
HAL Id: hal-00985670
https://hal.science/hal-00985670v1

Submitted on 30 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An automated black box approach for web vulnerability
identification and attack scenario generation

Rim Akrout, Eric Alata, Mohamed Kaâniche, Vincent Nicomette

To cite this version:
Rim Akrout, Eric Alata, Mohamed Kaâniche, Vincent Nicomette. An automated black box approach
for web vulnerability identification and attack scenario generation. Journal of the Brazilian Computer
Society, 2014, 20 (1), pp.1–16. �10.1186/1678-4804-20-4�. �hal-00985670�

https://hal.science/hal-00985670v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

An automated black box approach for web vulnerabilities
identification and attack scenario generation

Rim Akrout · Eric Alata · Mohamed Kaaniche · Vincent Nicomette

the date of receipt and acceptance should be inserted later

Abstract Web applications have become increasingly

vulnerable and exposed to malicious attacks that could

affect essential properties of information systems such

as confidentiality, integrity or availability. To cope with

these threats, it is necessary to develop efficient security

protection mechanisms and assessment techniques (fire-

wall, intrusion detection system, Web scanner, etc.).

This paper presents a new methodology, based on

Web pages clustering techniques, that is aimed at iden-

tifying the vulnerabilities of a Web application follow-

ing a black box analysis of the target application. Each

identified vulnerability is actually exploited to ensure

that it does not correspond to a false positive. The pro-

posed approach can also highlight different potential
attack scenarios including the exploitation of several
successive vulnerabilities, taking into account explic-

itly the dependencies between these vulnerabilities. We

have focused in particular on code injection vulnerabili-

ties, such as SQL injections. The proposed methodology

led to the development of a newWeb vulnerability scan-

ner that has been validated experimentally on several
examples of vulnerable applications.

Keywords Web application · Vulnerabilities ·

Attacks · Evaluation · Web Scanner

1 Introduction

Web application vulnerabilities have become, in the re-

cent years, a major threat to computer systems secu-

rity. This is illustrated in e.g., the IBM X-force 2012

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse
Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

E-mail: rakrout, ealata, kaaniche, nicomett@laas.fr

mid-year trend and risk report which shows that Web

application vulnerabilities including SQL injections and

Cross-Site Scripting occupy the top highest positions in

computer threats [1]. This situation can be explained by

the increase in complexity of Web technologies, by the

frequent evolution of these technologies, by the short

development cycles of Web applications during which

testing and validation activities are limited, and also,

in some cases, by the lack of security skills and culture

of the developers.

In this paper, we propose a novel methodology that
allows to automatically identify residual vulnerabilities

of a Web application from the analysis of the targeted

application, following a black box approach. The pro-

posed approach can automatically identify and exploit

vulnerabilities. It is also designed to highlight potential

attack scenarios including the exploitation of several

successive vulnerabilities that are not necessarily inde-
pendent. The identification of these scenarios is based
on the dynamic crawling of the application, resulting
in the creation of a navigation graph that describes the

different possibilities for a user to activate the applica-

tion and associated vulnerabilities. This graph explic-

itly represents the dependencies between the vulnerabil-

ities of the site and thereafter various attack scenarios.
To validate our approach, we developed a new vulnera-
bility scanner, that has been validated on different vul-

nerable applications and compared experimentally with

other existing vulnerability scanners.

This paper extends the results presented in [2] and

[3]. It is structured into 7 sections. Section 2 discusses

related work focusing on the analysis of the vulnerabil-

ity detection algorithm used by several well-known free-

ware vulnerability scanners, and presents some weak-

nesses of these algorithms. Section 3 presents our clus-

tering algorithm for detecting Web application vulnera-

2 Rim Akrout et al.

bilities. Section 4 presents an overview of our approach

for constructing the graph. The details of the algorithm

are outlined in section 5. We present in section 6 the ex-

periments performed in order to validate our approach

and assess the efficiency of our scanner. Finally section

7 concludes this paper and discusses future work.

2 Background and Related Work

Most frequent attacks on Web servers include SQL in-

jection attacks (for Web servers connected to a SQL

database) and code injection attacks (Flash, Javascript,
etc., carried out through so-called Cross Site Scripting

or XSS attacks). These attacks generally correspond to

the exploitation of the same kind of vulnerability re-

lated to the lack of sanitization of URL parameters or

of HTML form inputs. In the following, we will focus

on SQL injection attacks, without loss of generality.

To check whether SQL injection attacks are possi-
ble, the vulnerability scanners send specially crafted re-

quests and analyze the responses returned by the server.

A server may respond with a rejection page or with

an execution page. A rejection page is returned by the

server as a consequence of an error while processing the

request. An execution page is returned by the server as

a consequence of a successful execution of the request.
This page may correspond to the “normal” scenario,
i.e., in the case of a legitimate use of the Web site,

but may also result from a successful exploitation of

an injection attack. These latter requests are those we

consider in this paper. In particular, our objective is

to identify the vulnerabilities that can be successfully

exploited by the attackers. For instance, the success-

ful exploitation of a SQL injection vulnerability in a

login form may lead to bypass an authentication, and

the successful exploitation of a file include vulnerabil-

ity on a search form may lead to display extra data like

/etc/passwd file content. In order to identify the vul-

nerabilities of a Web site, the scanners generally send

specially crafted requests via the identified injection

points allowing them to determine whether the input

parameters submitted to the target system are sani-

tized or not. An injection point is a piece of a Web

page into which a code can be injected: a parameter in

the URL or a field of a form, etc. Overall, the identifica-

tion of potential vulnerabilities is generally based on the
characterization of responses of a Web server to crafted
requests sent via the injection points and the ability to

distinguish rejection pages and execution pages.

The issue is thus the analysis of the responses to

determine if they actually correspond to rejection or
execution pages. Two main approaches can be identi-

fied based on the analysis of related work on this topic.

These approaches are discussed in the next section. In

the following, we denote as false positive the fact that a
vulnerability scanner detects a vulnerability in a Web

page while this vulnerability does not exist. A false neg-

ative occurs when the vulnerability scanner does not

detect a vulnerability in a Web page while it actually

exists.
Two main approaches exist to detect the presence

of a vulnerability in a Web application. The first one

relies on an error pattern matching algorithm and is

presented in section 2.1. The second one relies on the

analysis of similarities between the pages returned by

the server and is presented in section 2.2. The last sec-

tion 2.3 proposes a discussion regarding the limits of

these approaches.

2.1 Error pattern matching approach

To identify SQL injections, the error pattern match-

ing approach consists in sending specially crafted re-

quests to the application and looking for specific pat-

terns in the responses, e.g., database error messages.

The basic idea is that the presence of an SQL error

message in a HTML response page means that the cor-

responding request has not been sanitized by the appli-
cation. Therefore, the fact that this request has been
sent unchanged to the SQL server reveals the presence

of a vulnerability. Scanners such as W3af1 (sqli mod-

ule), Wapiti2 and Secubat [4] adopt such approach.

As an example, to detect injection vulnerabilities in
authentication forms, the sqli module of W3af, sends

three requests based on the SQL injection: d’z"0 (or
d%2Cz%220 encoded in ASCII). The three correspond-

ing responses are then analyzed. If they include SQL

error messages (e.g. Mysql and supplied argument

is not a valid Mysql), W3af informs the user that

the application is vulnerable.

