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Abstract

In this paper, we introduce a new system for ECG beat classification us-
ing Support Vector Machines (SVMs) classifier with rejection. After ECG
preprocessing, the QRS complexes are detected and segmented. A set of fea-
tures including frequency information, RR intervals, QRS morphology and
AC power of QRS detail coefficients is exploited to characterize each beat.

An SVM follows to classify the feature vectors. Our decision rule uses
dynamic reject thresholds following the cost of misclassifying a sample and
the cost of rejecting a sample. Significant performance enhancement is ob-
served when the proposed approach is tested with the MIT-BIH arrhythmia
database. The achieved results are represented by the average accuracy of
97.2% with no rejection and 98.8% for the minimal classification cost.

Key words: ECG beat classification, Support Vector Machines (SVMs),
classification cost.

1. Introduction

The ElectroCardioGram (ECG) is a bio-electric signal that records the
electrical activities of the heart. The ECG waveform is characterized by
the waves: P, QRS and T. The most important wave is the QRS complex
characterizing the ventricular contractions. Distances between them (RR
intervals) define the rhythm, which is influenced by the emotions and physical
activity.
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The normal electrical conduction in the heart allows the impulse gen-
erated by the Sino-Atrial (SA) node to be rapidly propagated to the my-
ocardium. This stimulated myocardium allows efficient contraction of the
heart. In heart conduction disorders, ventricular excitation may not origi-
nate in the SA node but from other ectopic centers in the myocardium leading
to a Premature Ventricular Contraction (PVC) also called extra-systole or
ectopic beat. Typically, PVCs are recognized by irregular RR intervals. The
normally generated contractions produce normally shaped QRS complexes,
while ectopic heartbeats generate a variety of QRS waveforms, quite differing
from the normal ones.

Counting the occurrence of ectopic beats is of particular interest to sup-
port the detection of ventricular tachycardia and to evaluate the regularity
of the depolarization of the ventricles. For example, the risk of Ventricular
Fibrillation (VF) for patients with a structural heart disease is higher with an
increased occurrence of PVCs. The automatic detection and classification of
the ventricular contractions as normal or premature is a subject of long-term
studies. This is the basis of the rhythm analysis, which is usually applied
to continuous 24-hour ECG recordings (Holter systems) to identify rhythm
disorders.

Several algorithms with signal processing techniques have been proposed
for detection and classification of heartbeats. Classical techniques extract
heuristic ECG descriptors, such as QRS morphology [1, 2, 3] and interbeat
R-R intervals [1, 2, 4, 6]. Other ECG descriptors rely on QRS frequency com-
ponents [3, 4, 5, 6] or matching pursuits for extraction of time-frequency beat
descriptor [3]. Some methods apply QRS template matching procedures [7],
wavelet and principal component analysis [1, 6, 8] and higher order statistics
[9, 10].

Several discriminative techniques have been developed for ECG beat clas-
sification such as Artificial Neural Networks [1, 2] or probabilistic neural net-
works [6]. Other work used the Kth nearest-neighbor rule [3, 9] and genetic
algorithms [4]. Among all these methods, Support Vector Machines (SVMs)
known as excellent tool for classification and regression problems has shown
success in this application field e.g. [4, 8, 10].

Even though the performance of all these techniques, misclassifications
cannot be completely eliminated and, thus, can produce severe penalties.
This motivates us to introduce a cost sensitive classifier to heartbeat recog-
nition. This option has a particular interest in medical field where the conse-
quences of misclassification can be substantial. In such situations, rejection
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may even be more preferable than risking misclassification.
This paper is organized as follows. Section 2 presents data signal and

preprocessing techniques. Section 3 provides a detailed description of the
feature extraction methodology. The classifier model proposed in this study
is developed in section 4. It recalls Bayes rule for binary classification with
weighted errors and presents the SVMs in this framework and the learning
criterion dedicated for the problem at hand. This proposed method is tested
empirically in Section 5. Finally, Section 6 briefly concludes the paper.

2. Signal processing

2.1. ECG data

The annotated ECG records from the MIT-BIH arrhythmia data base
[11] has been used in this study. This data base has 48 records. Each record
is of length 30 min with 360 Hz sampling frequency. The data were recorded
in two channels (modified limb lead II and modified limb lead VI) of surface
ECG from long term Holter recorders. They present a variety of waveforms,
artifacts, complex ventricular, junctional and supraventricular arrhythmias
and conduction abnormalities. Each record is accompanied by an annotation
file in which each ECG beat has been identified by expert cardiologists. These
labels referred to as ’truth’ annotation and are used to develop the classifier
and to evaluate its performance in the testing phase.

