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APPROXIMATION OF THE VENTCEL PROBLEM,

FIRST NUMERICAL RESULTS

CHARLES PIERRE

Abstract. Report on the numerical approximation of the Ventcel
problem. The Ventcel problem is a 3D eigenvalue problem involving
a surface differential operator on the domain boundary: the Laplace
Beltrami operator.
We present in the first section the problem statement together with
its finite element approximation, the code machinery used for its res-
olution is also presented here.
The last section presents the obtained numerical results. These re-
sults are quite unexpected for us. Either super-converging for P

1

Lagrange finite elements or under converging for P 2 and P
3.

The remaining sections 2 and 3 provide numerical results either for
the classical Laplace or for the Laplace Beltrami operator numerical
approximation. These examples being aimed to validate the code
implementation.

1. Introduction

We present in this report an algorithm for solving the Ventcel problem
[7, 8]. The code is detailed and validated considering various classical
test cases. The resolution of the Ventcel problem on the unit ball is used
as a test case to provide a convergence numerical analysis of the method.

1.1. The Ventcel problem. The Ventcel problem is the following eigen-
value problem. Let Ω denote some bounded smooth domain in R

3. We
search for the eigenvalues λ and for the associated eigenfunctions u sat-
isfying,

(1) ∆u = 0 on Ω, ∆Bu− ∂nu+ λu = 0 on ∂Ω.

Here n denotes the outward unit normal to ∂Ω and so ∂nu the derivative
of u on the normal direction to the boundary and ∆Bu stands for the
surface Laplacian of u on the boundary ∂Ω, i.e. the Laplace Beltrami
operator.

This problem has a simple weak formulation (2). Multiplying ∆u by a
test function v and integrating over Ω and assuming sufficient regularity
we get by integration by part,∫

Ω

∇u · ∇vdx−

∫
∂Ω

∂nu vds = 0.

By substituting the boundary condition in (1),∫
Ω

∇u · ∇vdx−

∫
∂Ω

(∆Bu+ λu) vds.
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We obtain by a second integration by part on the boundary ∂Ω,

(2)

∫
Ω

∇u · ∇vdx+

∫
∂Ω

∇Tu · ∇Tvds = λ

∫
∂Ω

uvds,

with ∇Tu the tangential gradient of u on ∂Ω, i.e. ∇Tu = ∇u− ∂nu n.
On the Hilbert space V = {u ∈ H1(Ω), ∇Tu ∈ L2(∂Ω)} the classical

theory applies as exposed in [3] providing an orthogonal set of eigen-
functions associated with the eigenvalues 0 = λ0 < λ1 ≤ . . . . The first
eigenvalues λ0 = 0 is associated with the (one dimensional) eigenspace
of the constants. We will focus on the approximation of λ1.

The following discretisation of (2) will be used. Let M be some tetra-
hedral mesh of Ω. We will denote by Ωh the computation domain (made
of all tetrahedra in the mesh M). We consider the classical Lagrange
finite element spaces Vh = P k(M). We search for u ∈ Vh and λ ∈ R so
that, for all v ∈ Vh we have:

(3)

∫
Ωh

∇u · ∇vdx+

∫
∂Ωh

∇Tu · ∇Tvds = λ

∫
∂Ωh

uhvds.

Considering a canonical bases of Vh we identify uh with its vectorial
representation U ∈ R

N , with N the number of degrees of freedom (the
dimension of Vh). We then consider the matrices S3, S2 and M2 (mass
and stiffness matrices) representing the products on Vh × Vh in (3):

(u, v) 7→

∫
Ωh

∇u · ∇vdx = UTS3V,(4)

(u, v) 7→

∫
∂Ωh

∇Tu · ∇Tvds = UTS2V,(5)

(u, v) 7→

∫
∂Ωh

uvds = UTM2V.(6)

Problem (3) under matricial form is the following generalized eigen-
value problem,

(7) (S3 + S2)U = λM2U.