The list of keywords adopted by Secubat for the er-
ror pattern matching approach is presented in [4]. This

list, derived by analyzing response pages of vulnerable

Web sites, is aimed at covering a wide range of error re-

ponses and a variety of database servers. A confidence

factor that measures the level of confidence that the at-

tacked Web form is vulnerable is also assigned to each

keyword.

2.2 Similarity approach

This approach relies on three assumptions: 1) execution

and rejection pages are different, 2) it is easy to build

1 http://w3af.sourceforge.net
2 http://wapiti.sourceforge.net

An automated black box approach for web vulnerabilities identification and attack scenario generation 3

requests that generate rejection pages (by generating

random or syntactically invalid requests for instance)
and 3) it is difficult to build requests including injec-
tion attacks that actually generate execution pages (i.e.,

requests that successfully exploit a vulnerability). The
principle of the approach consists in sending different
crafted requests to the Web application and compar-

ing the similarity of the corresponding responses using
a textual distance, in order to identify rejection pages

among the response pages (i.e., pages that highlight

non-sanitized inputs).

Let us consider as an example the approach adopted

by Skipfish3 for detecting SQL injection vulnerabili-

ties. Three requests are sent to the Web application

(A- ’", B- \’\" and C- \\’\\"). The responses are

compared two by two. According to Skipfish, a vul-
nerability is present if both responses associated to B

and C are not similar to the response associated to A.

The similarity test uses a distance based on the fre-

quency of the words in the response pages.

The algorithm presented in [5] is also based on the

similarity approach. It differs from other implementa-

tions in the additional use of the error pattern matching

approach at a first step to guide the classification. The

similarity approach is used to address the uncertainty

that arises about the presence or absence of a vulner-
ability when an injection does not generate an error
message.

2.3 Discussion and Contributions

The assumption used by the error pattern matching

approach is debatable. Indeed, error messages that are

included in HTML response pages do not necessarily

come from the database server itself. A database re-

lated error message may also has been generated by the

application. Moreover, even if the message is actually

generated by the database server, this is not sufficient

to conclude when receiving this message, that an SQL

injection is possible. Indeed, this message means that,

for this particular request, the inputs have not been

sanitized. But it does not mean neither that the server

does not sanitize all the SQL requests nor that the non-

sanitized input can be chosen in order to successfully

exploit any vulnerability.

Regarding the similarity approach, it is easier to

generate random or syntactically invalid requests to ob-

tain rejection pages than to send valid injection attacks
to obtain execution pages. Since the main assumption is

based on the observation that the content of a rejection

3 http://code.google.com/p/skipfish

page is generally different from the content of an exe-

cution page, it is important to ensure a wide coverage
of the different types of rejection pages that could be

generated by the application. This can be achieved by

generating a large number of requests aimed at activat-

ing different types of error pages. However, the existing

implementations of this approach generate too few re-

quests. For instance, Skipfish uses only 3 requests.

Also, as in any classification problem, the choice of

the distance is very important. The one used in Skipfish

does not take into account the order of the words in a

text. However, this order generally defines the seman-

tics of the page. Thus it is important to take it into ac-

count to assess the similarity, as performed in [5] with

a text similarity distance. As an example, the two fol-

lowing pages use the same words in a different order,

but they have different semantics:

- You are authenticated, you have not entered a

wrong login.

- You are not authenticated, you have entered a

wrong login.

The algorithm presented in section 3 builds on some
of the concepts of the similarity approach and addresses

the issues raised in the discussion above. In particular,

it allows: i) the generation of a large number of requests,

that can be tuned by the user, to activate different re-

jection pages returned by the application, ii) the auto-

matic generation of various types of specially crafted

requests using a grammar and iii) the automatic clus-

tering of the corresponding HTML pages returned by

the Web server to distinguish between rejection pages

and execution pages and automatically identify success-

ful injections. This algorithm is also designed to identify

and successfully exploit various types of vulnerabilities.

Besides SQL injections, the proposed approach can ad-

dress XPATH, OS Commanding and File Include vul-

nerabilities. While our work shares some of the ideas

and objectives presented in [5], we follow different ap-

proaches. For example, the clustering approach which

is the core of our algorithm is not used in [5]. They use

a different technique combining error pattern match-

ing and the similarity analysis of application response

pages. Also, their approach is firstly based on error

pattern matching and hence shares the same concerns

raised above.

3 Html pages clustering for Web vulnerabilities

detection

The approach presented in this section seeks to achieve

the automated detection of different types of Web vul-

nerabilities, corresponding to SQL injection attacks, Os-

4 Rim Akrout et al.

Commanding, File Include and XPath 4. It is based on

the automatic classification of responses returned by
the Web server using data clustering techniques and
identifies queries that are able to successfully exploit

vulnerabilities.

3.1 Principles

In the following, let us take the example of a SQL in-
jection in an authentication form. Our goal is to iden-

tify, among several SQL injections, those which allow an
attacker to bypass the authentication. The main chal-
lenge is the automation of this process. In the follow-

ing, we present a method which intends to reduce false-

negatives and false-positives in comparison with exist-

ing solutions presented in the previous section. Our ap-

proach relies on the following assumptions: a) the con-
tent of an execution page is significantly different from

the content of a rejection page, b) two rejection pages

may be different from each other and c) two execution

pages may also be different from each other even for

the same class of inputs.

In the login page that we consider, responses to

valid requests include welcome messages and invalid in-

put error messages. Responses to invalid requests in-

clude PHP or SQL error messages. The essential point

is the existence of differences between execution pages
and rejection pages, and, more precisely, between wel-

come messages and invalid input error messages, and

between PHP and SQL error messages. Our approach

focuses on the analysis of these differences. The objec-

tive is to identify, among several responses, those which

correspond to execution pages generated through syn-

tactically valid requests. In other words, we learn the
behavior of the application based on the clustering of

Web server response pages that are similar enough.

The entry point of our algorithm is a set of ini-
tial requests that have a common property: it is easy

to classify the associated responses (either as execution

page or rejection page). Obviously, it is easier to gen-

erate requests which lead to rejection pages or execu-

tion pages corresponding to invalid input error messages

than requests which lead to execution pages associated
to welcome messages. To generate the former, one can,

for example, use random usernames and passwords to
fill the authentication form. One can also easily gener-
ate requests which lead to rejection pages associated to

PHP or SQL error messages.

In our proposal, we distinguish three sets of requests:

4 See [9] for a more detailed description of these vulnera-
bilities

Rr is the set of requests generated from words ran-

domly chosen from the list [a-zA-Z0-9]+. They are
very likely to generate rejection pages or execution

pages associated to invalid input error messages. For

example:

http://address/directory/page.php?

login=ABCDEF&pass=ABCDEF

Rii is the set of syntactically incorrect SQL injection

requests that are inappropriate for the given injec-

tion point. They are constructed to produce a syntax
error in the SQL query sent to the SQL server by

the HTTP server. Usually, these requests are com-
posed of an odd number of quotes. They are also
very likely to generate rejection pages. For example:

http://address/directory/page.php?

login=’’’&pass=’’’

Rvi is the set of syntactically correct SQL injection re-

quests that are constructed to generate execution

pages in the presence of vulnerabilities, but they

might as well generate rejection pages in the absence
of vulnerabilities. For example:

http://address/directory/page.php?

login=test&pass=’ or ’1’=’1

The main issue is to determine whether the response

is a rejection page or an execution page. To do so,

these responses are compared to those associated to

sets Rr and Rii.

