected Ver-

texnim can both be solved in polynomial time. Does this remain true when consid-
ering the Move then remove convention ?

Conclusion

When dealing with an undirected graph, we proved that both versions ofVertex

NimG (Stockman’s version where the game ends whenever a player is blocked on
a 0, and our version which allows to play until all the weight is removed from the
graph) are tractable. We even proved that deciding whether a given position is
P or N can be done in quadratic time, which is a real improvement compared to
the exptime algorithm presented in [19]. Unfortunately, the directed case turns out
to be more tricky, even for simple graphs such as circuits. Yet, it seems that our
variant of Nim on graphs is more accessible than Vertex NimG or Geography,
as the results obtained in Theorem 6 allow us to be optimistic for graphs where
loops become optional.

References

[1] E. Berlekamp, J. H. Conway, R. K. Guy, Winning ways for your mathematical plays, Vol. 1,
Second edition. A K Peters, Ltd., Natick, MA, (2001).

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, McMillan, London;
Elsevier, New York, (1976).

[3] C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Math. 3 (1905),
35–39.

[4] K. Burke and O. George, A PSPACE-complete Graph Nim, to appear in Games of No Chance
5.

[5] E. Duchêne, A. S. Fraenkel, R. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff’s
game preserving wythoff’s sequence as set of P positions, Journal of Combinatorial Theory

series A. 117 (2010), 545-567.
[6] E. Duchêne, S. Gravier, Geometrical extensions of Wythoff’s game, Disc. Math. 309 (2009),

3595-3608.

VERTEX NIM PLAYED ON GRAPHS 11

[7] E. Duchêne, M. Rigo, A morphic approach to combinatorial games : the Tribonacci case,
Theor. Inform. Appl. 42 (2008), 375–393.

[8] E. Duchêne, M. Rigo, Cubic Pisot Unit Combinatorial Games, Monat. fur Math. 155 (2008),
217 – 249.

[9] L. Erickson, Nim on the complete graph, arXiv:1010.1455v1 [math.CO] (2010).
[10] A. S. Fraenkel, How to beat your Wythoff games’ opponent on three fronts, Amer. Math.

Monthly 89 (1982), 353–361.
[11] A. S. Fraenkel, The Raleigh game, Combinatorial number theory, 199–208, de Gruyter, Berlin,

(2007).
[12] A. S. Fraenkel, The Rat and the Mouse game, preprint.

[13] A. S. Fraenkel, I. Borosh, A generalization of Wythoff’s game, J. Combinatorial Theory Ser.

A 15 (1973), 175–191.
[14] A.S. Fraenkel and S. Simonson, Geography, Theoretical Computer Science 110 (1993), 197–

214.
[15] A. S. Fraenkel, D. Zusman, A new heap game, Theoret. Comput. Sci. 252 (2001), 5–12.
[16] A.S. Fraenkel, Complexity, Appeal and Challenges of combinatorial games,

http://www.wisdom.weizmann.ac.il/~fraenkel (2002).
[17] M. Fukuyama, A Nim game played on graphs, Theoret. Comput. Sci. 304 (2003), 387–399.
[18] M. Fukuyama, A Nim game played on graphs II, Theoret. Comput. Sci. 304 (2003), 401–419.

[19] G. Stockman. Presentation: The game of nim on graphs: NimG (2004). Available at
http://www.aladdin.cs.cmu.edu/reu/mini_probes/papers/final_stockman.ppt.

[20] W. A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907), 199–202.

(E. Duchêne)

Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France

eric.duchene@univ-lyon1.fr

(G. Renault)
Université Bordeaux 1, LaBRI, France

gabriel.renault@labri.fr