The matrix S3 + S2 is symmetric positive semi definite (with a one
dimensional kernel made of the constant vectors U = c representing
the constant functions). The matrix M2 also is symmetric positive semi
definite but with a high dimensional kernel made of all functions in Vh

vanishing on the boundary ∂Ωh.

1.2. Implementation. A python code is used for the numerical resolu-
tion of (7). The assembling of the finite element matrices is made using
Getfem++ 1.
The iterative Lanczos method (see e.g. Saad [6]) is used to solve the
eigenvalue problem. Because we are interested in the smallest eigen-
values and since the matrix S3 + S2 is only semi definite, we consider
the shifted invert variant of this method. Actually the shifted matrix
S3 + S2 − σM2 is symmetric positive definite for any negative value of
the shift parameter σ, fixed to σ = −1 here. In practice the ARPACK

1Getfem++: an open-source finite element library,
http://download.gna.org/getfem/html/homepage/index.html
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library2 has been used for this.
Each Lanczos algorithm iteration requires two kind of advanced opera-
tions: solving the linear system (S3 + S2 − M2)X = Y (shifted system
matrix) and performing matrix-vector multiplication X 7→ M2X. These
two operations are executed using the PETSc library3.
The largest amount of CPU consumption is devoted to the linear system
resolution. A conjugate gradient algorithm is used with an incomplete
Cholesky (fill in 3) preconditioning, see e.g. Saad [5] for precisions. The
system is solved with a tolerance of 10−11.
The residual at end of the Lanczos algorithm is asked to be smaller than
10−10. This residual is algebraic, we additionally re-computed an L2

residual: denoting λi the ith eigenvalue and Ui the associated eigenvec-
tor, the L2 residual is defined as,

‖(S3 + S2)Ui − λiM2Ui‖L2

‖Ui‖L2

,

assuming the identification Vh ≃ R
N . This functional residual is also

controlled to remain below 10−9.
Eventually all meshes have been built with the software GMsh4.

2. Code validation

We consider here the resolution of several classical problems aimed
to validate the code implementation: matrix assembling, eigenproblem
solver and error analysis. On each example our purpose is to recover the
correct method’s convergence rate as predicted by classical theories.

2.1. Matrix assembling validation. The three matrices S3, S2 and
M2 associated with the products (4), (5) and (6) need to be computed.
The matrix S3 is a classical stiffness matrix on the three dimensional
domain Ωh. Conversely the matrices S2 andM2 are not as classical. They
correspond to two dimensional stiffness and mass matrices but associated
with the non flat domain ∂Ωh.
Remark nevertheless that the assembling of S2 (and similarly for M2)
consist of a loop over all element faces E of the mesh M included in
∂Ωh. Precisely the elements of M are tetrahedra, their faces E thus are
triangles and these triangles subsets of ∂Ωh form a partition of ∂Ωh. On
every such triangle E is assembled the local matrix corresponding to the
product,

(u, v) 7→

∫
E

∇Tu · ∇Tvds =

∫
E

∇u|E · ∇v|Eds.

On one hand E is an affine deformation of the reference triangle in di-
mension 2 and on the other hand u|E, v|E ∈ P k(E). Therefore these local
matrices indeed are local matrices for a classical 2 dimensional stiffness
matrix. As a result the assembling of S2 and similarly of M2 do not need
particular software but only a 2D finite element library.

2ARPACK, Arnoldi Package, http://www.caam.rice.edu/software/ARPACK/
3PETSc, Portable, Extensible Toolkit for Scientific Computation,

http://www.mcs.anl.gov/petsc/
4Gmsh: a three-dimensional finite element mesh generator, http://geuz.org/gmsh/
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Taking the previous commentary into account, the validation for the
assembling of S3, S2 and M2 can be performed on flat domains ω ⊂ R

d,
d = 2, 3. We fix ω = (0, 1)d and solve the classical elliptic problem,

−∆u+ u = f on ω and ∂nu = 0 on ∂ω,

for the right hand side f = (2π2 + 1) cos(πx) cos(πy) and f = (3π2 +
1) cos(πx) cos(πy) cos(πz) in dimension 2 and 3 respectively. The associ-
ated exact solutions are u = cos(πx) cos(πy) and u = cos(πx) cos(πy) cos(πz)
respectively. The numerical solution uh is given by,

SdUh +MdUh = MdF , d = 2, 3.