Let us note Sr, Sii and Svi the responses associated

to Rr, Rii and Rvi respectively. The principle of our al-
gorithm is then as follows: Rvi requests whose responses

are not similar to any of the responses from Sii and Sr

are considered valid SQL injections. To assess the simi-

larity between the pages returned by different requests,

we use a classification technique based on the distance

presented in the next subsection.

3.2 Distance

To analyze the similarity between two HTML pages, we

need a distance for assessing the difference between two

strings. As discussed in section 2.3, the order of words

in a text could be relevant. In fact, the same words in a

different order can completely change the semantics of

the response. Thus, to compute the distance between

two pages, we use a normalized version of the Leven-

shtein distance. Let a and b be two responses of length

n and m. We also denote ai and bj the i-th character

in a and the j-th character in b. The distance is defined

in figure 1.

Generally, clustering techniques are based on two

different strategies. The first is driven by the number

An automated black box approach for web vulnerabilities identification and attack scenario generation 5

diff(ai, bj) =

n− i+m− j i = n or j = m

diff(ai+1, bj+1) ai = bj , i < n, j < m

1 + min(diff(ai+1, bj), diff(ai, bj+1))
ai 6= bj , i < n, j < m

d(a, b) =
diff(a1, b1)

n+m

Fig. 1 Distance for clustering

of clusters, if it is known a priori. It starts by consid-
ering a single cluster containing all requests and divide
it progressively, relying on distances, until the desired

number of clusters. The second technique is used in case

the number of clusters is not known a priori. It consists

in grouping in a same cluster the requests whose pair-

wise distance is below a threshold. In our approach, the
number of clusters is not determined a priori, and so we
use the second strategy, called hierarchical clustering
[11], which requires the choice of a threshold.

The threshold for grouping queries can vary from

an injection point to another. Indeed, it depends on the
size of the responses and the amount of data that differ

between two responses for the same type of requests.

Also, this threshold must be adapted to each Web ap-

plication. In our approach, the threshold is defined em-

pirically by the shortest distance between: i) the max-

imum distance between the responses belonging to Sr

and ii) the maximum distance between the responses

belonging to Sii .

3.3 Requests generator

One important aspect of the proposed algorithm is its

ability to identify the presence of a vulnerability in an

injection point based on multiple responses generated

from this injection point. To improve the accuracy of

the results, we need to generate a large number of re-

sponses, allowing to achieve a high coverage of the re-

sponse domain. Note that other approaches are often

based on a small number of responses (for example, 3

for Skipfish).

One possible way to generate different types of re-
sponses (and associated queries) is to record in a static

file, queries obtained from security experts (similar to

e.g., to SQL sheets [12]). A more flexible approach would

be to define a grammar to automate this process. Such

an approach can be compared to some extent to fuzzing

techniques [13]. In the following, we outline the gram-

mar that we have defined to automate the generation

of Rr, Rii and Rvi requests.

On the Web server side, most of the time, a SQL

query is created by concatenating SQL terms and pa-

rameters sent by the client. For example, the following

PHP script deals with the authentication of a user given
the username and password sent by the client:

$query = "SELECT id FROM users WHERE

name=’$name’ AND pass=’$pass’";

Given a semantically valid (user name, password)

pair, the created SQL query is considered syntactically

valid. Also, the created query associated to a (user

name, password) pair generated based on a dictionary

attack is considered syntactically valid, even if the au-

thentication failed. From this observation, a SQL injec-

tion is defined as a string that leads to a syntactically

valid SQL query while changing the semantics of this

generated SQL query. In many situations, a SQL injec-
tion is relevant if it leads to a tautology in the WHERE
clause of the forged SQL query. From the previous ex-

ample, an example of such a SQL injection is:

name="’ OR 1=1 OR string=’"

Therefore, the grammar of SQL injections is just a

part of the grammar of SQL queries. The advantage of

a grammar is that it enables to easily generate as many

SQL injections as needed. We can apply the same rea-

soning to the set of randomly generated words (Rr),

and to the set of SQL injections that are inappropriate

for the given injection point (Rii). A tiny grammar for

the set Rvi (i.e. the set of SQL injection requests that

are constructed in order to generate execution pages)

can be expressed using BNF5 notation as follows:

INJECTION := WORD’ POR TAUTAG [’ POR TAUTAG]

| WORD" POR TAUTAG [" POR TAUTAG]

POR := or /) POR (

TAUTAG := hex(’A’)=’41

| ’1’=’1

| ’[f-m]’ between ’[a-e]’ and ’[n-z]’

WORD := [0-9a-zA-A]*

...

This grammar generates different variations of SQL

injection attacks. It consists in inserting a tautology in-
side an expression evaluated by a WHERE clause, in

such a way that this expression becomes a tautology
itself. To inject the tautology, the initial expression is
splitted into several pieces. The TAUTAG rules are exam-

ples of such tautologies and the INJECTION rules express

how the tautology is included in an initial expression,
i) by closing the expression with delimiter characters

(’, ", or)), ii) by inserting the tautology (through a
disjunction) and iii) by opening a new expression using

the same delimiter characters.

5 BNF stands for Backus Normal Form. It is a notation for
grammar writing.

6 Rim Akrout et al.

3.4 Extension to other vulnerability classes

The approach proposed for SQL injection vulnerabil-
ity detection can be generalized. In fact, many attacks

have the same behavior: the client sends a string which

changes the semantics of the forged query. Depending

on the context, the forged query is sent to a specific

component in Web server-side such as the XPath en-

gine, operating system, etc. The names of the corre-
sponding injection attacks are derived from the name of
this component leading to XPATH injection, Os Com-

manding, etc. Thus, the clustering algorithm that we

have illustrated using the example of SQL injection in

the previous section can be also used for these types of

vulnerabilities.

XPATH vulnerabilities consist, like SQL vulnera-
bilities, in submitting not sanitized input in an HTML

form or URL parameters. The difference is that the vul-

nerability can be exploited to execute XPath queries

and not SQL queries.
In the case of OS Commanding vulnerability, the

string sent by the client is used to create a command

executed by the operating system. This command is ex-

ecuted under the identity of the process corresponding

to the Web server. Exploitation of this vulnerability al-

lows an attacker to execute arbitrary commands on the

system and can also allow read and/or write access to

certain files.

As explained previously, the algorithm uses three
sets of queries: Ra (random request), Rii (syntactically

invalid injections) and Rvi (syntactically valid injec-

tions). The adaptation of the algorithm to other types

of vulnerabilities requires the definition of these three

sets for each type of vulnerability. Once these sets are

established, the algorithm proceeds in the same way:

send those requests, and store the corresponding re-
sults obtained by the clustering distance presented in
section 3.2. Further details can be found in [9].

4 Attack scenarios with multiple vulnerabilities

The previous section described a methodology allow-

ing the detection of a single vulnerability by automatic

HTML pages clustering. In this section, we present a

global approach that aims at exhibiting attack scenar-

ios, resulting from the exploitation of several vulnera-
bilities, some of which may be causally dependent on
each other.

The objective of this approach is to establish these

scenarios from the automatic construction of the graph
representing all possible navigations on a site taking
into account its vulnerabilities. The approach is com-

posed of two steps: 1) a first step aimed at identifying

the different possibilities offered to a client to navigate

through the web site; and 2) a second step aimed at
the identification and exploitation of vulnerabilities in
the web pages and injection points identified at step 1,

using the methodology presented in section 3. The iter-

ation of steps 1 and 2 allows the elaboration of attack

scenarios including the exploitation of multiple vulner-

abilities.