Since this study is to evaluate the performance of a binary classifier with
a reject option, we followed the American Heart Association (AHA) records
equivalent annotation [11] and the AAMI recommended practice [12] to form
two classes of heartbeats: (i) the positive class representing the ventricu-
lar ectopic beats (V) including premature ventricular contractions, fusion
of ventricular and normal beats and unknown beats; (ii) the negative class
representing the normal beats (N), including all normal heartbeats (approxi-
mately 70% of the database) and some of the abnormal beats (Left or Right
Bundle Branch Block, aberrated atrial premature beat, nodal or atrial pre-
mature beat, nodal escape beat, atrial ectopic beat and nodal ectopic beat).
We further restricted the N class to contain only heartbeats, which are rep-
resentative for the predominant rhythm of the patient: Normal beats, Left
Bundle Branch Block beats (L) and Right Bundle Branch Block beats (R). In
agreement with the AAMI recommended practice, records containing paced
beats (102, 104, 107, and 217) were excluded. From this study, records with
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no PVC beats (11 records) were also excluded leaving 33 records of interest.
The forms of predominant heartbeats are displayed on figure 1.

0 0.4 0.8 1.2 1.6
−0.5

0

0.5

1

0 0.4 0.8 1.2 1.6
−0.5

0

0.5

1

0 0.4 0.8 1.2 1.6
−1

0

1

Time (sec)

A
m

p
lit

u
d

e
 (

m
V

)

0 0.4 0.8 1.2 1.6
−0.5

0

0.5

1
V

L LN

N

N

RR

Figure 1: Different formes of ECG beats.

2.2. ECG Filtering

The objective of this paper is to classify heartbeats. Before performing
this task, several pre-processing steps were performed on the raw data. In
fact the electrocardiogram (ECG) from body electrodes are corrupted by
noise. Usually, two principal sources of ECG noise can be distinguished: the
first one caused by the physical parameters of the recording equipment and
the second one representing the bioelectrical activity also called background
activity or baseline wander.

Several noise removal techniques were recently developed. ECG is a non-
stationary biosignal corrupted by additive noise. An efficient tool for denois-
ing such signal is the wavelet transform. The latter is a time-scale represen-
tation which describes a signal by using the correlation with translation and
dilatation of a function called mother wavelet. Basic theory can be found in
many papers, i.e. [13]. The objective of wavelet based denoising process is to
estimate the signal of interest s(i) from the composite one f(i) by discarding
the noise e(i) assuming that f(i) = s(i) + e(i) .

The noisy signal is decomposed into six levels by Discrete Wavelet Trans-
form (DWT) using the Daubechies wavelet db4. Passing the obtained coef-
ficients through a threshold δ, certain values are set to zero. The denoised
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signal is recovered by taking the Inverse Discret Wavelet Transform (IDWT)
of the resulting coefficients. For each decomposition level j, the threshold

δj is computed according to the noise level. δj = σj

√
2log(N) where N is

the number of samples and σj is the noise standard deviation which can be
estimated from the median of its detail coefficients σj = MAD(dj

i )/0.6745
where MAD is the Median Absolute Deviation of the corresponding level.
More details can be found in [14].

The baseline drift is removed by zeroing the scaling coefficients of the
DWT at level 6. This is equivalent to filtering the ECG signal with a H-
Pass filter having a cutoff frequency of 2.8Hz. The ECG signal sampled at
fs = 360Hz is used as the initial scaling coefficients of DWT. They lie in
the bandwidth [0, fs/2]. The decomposition with the analysis filter bank is
repeated over the scaling coefficients. Each new iteration of the filter bank
divides the bandwidth of the scaling coefficients by two. After 6 iterations the
resulting scaling coefficients correspond to the low frequency baseline drift of
the ECG signal. Now, if these coefficients are set to zero, the reconstructed
ECG will have all the details of the original ECG, but with low frequency
baseline drift removed. Level 6 is also fixed referring to [15, 16, 17]. In these
papers, it was shown that most of the QRS power lies in [5-22 Hz] therefore,
this baseline removal do not affect the region of interest (QRS window).

2.3. ECG beat segmentation

In this study, the R peaks were detected using a robust method based
on wavelet coefficients that was introduced in [15]. The peaks Q and S are
detected using simple peak detection method. The peak Q is assumed to lie
within 50ms before R peak, while S peak is assumed to lie within 100ms after
R peak. An example of QRS detection and QS segmentation is displayed on
figure 2.

3. Feature extraction

The QRS complex in ECG signal varies with origination and conduction
path of the activation pulse in the heart. When the activation pulse originates
in the SA node and travels through the normal conduction path, the normal
QRS complex has a sharp and narrow deflection and the spectrum contains
high frequency components. When the activation pulse originates in the
ventricle and does not travel through the normal path, the QRS becomes
wide and the high frequency components of the spectrum are attenuated. A

5



0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

 

 

1 1,34 1,5 1,8 2 2,68           2,73 3
−1

0

1

Time (sec)

 

 

Am
pl

itu
de

 (m
V)

ECG
R
S
Q

(a)

(b)

Figure 2: a: Example of R peak detection and QRS segmentation. b: Zoom on QS segments
of PVC beat (left) and normal beat (right).

set of algorithms from signal conditioning to measurements of average wave
amplitudes, durations, morphology, and areas is usually adopted to perform
a quantitative description of a heartbeat. In this study, we select features
that clearly characterize and discriminate the quality of the beats such as
the R-R intervals, the QRS morphology and the frequency components.