We analyze the relative errors between u and uh both in L2-norm and
H1-semi norm,

eL2 =
‖u− uh‖L2(ω)

‖u‖L2(ω)

, eH1 =
‖u− uh‖H1(ω)

‖u‖H1(ω)

.

considering a series of refined meshes and using the P k(ω) finite element
method for k = 1, 2, 3, we recovered a k (resp. k+1) order of convergence
in H1 (resp. L2) norm as presented in table 1. These results are in
complete agreement with the classical theory (see e.g. Ciarlet [2]) and
this test fully validates a correct assembling of the desired matrices.

d = 2 P 1 P 2 P 3

eH1 1.0 2.1 3.0
eL2 2.0 3.1 4.0

d = 3 P 1 P 2 P 3

eH1 1.0 1.9 2.8
eL2 1.9 3.0 4.0

Table 1. Computed orders of convergence for problem (2.1)

2.2. Eigenvalue problem solver validation. We test the eigenvalue
problem solver described in section 1.2 considering the Laplace eigen-
problem,

(8) −∆u = λu on ω and ∂nu = 0 on ∂ω,

on the same square or cubic geometry ω as in the previous section.
The first eigenvalue is λ0 = 0 with eigenspace the constant functions.
The first non-zero eigenvalue is λ1 = π2 with multiplicity d and with
eigenspace E1 = Span (cos(πx), cos(πy)) or E1 = Span (cos(πx), cos(πy), cos(πz))
for d = 2 or d = 3.

According to the dimension d the numerical approximation for (8) is,

SdUh = λhMdUh.

The first non-zero numerical eigenvalue λh,1 is computed to analyze the
relative error,

eλ =
|λh,1 − λ1|

λ1

.

One associated eigenvector Uh,1 of L
2-norm equal to 1 (for normalization)

is considered to compute the following H1 and L2 errors,

eL2 = ‖uh.1 − puh,1‖L2(ω) eH1 = ‖uh,1 − puh,1‖H1(ω),

where p is the L2-orthogonal projection onto the eigenspace E1.
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d = 2 P 1 P 2 P 3

eH1 1.0 2.0 3.1
eL2 2.0 3.0 4.1
eλ 2.0 4.2 5.9

d = 3 P 1 P 2 P 3

eH1 1.0 2.0 2.7
eL2 1.9 3.0 3.8
eλ 1.95 4.0 5.9

Table 2. Computed orders of convergence for problem (8)

The order of convergence is computed considering a series of refined
meshes and several Lagrange finite element spaces P k(ω), they are re-
ported in table 2. They are in full agreement with the theoretical orders
presented e.g. in Babušhka and Osborn [1] : using P k finite elements
provides a convergence of order k for eH1 , k + 1 for eL2 and 2k for eλ.

3. Curved surface effects

In this section we illustrate the influence of computing the two dimen-
sional stiffness and mass matrices S2 and M2. We consider again the
geometrical situation of the Ventcel problem in section 1.1: Ω is an open
smooth domain in R

3 with boundary Γ. M is a tetrahedral mesh of Ω,
Ωh is the domain of the mesh M, i.e. the union of its element. The
matrices S2 and M2 are computed on Γh = ∂Ωh. Note that Γh itself is
the domain of a triangular mesh M2 of Γ, the element of M2 are the
boundary faces of M.
As developed in section 2.1, the assembling of S2 and M2 on the curved
domain Γh (i.e. embedded in R

3) is essentially the same as their assem-
bling in a flat domain (a two dimensional domain in R

2). We however
check here that the third dimension z is taken into account for this as-
sembling.