We adopt a black box approach since no details of

the source code implementation of the Web site is re-

quired. The public address of the Web site is used as

a starting point for dynamic discovery of the site and

its vulnerabilities. We begin this section by introducing

some definitions that are useful for the presentation of

our approach. Thereafter we describe the principles of

our approach.

4.1 Definitions

Our approach aims at automatically building a graph

that represents the set of all possible navigations on a

Web site, including those that result from exploitations

of the Web site vulnerabilities. Let us call a naviga-

tion a sequence of requests (a request consisting in the
activation of an HTML link). A sequence of requests

actually sent by a client is called a trace. The set of

all the possible navigations by a client during a visit to

the web site can be represented by an automata called

a navigation graph.

A navigation state of a client (i.e., a browser) is com-

posed of 1) the HTML page currently displayed by the

browser and 2) the current values of the cookies 6 in the

browser. A request sent by a browser provokes a change
of the current navigation state.

Each node of the navigation graph corresponds to

a navigation state. An edge between two navigation
states exists if a request whose execution leads to the
transition from an initial state to the another one can

be sent by the client. An edge may correspond to a

“normal” request or to a request that exploits a vulner-

ability of the Web site. A vulnerability graph is a par-

ticular case of a navigation graph that includes edges

corresponding to the exploitation of vulnerabilities.

It is important to note that a navigation graph is

different from a traditional graph of HTML pages de-

scribing the structure of a Web site. Each node of an

HTML pages graph generally corresponds to an HTML

page of the site and an edge between two nodes identi-

fies a link that enables to access the second page from

6 The cookie stores at the client side a variety of informa-
tion about the running session (keys, contents, user prefer-
ences, etc.)

An automated black box approach for web vulnerabilities identification and attack scenario generation 7

the first one. The difference is mainly due to the fact

that a navigation state does not only depend on the

currently accessed HTML page. Indeed, a client can

access an HTML page several times, while being in dif-

ferent navigation states. For instance, let us consider

an e-business Web site. It is possible to browse the pur-

chasing page after having ordered some products or not.

When browsing this page, in the first case, the client is
authorized to pay for the products and in the second
case, an error message is returned (it makes no sense

to purchase for an empty bag). However, in these two

situations, the HTML page accessed is the same. The

difference is due to the content of the cookies, that in-

dicate that products have been ordered or not, i.e., that

reflect the current navigation state.

4.2 Principles

The construction of the navigation graph is progressive

and dynamic by identifying different navigations and

vulnerabilities. In addition, a vulnerability exploitation

opens new possibilities for navigation. The construction

is thus done iteratively. Our approach is composed of a
navigation step called crawling to identify the various

possibilities to navigate through the site and the asso-

ciated navigation states and a step for identifying and

exploiting vulnerabilities as presented in section 3.

Figure 2 presents a high-level view of the proposed

approach. The crawling starts from the initial URL

(which corresponds mostly to the main page of the Web

application), after by deleting the cookies at the client

side. This initialization is important for having differ-

ent independent navigations. From this URL, combi-

natorial site crawling identifies the traces navigation
list. Our approach is based on an exhaustive search to
obtain all possible navigations of the site. The site is
browsed starting with the initial query and storing the

requests sent to the site. The choice of the request to

send is done by analyzing the content of the page dis-

played. If this HTML page contains several links, one

of these links is chosen to build the following query

and the other links are stored for later analysis. As the

crawling of the Web site may be infinite, a threshold

indicating the maximum exploration depth of the site

has to be specified. The corresponding value is an input
parameter of the algorithm. If the maximum depth is
reached or if no requests can be sent from the current

reached state, i.e., the current page no longer contains

HTML links, the requests sequence stored from the ini-

tial state corresponds to a site navigation. Then, the

process restarts from the beginning trying new naviga-

tions, based on the stored choices. At the end, the set of

sequences of requests representing all site navigations is

obtained.

On some complex Web sites, the number of requests

sent while crawling may be huge. The potential number

of injection points is even more important. Hence, it is

more appropriate to analyze vulnerabilities on a com-

pact representation rather than directly on the individ-

ual navigations. One way to obtain a compact represen-

tation is to minimize the navigation graph built using

the set of request sequences representing all site navi-

gations. The first version of the navigation graph does

not contain any edge corresponding to vulnerabilities.

The construction of the minimal graph from the set

of navigations and the associated sequence of requests

is similar to a grammatical inference problem whose

objective is to find a minimal automaton that repre-

sents a language from symbol sequences of this lan-
guage (so-called words). In this analogy, the automaton

corresponds to the navigation graph and the symbols
correspond to requests. As a language may include an

infinite number of words, the algorithm must be able to

run based on a subset of the words of a language. Two

categories of grammatical inference algorithms exist: i)

those that infer the language only from sequences of
words that belong to the language and ii) those that
consider all the sequences of words. More details can be

found in [14]. The RPNI algorithm (Regular Positive

Negative Inference) [15] we chose, belongs to the sec-

ond category. This widely used algorithm presents a
polynomial time-based complexity, and is quite simple

to implement.

At the end of the crawling step, we note that the

only possibility to enrich the graph is to identify vul-

nerabilities that if successfully exploited could lead to

add new edges and nodes to the navigation graph. Such

vulnerabilities can be identified using the approach de-

tailed in section 3). This algorithm allows the identi-

fication and effective exploitation of existing vulnera-

bilities. This exploitation leads to the discovery of new

pages that, in turn, may contain new injection points

that were not available at the first step. Therefore, new

possibilities for the exploitation of vulnerabilities are

available. Subsequently, the approach is re-executed it-

eratively by including new pages, which leads to the

construction of several navigation graphs until satis-

fying the stopping criterion, which is specified by the

maximum navigation depth. The graphs including edges

corresponding to the exploitation of a vulnerability are

so-called vulnerability graphs.

Figure 3 pictures this iterative approach. Red edges

identify vulnerabilities whose exploitation reveals new

states and edges of the navigation graph that were ini-

tially inaccessible.

8 Rim Akrout et al.

Fig. 2 Injection point extraction algorithm and vulnerabili-
ties identification

Fig. 3 Iterative construction of the navigation graphs

This algorithm has been implemented in a software
tool using the Python language, which greatly facilitates

the handling of HTTP concepts (cookies, settings, etc.).
This tool is interfaced with the statistical analysis soft-
ware R 7 which integrates a set of clustering programs

that we detailed in section 3. They have been used to
develop our classification algorithm. This tool is called
Wasapy, which stands for Web Application Security
Assessment in Python.

4.3 Example

In order to illustrate our approach, we developed an

e-commerce Web site for buying books, using the PHP

language and a MySql database. This site is a simple

proof of concept but it uses technologies and a struc-

ture similar to “real” Web sites. Figure 4 presents the

HTML pages graph describing the structure of the Web

site. A page is represented by an icon. An edge between

two pages corresponds to the existence of a HTML

7 http://www.r-project.org/

P1: index.html
P2: index.html → about.html
P3: index.html → login.php
P4: index.html → login.php → index.html

Fig. 5 List of navigations of the first iteration

link in the source page leading to the second page.

Let us note that a particular reflexive link exists for

the display.php page. This page enables to list the
available books and includes a filtering function in a

particular form field. A user may then enter a regular

expression in this field and submit it to the site, in order

to update the list of books.