3.1. Laplace Beltrami problem. We will consider the elliptic problem

(9) −∆Bu+ u = f on Γ,

no boundary condition are needed here (Γ has no boundary!). This prob-
lem is well posed : existence and uniqueness of a solution u ∈ H1(Γ) for
any f ∈ L2(Γ).
The finite element approximation of (9) has been theorized by Demlow
in [4]. We need some notations. To x ∈ Γ is associated its unit outer
normal n(x). We consider a tubular neighborhood ω of Γ so that for all
x ∈ ω, there exists a unique p(x) ∈ Γ so that x − p(x) = λ(x)n(p(x))
(p(x) is an orthogonal projection of x on Γ) and so that the segment
[x, p(x)] ⊂ ω. A function f : Γ −→ R can be extended to a function
f e : ω −→ R by: f e(x) = f(p(x)). We assume that Γh ⊂ ω. A function
f : Γ −→ R can then be lifted to a function f l : Γh −→ R by f l = f e

|Γh
.

The lift operation allows to compare the exact solution u defined on Γ
with a numerical approximation uh defined on Γh. Note that it would
have also been possible to lift uh to a function ul

h on Γ by ul
h(p(x)) =

uh(x). Demlow showed in [4] that analyzing the error in terms of ul −uh

(lift of u to Γh) or in terms of u− ul
h (lift of uh to Γ) are equivalent, we

choose the first strategy for its practical convenience.
Equation (9) is discretised on Vh = P k(M2) as,

(10) (S2 +M2)Uh = M2F
l.



6 C. PIERRE

The L2 and H1 approximation errors are alternatively defined as,

eL2 = ‖ul − uh‖L2(Γh) , eH1 = ‖ul − uh‖H1(Γh).

The convergence properties of this scheme are quite different from those
on flat domains illustrated in section 2.1. The reason for this is analyzed
in Demlow [4]: the curved surface Γ is approximated by the surface Γh

that is the boundary of a polyhedral and thus piecewise flat (made of
triangles). Approximating a curved surface by a (piecewise) linear one
induces upper bound errors for (9),

eH1 = O(hk + h2) , eL2 = O(hk+1 + h2),

for P k finite elements. Therefore a saturation of the convergence order
to 2 is predicted.

The numerical scheme (10) has been implemented for the sphere. In
this case the projection p is very simple, p(x) = x/||x|| on ω = R

3 −{0}.
The right hand side to (9) is set to f = x(2 + x) exp(x) so that the
exact solution is u = exp(x). The results are reported in table 3. The
saturation of the convergence order to h2 is clearly seen, in agreement
with Demlow convergence analysis [4].

P 1 P 2 P 3

eH1 1.1 2.0 2.0
eL2 2.0 2.0 2.0

P 1 P 2 P 3

eH1 1.1 2.2 2.1
eL2 2.0 ≃ 2.2 ≃ 2.2
eλ 2.0 2.0 2.0

Table 3. Computed orders of convergence for the Laplace
Beltrami problem (9) (left) and for the Laplace Beltrami
eigenvalue problem (11).

3.2. Laplace Beltrami eigenvalue problem. The Laplace Beltrami
eigenproblem is considered on the sphere,

(11) −∆Bu = λu on Γ.

Its discretisation takes the form: find Uh ∈ Vh = P k(Γh) and λh ∈ R so
that,

S2Uh = λhM2Uh.

Problem (11) has λ0 = 0 for eigenvalue associated to the eigenspace of
constant functions. The first non-zero eigenvalue is λ1 = 2 of multiplicity
3 with eigenspace E1 = Span(x, y, z) the restriction of the linear functions
in R

3 to the sphere.
The space E1 is lifted to Γh as in the previous section. The lifted

space El
i is the vector space of functions of the form X = (x, y, z) 7→

(αx + βy + δz)/||X|| with ||X|| = (x2 + y2 + z2)1/2. The orthogonal
projector p from Vh onto El

1 is considered to define the numerical errors,

eλ =
|λh,1 − λ1|

λ1

, eL2 =
‖uh,1 − puh,1‖L2(Γh)

‖uh,1‖L2(Γh)

and eH1 =
‖uh,1 − puh,1‖H1(Γh)

‖uh,1‖L2(Γh)

,

on the first computed non zero eigenvalue λh,1 and associated eigenfunc-
tion uh,1/‖uh,1‖L2(Γh) normalized in L2-norm.

The results are reported in table 3 on the right. The convergence
in H1-norm is in O(hk + h2) for P k Lagrange finite element which is
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consistent with the previous subsection assertions. We observed order
2 convergence in L2-norm with a good accuracy for P 1 finite element.
The same expected order 2 for P 2 and P 3 finite element is harder to
obtain (the measurement of the order being for these two cases rather
unstable). We instead rather observed a 2.2 order of convergence with
a low accuracy. It is likely that we do not have super convergence here
but simply a lack of accuracy. The eigenvalue convergence clearly shows
a saturation to order 2 convergence. In section 2.2 we quote the analysis
of Babuška and Osborn [1] who showed an order 2k convergence for
the eigenvalues with k the convergence order of the eigenfunctions in
H1-norm. This analysis does not apply here since it is restricted to
Galerkin type approximations with Vh ⊂ V . In the present case this
is no longer true because V and Vh are function spaces associated to
different domains, Γ and Γh respectively.

Conclusion. The numerical results showed in this section together
with the theoretical analysis of Demlow [4] show that one cannot get
better than an order 2 convergence when considering a piecewise affine
mesh Γh of the curved boundary Γ of the domain Ω. This point also was
addressed in [4] where piecewise polynomial interpolation of order p Γp

h

of Γ are considered providing now a saturation of the convergence order
to p+ 1.

4. The Ventcel problem numerical convergence

P 1 P 2 P 3

eH1 1.6 1.5 1.5
eL2 2.4 2.6 2.5
eλ 2.1 2.1 2.0

Table 4. Convergence orders for the Ventcel problem

We finally analyze the numerical approximation of the Ventcel problem
exposed in section 1.1 using the numerical scheme (7). The domain Ω
is set to the unit ball. The first non-zero eigenvalue now is λ1 = 3 with
multiplicity 3. The associated eigenspace also is E1 = Span(x, y, z) the
restriction of the linear functions in R

3 to the ball.
The numerical domain Ωh here is a subset (by convexity) of Ω. Therefore
functions f on Ω simply are lifted to functions f l on Ωh by restriction:
f l = f|Ωh

. With the orthogonal projection p : Vh −→ El
1 we define the

numerical errors,

eλ =
|λh,1 − λ1|

λ1

, eL2 =
‖uh,1 − puh,1‖L2(Ωh)

‖uh,1‖L2(Ωh)

and eH1 =
‖uh,1 − puh,1‖H1(Ωh)

‖uh,1‖L2(Ωh)

,

on the first computed non zero eigenvalue λh,1 and associated eigenfunc-
tion uh,1/‖uh,1‖L2(Ωh) normalized in L2-norm.

Numerical results are reported in table 4 for Vh = P k(Ω) and k = 1, 2
and 3.
The convergence towards the first non-zero eigenvalue l1 displays the
expected order 2 of convergence. All other results are quite unexpected.
Firstly for the convergence towards the first eigenfunction u1. The P 1

scheme is over-converging in H1-norm (order 1.5 whereas order 1 was
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Figure 1. Convergence for the Ventcel problem in loga-
rithmic scale. Above, errors on the first computed eigen-
function uh,1 in H1 (left) and L2 norms. Below, errors on
the first computed eigenvalue λ1.

expected). Meanwhile the P 2 and P 3 schemes are under-converging in
H1-norm (order 1.5 whereas order 2 was expected). The three schemes
are over-converging in L2-norm, displaying a convergence order of 2.5
when order 2 was expected.
The error behaviors with respect to the mesh size are depicted on figure
1. On top of the previous remarks, one supplementary abnormality is
expressed here. On the three plots the P 1 scheme is the most accurate
one. The P 3 scheme being moreover by far the worst for the L2 error eL2

and for the error on the eigenvalue.
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