This site includes three vulnerabilities. The pages
including these vulnerabilities are identified by a star

on figure 4. The first vulnerability is associated to the
page login.php. The exploitation of this vulnerability

allows an attacker to bypass the authentication thanks

to a SQL injection. The second vulnerability is asso-

ciated to the page display.php. It allows an attacker

to download the content of the database. The last vul-

nerability associated to the page check.php allows an
attacker to pay the products he ordered without provid-

ing any credit card number. This vulnerability cannot

be exploited unless some products have been added to

the virtual shopping cart.

First, we consider a non malicious user, who does

not have any account on the site. The only actions that

the user can do are :

– access the index.html page

– fill in the form with the authentication information

in the login.php page

– get information from the about.html page

The list of navigations that can result from these ac-

tions are summraized in figure 5. All these navigations

can be synthesized by the navigation graph in figure

6. In this graph, the edges correspond to links of the

site (html page or php, etc.), the nodes correspond to
navigation states. The set of edges leaving a node is
the set of links accessible from the corresponding nav-

igation state. This set is independent from previously

activated links used to achieve this navigation state.

This navigation graph is very simple because the
possible actions without valid (login / password) are

limited. However, if we consider an attacker who is able

to exploit some vulnerabilities, then he is able to per-

form more actions than an unregistered benign user.

Therefore, the associated navigation graph is a richer

version of the graph in figure 6, new edges and new

nodes may appear.

This is precisely what the next step serves for. The

edges of the graph 6 are tested to identify vulnera-

An automated black box approach for web vulnerabilities identification and attack scenario generation 9

index.html

about.html

login.php display.php

buy.php check.php

add.php

delete.php

⋆ ⋆

⋆

Fig. 4 Structure of the Web site

Fig. 6 Navigation graph of a not authentificated user

Fig. 7 Vulnerability graph of 1st iteration

bilities8. The exploitation of a new vulnerability may

change the navigation state. Thus, it can lead to the

insertion of a new node in the graph. At this stage, the

only available vulnerability corresponds to a SQL injec-

tion for the authentication, ie, in the login.php page.
The result is depicted in figure 7.

During the second iteration, we identify pages that
can be accessible after the exploitation of the vulner-

ability identified during the previous iteration. To reach

these pages, it is necessary to cross the edges index.html

and login.php. The set of traces executed for the sec-

8 For simplicity, only the HTML links activated by the re-
quest appear, without explicitly specifying the parameters
associated with these requests.

ond iteration includes 65 traces. These traces reach

the following files, display.php, add.php,delete.php,

buy.php or check.php. Then the vulnerabilities iden-
tification phase is re-executed once for each new edge

generated during of the second iteration. We iterate in
this way until we get the final graph that covers the
entire site as shown in figure 8. In the case of this ex-

ample, the algorithm stops after 6 iterations considering

a maximum depth of navigation set to 7. This means

that there are no more vulnerabilities discovered during

the sixth iteration.

To automate the process, we have implemented al-

gorithms corresponding to the two main steps of our

approach: the crawling and the vulnerabilities discov-

ery. These algorithms are presented in next section.

5 Algorithms

This section presents the algorithms that we have de-
veloped to implement the approach described in the
previous section.

The search vulns function in figure 9 takes a nav-
igation as input parameter. The latest request of this

navigation is analyzed to identify vulnerabilities, con-
sidering different vulnerability classes (SQL injections,
XPATH injections, OS commanding, etc.). This func-
tion returns a list of navigations and, for each of them,

one of the identified vulnerabilities. Each new naviga-

tion includes one more navigation state that results

10 Rim Akrout et al.

0 display.php
1 login.php
2 index.html
3 display.php vuln.

4 login.php vuln.

5 add.php
6 delete.php
7 check.php
8 about.html
9 check.php vuln.

10 buy.php

Fig. 8 Final vulnerability graph

from the exploitation of one vulnerability. These new

navigations are then analyzed by the crwl function.

The crwl function is presented in figure 10. This

function is used to continue the crawling of the Web

site starting from a specified navigation provided as

an input parameter. The remain variable holds the

set of navigations that have just been discovered but

not been crawled yet. This algorithm ends when there

are no more navigations to crawl, which means that

the remain set is empty, or when the maximum ex-
ploration depth is reached. Before starting the crawl-

ing of any navigation, the cookies are removed. Then,

each request of the navigation is executed step by step,

from the first one to the last one. The content of the

response associated to this last request is analysed in

order to identify new HTML links. These are provided

by the get response function (line 9 of the figure 10).

The analysis is only made for this last request because

all the requests of the navigation except the last one

have already been analyzed during previous iterations

of the algorithm. Each HTML link identified in this

response is used to build a new navigation of the site

(using the concatenation operator ⊕). This operation is
repeated iteratively until all the HTML links have been

discovered or until the maximum exploration depth is

reached. The set of the new navigations discovered by

crwl is saved in the traces variable.

The main function of figure 11 executes the two

previous functions. During the first iteration, the crwl

function discovers the Web site considering only “nor-
mal” requests. Then, thanks to the RPNI algorithm,

a graph is built from the navigations obtained. Each
state of the graph is then analysed in order to iden-
tify vulnerabilities (search vulns function). At the end

of the first iteration, all the navigations including at

most one vulnerability are identified. The exploitation

of these vulnerabilities may enable to discover new parts

of the Web site. Then, the next iteration begins. The

beginning of each iteration i of themain function corre-

sponds to the exploration of a sub-part of the site, more

precisely the part that has been discovered thanks to

the exploitation of the (i−1)th vulnerability of the nav-

igation. At the end of the crawling of each iteration i,
the vulnerability identification step is carried out, con-

sidering navigations including i− 1 vulnerabilities and

ending with a normal request. At the end of the ith

iteration, all the navigations including at most i vul-

nerabilities are obtained. Finally, the main algorithm

stops when the maximum exploration depth is reached

or when no further vulnerability can be identified.

An automated black box approach for web vulnerabilities identification and attack scenario generation 11

Require: path = navigation
Ensure: vulns = set of navigations
1: vulns← ∅
2: for class ∈ vuln classes do

3: vulns← vulns ∪ wasapy(path, class)
4: end for

5: return vulns

Fig. 9 Vulnerability identification algorithm – search vulns

Require: path, dm
Ensure: new paths = traces

1: remain← {path}
2: traces← ∅
3: d← |path|
4: while remain 6= ∅ ∧ d ≤ dm do

5: next← ∅
6: for trace ∈ remain do

7: free cookies()
8: for i ∈ 1..(|trace| − 1) do

9: get response(tracei)
10: end for

11: links← get response(trace|trace|)
12: for link ∈ links do

13: next← next ∪ {trace⊕ link}
14: traces← traces ∪ {trace⊕ link}
15: end for

16: end for

17: remain← next

18: d← d+ 1
19: end while

20: return traces

Fig. 10 Crawling algorithm – crwl
Require: urls

Ensure: (G = (S,N,R), vulns)
1: G← RPNI(urls)
2: ntraces← urls

3: traces← urls

4: vulns← ∅
5: while |ntraces| 6= 0 do

6: for nt ∈ ntraces do

7: if |nt| < dm then

8: traces← traces ∪ crwl(nt, dm)
9: end if

10: end for

11: H ← RPNI(traces)
12: new nodes← H.N \G.N

13: ntraces← ∅
14: for nn ∈ new nodes do

15: ptnn← shortest path(H.R,H.S, nn)
16: if |ptnn| < dm then

17: nptv ← search vulns(ptnn)
18: for np ∈ nptv do

19: new vuln← np|np|

20: vulns← vulns ∪ {new vuln}
21: end for

22: ntraces← ntraces ∪ nptv

23: end if

24: end for

25: G← H

26: end while

27: return (G, vulns)

Fig. 11 Main algorithm

6 Experimental results and discussion

This section presents the experiments that we have car-

ried out to validate and assess our algorithm. We have

considered several applications using Wasapy and the

three open-source vulnerability scanners discussed in

this paper: W3af 1.1, Skipfish 1.9.6b and Wapiti

2.2.1. The experiments are run on a Gnu/Linux (2.6

kernel) host running several virtual machines thanks to

the VirtualBox utility. All the virtual machines run the

Apache Web server 1.3.37 or 2.2.8 with PHP 4.0.0

or 5.0.0 and MySQL database server 5.

This section is organised as follows. Subsection 6.1
presents conventions and abbreviations. Subsection 6.2

presents the first experiments carried out in order to

assess our approach. Five Web applications including

SQL vulnerabilities are used. We purposely injected

these vulnerabilities to calibrate Wasapy. Subsection 6.3

presents the second set of experiments with vulnerable
off-the-shelf applications, without any modification of
these applications. This subsection compares Wasapy to

other vulnerability scanners on non-purposely injected
vulnerabilities. For some of these applications, evalua-
tion reports based on commercial scanners are available

in [16]. We reported some of these results in order to

compare these scanners with Wasapy. Subsection 6.4
presents the summary of all these experiments.

6.1 Notations

The results of our experiments are presented in different

tables. We use the following conventions and abbrevia-

tions:

✓ The vulnerability has been detected by

the corresponding scanner

✗ The vulnerability has not been detected

by the corresponding scanner

– The injection point is not tested by the

scanner

SQLi stands for SQL Injection

XPa stands for XPath Injection

OsC stands for OS Commanding

FIn stands for File Include

CVE reports the CVE reference of the consid-

ered vulnerability if it exists
NR The vulnerability does not have a CVE

A vulnerability is considered as detected if the scan-

ner actually sends an alert for this vulnerability, what-

ever the method used to detect it. A vulnerability is

considered as not detected if the scanner actually tested

the corresponding injection point without sending any

12 Rim Akrout et al.

alert. A vulnerability is considered as ignored by the

scanner if the corresponding injection point is not tested

by the scanner.

6.2 Experiments with modified applications

The five applications chosen for this first set of experi-

ments are described hereafter:

– phpBB-3: This application9 is a forum manager writ-

ten in PHP and using a MySQL database. We mod-

ified the authentication form of the application by

inserting a vulnerability (v1) that can be exploited
by a SQL injection. This vulnerability allows an at-

tacker to reach the restricted administration area of

the forum.

– SecurePage: This application10 written in PHP, is

designed to protect the access of a Web site through

authentication. Valid pairs for this authentication
are stored in a MySQL database. A vulnerability
(v2) similar to v1 was purposely injected.

– HardwareStore: We developed this application, in

PHP 5.0. This application allows a user to inventory
computer equipments in a database and to interro-
gate this database. The user needs first to be au-

thenticated. Five SQL vulnerabilities were injected
in this application. v3 allows SQL injection in a

search form, and allows an attacker to access the

whole database. v4 allows SQL injection in the au-

thentication form. v5 allows SQL injection in a pa-

rameter of a HTML request. For this vulnerable

HTML page, we have purposely disabled the error

message reporting, in order to compare the behav-

ior of W3af and Wapiti in such a situation with the

behavior of Wasapy. Vulnerability v6 is similar to

v4 but it is used in a different context: the error

message reporting is deactivated. Vulnerability v7

can only be exploited after the successful exploita-

tion of v4. Indeed, this vulnerability is included in a

page that can only be accessed after successful au-
thentication on the application or after a successful
bypass of the authentication mechanism (through

exploitation of v4). XPATH, OS Commanding and

File Include vulnerabilities were also injected in this

application. Vulnerability v10, in the authentication

page, allows an attacker to bypass the authentica-

tion through a XPATH injection. v11 is an Os Com-
manding vulnerability that can be exploited only af-

ter v4 is successfully exploited. Indeed, this vulner-

ability is included in a page that is only accessible

after authentication (or bypass of the authentication

9 http://www.phpbb.com
10 http://www.01php.com/fiche-scripts-126.html

Scanners

S
k
ip
fi
sh

W
3
a
f

W
a
p
it
i

W
a
sa
p
y

Vulnerabilities
Type Application ID

phpBB3 v1 ✗ ✗ ✓ ✓

SecurePages v2 ✗ ✗ ✓ ✓

v3 ✓ ✓ ✓ ✓

v4 ✓ ✓ ✗ ✓

SQLi HardwareStore v5 ✓ ✗ ✗ ✓

v6 ✗ ✗ ✗ ✓

v7 – – – ✓

Insecure v8 ✓ ✓ ✗ ✓

DVWA v9 ✓ ✓ – ✓

XPa HardwareStore v10 ✗ ✗ ✗ ✓

OsC HardwareStore v11 – – – ✓

FIn HardwareStore v12 – – – ✓

Number of detections 5 4 3 12

Fig. 12 Vulnerability detection results for modified applica-
tions

through successful exploitation of v4). Vulnerability

v12 is a File Include vulnerability, it is inserted in

the same page as v11 and can be exploited in the
same conditions as v11.

– Insecure: This application was developed in Ruby
on Rails in the context of the Dali project11. It is

an e-commerce site, including user sessions through

virtual shopping carts. A vulnerability (v8), which

allows an attacker to inject SQL code, was purposely

included in the authentication form of the applica-

tion. This vulnerability, functionally equivalent to

v4 is anyway different because Insecure is imple-
mented in Ruby and the error reporting messages

differ from the Apache error reporting messages.

– Damn Vulnerable Web Application (DVWA): This

application12 is written in PHP and uses MySQL

server. A vulnerability v9, similar to v3, was intro-
duced in the application.

Figure 12 shows that the performances of W3af and
Wapiti are similar in average, even if the vulnerabilities

detected are not the same (Wapiti successfully detects

v1 and v2 whereas W3af does not detect them; on the

other hand, W3af detects v4 and v8 whereas Wapiti

does not detect them). This result is consistent with

the fact that both scanners use a pattern matching-

based algorithm. The observed variations are related

to the generation of different requests by these tools.

Wasapy allows us to detect all these vulnerabilities. This

confirms that the vulnerability detection clustering al-

gorithm presents a better coverage than the pattern

matching algorithm for these vulnerability classes.

11 French funded ANR’s program ARPEGE(2009-2011).
12 http://www.dvwa.co.uk

An automated black box approach for web vulnerabilities identification and attack scenario generation 13

Regarding vulnerabilities v1 and v2, we manually

checked the injections performed by Skipfish (’", \’\"
and \\’\\") and stored the corresponding responses

(respectively A, B et C). As discussed in section 2, Skipfish

considers that A and C must be different so that a vul-

nerability is present. Unfortunately, for these two injec-
tion points, this is not the case. The responses corre-

spond to SQL error messages that are very similar.

Regarding vulnerabilities v5 and v6, they are in-

cluded in PHP pages for which we purposely deacti-
vated the error reporting message feature13 in the con-

figuration file of PHP5. In this particular case, none of

the three scanners (Skipfish, W3af and Wapiti) is able

to detect vulnerabilities.

Regarding v7, Wasapy is the only scanner that is

able to detect it. Moreover, it is the only scanner that

is able to test the corresponding injection point. Indeed,

this injection point is included in a HTML page that

can only be accessed after a successful authentication

or after the successful exploitation of vulnerability v4.

As Wasapy is the only scanner able to actually exploit

v4, it can automatically access the page including vul-

nerability v7. For the other scanners, it is necessary to
manually perform the exploitation of v4 so that it is

possible to access the page including v7. Vulnerabilities

v11 and v12 were identified only by our tool for the

same reasons: they remain masked until the authenti-

cation is bypassed.

The purpose of these initial tests was the calibra-

tion of Wasapy. The calibration of our tool consists in

defining empirically the number of requests to generate

for each group and injection point. We set this number

to 30 for all the applications tested (i.e., 90 requests

per injection point). We have observed that a higher

number does not provide significantly higher accuracy,

while a lower number generates false negatives.

These initial tests also allowed us to check the gram-

mars that we presented in the previous section. Of course,

the corresponding vulnerabilities have been identified

for this purpose. So, these results are not aimed to be

used to make an absolute comparison between the scan-

ners. A more representative comparative assessment of

the different tools should be based on vulnerable ap-
plications in which vulnerabilities have not been de-
liberately injected by ourselves. These experiments are
presented in the next subsection.

13 The configuration file of PHP5 includes: For production
Web sites, you’re strongly encouraged to turn this feature off,
and use error logging instead.

6.3 Experiments with non-modified vulnerable

applications

This second set of experiments allowed us to have a
more precise idea of the coverage of our detection algo-

rithm. For that purpose, we compared it to the detec-
tion algorithms of Skipfish, W3af and Wapiti on non

purposely modified vulnerable Web applications. For
some of these applications, we could compare our al-

gorithm with some commercial vulnerability scanners,

considering the results available in [16]. In this doc-

ument, the author presents the vulnerability detection

results obtained with three commercial scanners: WebInspect

from HP, AppScan from IBM and Web Vulnerability

Scanner from Acunetix. These results provide only

some preliminary indications to analyse the performance

of our tool on the same set of applications and are not

meant to be used for a validation purpose.

For our experiments, we selected five Web appli-

cations (most of them tested in [16]), known to in-

clude vulnerabilities. These applications cover differ-

ent functionalities and execution contexts. We installed

these applications, and performed vulnerability detec-

tion tests without modifying them.

– Cyphor14 is a configuration Webforum, which uses
PHP 4.0.0 session capabilities to authenticate users

and a MySQL database.
– Seagull15 is an OOP framework for building Web,

command line and GUI applications. This project

allows PHP developers to integrate and manage code

resources, and build complex applications. This ap-

plication requires the following configuration: PHP

4.3.0 or newer, MySQL 4.0.x or newer, Apache 1.3.x

or 2.x.
– Fttss is a research project16 that implements a Text-

To-Speech System based on PHP (4.3.0 or newer)

and MySQL (4.1.2 or newer).

– Riotpix17 is an open-source discussion forum for

the Web based on PHP (4.3.0 or newer) and MySQL

(4.1.2 or newer).

– Pligg18 is a social networking open source CMS
(Content Management System) that permits visi-

tors to register on the Website, submit content and

connect with other users. This software creates Web-

sites where stories are created and voted on by mem-

bers. PHP (4.3.0 or newer) and MySQL (4.1.2 or

newer) are required.

14 http://Webscripts.softpedia.com/script/Snippets/Cyphor-
27985.html
15 http://seagullproject.org/
16 http://fttss.sourceforge.net
17 http://www.riotpix.com/
18 http://www.pligg.com/

14 Rim Akrout et al.

S
k
ip
fi
sh

W
3
a
f

W
a
p
it
i

W
a
sa
p
y

Vulnerability
Type CVE Location

NR search.php ✓ ✓ ✓ ✓

SQLi 2005-3236 lostpwd.php ✓ ✓ ✓ ✓

2005-3236 newmsg.php ✓ ✓ ✓ ✓

2005-3575 show.php ✓ ✓ ✓ ✓

False positive 1 0 0 0

Fig. 13 Vulnerability detection results for Cyphor applica-
tion

S
k
ip
fi
sh

W
3
a
f

W
a
p
it
i

W
a
sa
p
y

Vulnerability
Type CVE Location
SQLi 2010-3212 index.php ✗ ✗ ✗ ✓

2010-3209 container.php ✗ ✗ ✗ ✗

FIn 2010-3209 QuickForm.php ✗ ✗ ✗ ✗

2010-3209 NestedSet.php ✗ ✗ ✗ ✗

2010-3209 Output.php ✗ ✗ ✗ ✗

False positive 0 0 0 0

Fig. 14 Vulnerability detection results for Seagull applica-
tion

We inspected manually the results provided by each

scanner to have more confidence on the number of de-

tected vulnerabilities and false positives.

Figure 13 presents the results for Cyphor applica-

tion. All the scanners detected all the vulnerabilities be-
cause error messages are reported to the client. Thus, it
is easy to distinguish successful vulnerability exploita-

tion from error messages. The underlined results corre-

spond to detections made possible by supplying a valid

(login/password) to the scanners to perform authenti-

cation. In other words, the corresponding vulnerability
is only visible when logged in the site (the authentica-
tion page does not contain any SQL-injection vulnera-
bility, it is the only way for any scanner to access the

page including the vulnerability).

The results reported for Seagull in figure 14 show
that Wasapy is the only one that reports a vulnerability

in this application. Others are unable to do so because

the application does not report errors to the client. Re-

garding File Include vulnerabilities, the injection points

which allow their exploitation are not directly accessi-

ble from the client interface. Hence, the source code is

necessary to identify these vulnerabilities. This explains
the failure of all scanners.

Fttss is an application that has been tested in [16].

Hence, some results associated to the three commercial
scanners considered are available (cf. figure 15). The

commercial scanners do not detect the OS commanding

vulnerability, which is the only vulnerability known of

S
k
ip
fi
sh

W
3
a
f

W
a
p
it
i

W
a
sa
p
y

A
p
p
S
ca

n

W
eb

In
sp

ec
t

A
cu

n
et
ix

Vulnerability
Type CVE Location
OsC NR index.php ✗ ✓ ✗ ✓ ✗ ✗ ✗

False positive 0 0 0 0 0 0 0

Fig. 15 Vulnerability detection results for Fttss application

S
k
ip
fi
sh

W
3
a
f

W
a
p
it
i

W
a
sa
p
y

A
p
p
S
ca

n

W
eb

In
sp

ec
t

A
cu

n
et
ix

Vulnerability
Type CVE Location

NR edit post.php ✗ ✗ ✗ ✓ ✗ ✗ ✗

NR edit post script.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLi NR index.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

NR message.php ✗ ✗ ✗ ✓ ✗ ✗ ✗

NR reader.php ✓ ✓ ✗ ✓ ✗ ✗ ✗

False positive 0 0 0 0 0 0 0

Fig. 16 Vulnerability detection results for Riotpix applica-
tion

S
k
ip
fi
sh

W
3
a
f

W
a
p
it
i

W
a
sa
p
y

A
p
p
S
ca

n

W
eb

In
sp

ec
t

A
cu

n
et
ix

Vulnerability
Type CVE Location

2008-7091 login.php ✗ ✗ ✗ ✓ ✗ ✓ ✗

2008-7091 story.php ✓ ✗ ✓ ✓ ✓ ✓ ✓

NR userrss.php ✗ ✗ ✗ ✗ ✓ ✓ ✓

2008-7091 out.php ✗ ✗ ✗ ✗ ✓ ✗ ✓

2008-7091 trackback.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLi 2008-7091 cloud.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 cvote.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 recommend.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 submit.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 vote.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

2008-7091 edit.php ✗ ✗ ✗ ✗ ✗ ✗ ✗

False positive 0 0 0 2 1 1 0

Fig. 17 Vulnerability detection results for Pligg application

this application. In contrast, W3af and Wasapy are able

to identify this vulnerability. It is noteworthy that none

of tested scanners reports false positives in this case.

Regarding Riotpix (cf. figure 16), the results are

similar to those of Cyphor. The vulnerabilities are only
accessible to successfully authenticated users. Therefore

we had to provide a valid login/password to all scan-

ners. Two vulnerabilities have not been found by any

scanner. They correspond to code injection into vari-

ables that are not visible to the client and thus cannot

be discovered by scanners (their identification would re-

quire a source code analysis). These results also show
that Wasapy is efficient for this kind of vulnerability.

An automated black box approach for web vulnerabilities identification and attack scenario generation 15

Regarding the Pligg application (cf. figure 17), all

vulnerabilities but the first two are available on hidden
injection points. The scanner must be aware of the pres-
ence of the injection point in order to test the vulner-

ability. For the first two vulnerabilities, Wasapy found

them, whereas the other scanners found only one of
these vulnerabilities. This is due to the fact that error

messages are not forwarded to the client.

6.4 Summary

The main lessons learned from all our experiments are

summarized in the following:

– Wasapy is an efficient scanner, especially in particu-

lar conditions for which it has been designed : 1)

it is more efficient than the other freeware scan-

ners tested when the error reporting is disabled, 2)

it is more efficient than the other scanners to dis-

cover and exploit vulnerabilities that are included

in pages not directly accessible (pages that require

the successful exploitation of a vulnerability to be

accessed). Indeed, Wasapy is the only one which is

capable of actually exploiting the vulnerability, and
supplying the exact corresponding injection requests.

– Wasapy is globally as efficient as the other vulner-

ability scanners tested on non modified vulnerable
applications.

– Our clustering algorithm can be easily adapted to

different kinds of vulnerabilities. Besides SQL in-

jections, the results of the experiments show that

Wasapy also detects XPATH, OS Commanding and

File Include vulnerabilities and that it is at least as

efficient as the other vulnerability scanners.

7 Conclusion

In this paper, we proposed a new methodology that

is designed to automatically identify Web applications

vulnerabilities and to exhibit attack scenarios targeting

these applications. This methodology is based on the
dynamic analysis of the application following a black
box approach. It is also aimed at reducing the number

of false positives by providing the queries that allow

the successful exploitation of the detected vulnerabil-

ities. This advantage is twofold since the effective ex-

ploitation of vulnerabilities also allows us to discover

new pages in the Web application that we could not

reach before. These new pages may contain new injec-

tion points and possibly new vulnerabilities. To validate

and evaluate our approach, we have carried out two sets

of experiments on different types of applications. This

approach led also to the development of a new vulner-

ability scanner called Wasapy.

Various directions will be considered for extending
the results obtained so far. First, regarding the pro-

posed approach for detecting vulnerabilities and gener-

ating attack scenarios based on the elaboration of the

Website navigation graph, optimisations would be nec-

essary to master the size of the graph, especially when

it is to be applied to complex Web sites. Another per-

spective would be to enrich the grammars implemented

in Wasapy to allow the generation of a larger variety for

injections covering the vulnerabilities included so far,

as well as new vulnerabilities.

References

1. IBM X-Force 2012 Mid-year Trend and
Risk Report, September 2012, http://www-
01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA
&subtype=WH&htmlfid=WGL03014USEN

2. E.Alata, M.Kaaniche, V.Nicomette and R.Akrout, An au-
tomated vulnerability-based approach for web applications
attack scenarios generation”, LADC-2013: Latin-American
Symposium on Dependable Computing, 02-05 Avril 2013,
Rio De Janeiro, Brazil. 9p.

3. A.Dessiatnikoff, R.Akrout, E.Alata, M.Kaaniche,
V.Nicomette, A clustering approach for web vulnerabilities
detection, IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2011), Pasadena (USA),
12-14 Dcembre 2011, 10p.

4. K.Stefan, E. Kirda, C. Kruegel and N. Jo-
vanovic,“SecuBat: a Web vulnerability scanner”, Proc.
of the 15th int. conf. on World Wide Web (WWW ’06),
Edinburgh, Scotland, 2006.

5. Y.-W Huang, S.-K Huang, T.-P. Lin, C.-H.Tsai, “Web Ap-
plication security assessment by fault injection and behav-
ioral monitoring”, Proc. 12th Int. Conf. on World Wide
Web (WWW’03), Budapest, Hungary, 2003.

6. J. Fonseca, M. Vieira, and H. Madeira, “Testing and Com-
paring Web vulnerability scanning tools for SQL injections
and XSS attacks”, Proc. 2007 IEEE Symposium Pacific
Rim Dependable Computing (PRDC 2007), Victoria, Aus-
tralia, pp. 330-337, USA, 2007.

7. J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of
the art: Automated black-box Web application vulnerabil-
ity testing”, Proc. 2010 IEEE Symposium on Security and
Privacy, Oakland, USA, 2010.

8. A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t
pentest : An analysis of black-box Web vulnerability scan-
ners”, Proc. DIMVA 2010.

9. Akrout, R., ”Web Applications Vulnerability Analysis
and Intrusion Detection Systems Assessment”, PhD The-
sis, University of Toulouse, October 2012 (in French),
http://homepages.laas.fr/rakrout/PhD Thesis.pdf.

10. Levenshtein, V., Leveinshtein distance, 1965
http://en.wikipedia.org/wiki/Levenshtein_

distance[accessed on 02/22/10]
11. S. C. Johnson, “Hierarchical Clustering Schemes”, in
Psychometrika Journal, pp. 241-254,Volume = 2, 1967.

12. A.Kiezun, P. J. Guo, K.Jayaraman and M. D. Ernst,
“Automatic creation of SQL Injection and cross-site script-
ing attacks”, Software Engineering, 2009. ICSE 2009.

16 Rim Akrout et al.

IEEE 31st International Conference on Vancouver, BC,
2009.

13. E. Gutesman, “gFuzz: An Instrumented Web Application
Fuzzing Environment”, Hack.Lu ’08, Luxembourg, 2008.

14. P. Dupont,“Regular Grammatical Inference from Posi-
tive and Negative Samples by Genetic Search: the GIG
Method”, Proc. of the 2nd Intl. Colloquium on Grammati-
cal Inference and Applications (ICGI ’94), pp 236-245, Lon-
don, UK, 1994

15. Dupont, P., “Incremental regular inference”, Proc. of the
Fourth Intl. Colloquium on Grammatical Inference and Ap-
plications (ICGI ’96), pp 222-237, 1996.

16. http://anantasec.blogspot.com/ [accessed on 12/9/10]