3.1. RR intervals

RR intervals provide useful information for clinical diagnosis and identifi-
cation of pro-arrhythmic events associated with heart-rate variation [2]. We
studied the specific deviations of the RR intervals surrounding the heartbeat
in order to give indications about the type of the heartbeat. For a beat i, the
RR interval is RRi = Ri−Ri−1. This value is normalized to make it indepen-

dent of the heart rate. The normalized RR interval is RRnorm(i) = RRi−RR
max(RR)

where RR and max(RR) are respectively the mean and the maximum of
the RR intervals in the same recording. We can see on figure 3 the normal-
ized RR intervals obtained with N, L, R and V beats. We observe a unique
peak around zero for all QRS complexes with supraventricular origin (N, R,
L) considered in the same class according to the AAMI recommended prac-
tice [12] in opposite to V beats leading to a high RR variance. As in [2],
we extracted three features for each beat from the RR sequence: the pre-
RR interval is the RR interval between a given beat and the previous one,
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Figure 3: RR histogram for N, L, R and V beats
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the post-RR interval is the interval between a given beat and the following
one and a local average interval obtained by averaging the ten RR intervals
surrounding the considered beat.

3.2. Morphological descriptors

• QRS duration varies with origination and conduction path of the ac-
tivation pulse in the heart so, it is a fundamental feature used for
classifying beats. In this work, the QRS duration is represented by the
time interval between the two peaks Q and S.

• The morphology of the beat is captured by a four Linear Predictive
Coding (LPC) coefficients. The basic idea of this technique is that
future values of a discrete signal are estimated as a linear function of
previous samples. The most common representation is

ŷn =
p∑

k=1

akyn−k (1)

where ak is the kth linear prediction coefficient, p is the order of the
predictor, ŷn the present predicted sample and yn−k, the kth precedent
sample. Note that a1 is usually equal to 1.

3.3. Frequency features

In figure 4 (a), the estimated Power Spectrum Density (PSD) of windowed
(N, R, L and V) beats is displayed. Before computing Fast Fourier Transform
(FFT), a 180 ms Blackman window is applied to suppress the discontinuities
due to possible adjacent P and T waves. We can see on the same figure (b)
that the spectra of V beats distinguish from the spectra of N and R beats at
all energy levels because of shifting towards low frequencies. Some confusion
can be made between L and V spectra but it is dismissed by RR interval
feature which separates perfectly the two types of beats. Accordingly, we
extract 6 features, the normalized power levels corresponding to 7.5Hz, 10Hz,
12.5Hz, 15Hz, 17.5Hz and 20Hz to discriminate the beats in the frequency
domain.

3.4. QS power

To complete the frequency information, we consider detail coefficients at
level 4 and 5 obtained with discrete wavelet decomposition. At these levels,
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Figure 4: Power spectrum of different beats (a) and the relation between frequencies and
power levels (b). For better representation, we limited the frequency axis to fs/4.

the power of each QS segment is computed and used as a classification feature.
In [15], the authors have clearly showed that d4 carries the dominant power
of normal QRS complexes while d5 carries the dominant power of ectopic
QRS complexes (see figure 5). In each subband, signal variance represents
the averaged power in that band as:

σ2
x =

1

N

N∑

n=1

[x(n) − x]2 (2)

where x is the sample mean of the signal and N is the number of samples
in the considered segment. The value of N differs from one beat to another
depending on whether it is large (ectopic beat) or narrow (normal beat).

3.5. Data normalization

Using all the observations above, each beat ′i′ is represented by a 15
element vector xi. The quantities of the features may be quite different, so
their normalization is necessary to standardize all the features to the same
level before training the SVM classifier. The formula of the normalization is
defined as:

x
′

ij = tansig(
xij − xj

σxj

)
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Figure 5: Decomposition of ECG signal using ’Haar’ wavelet. Segment of MITDB119.

Where xij is the jth component of the ith feature vector . xj and σxj
are the

mean and the standard deviation of the jth component of the feature vectors,
and tansig(.) the hyperbolic tangent sigmoid transfer function. The objective
is to make each jth component to be normal distributed with zero-mean and
unit standard deviation.

4. Classifier Model

4.1. Bayes rule

A discriminant function f : X 7→ R classifies an observation x ∈ X into
one of two classes, labeled +1 or -1 . Viewing f(x) as a proxy value of
the conditional probability P (x) = P(Y = 1|X = x), one is less confident for
small values of | f(x) | corresponding for P (x) around 1/2. The strategy used
in this work is to report sgn(f(x)) = +1 or −1 if |f(x)| exceeds a threshold
δ corresponding to P (x) = Po and no decision otherwise. Assuming that the
cost of making a wrong decision is c and that of withholding a decision is r,
the smallest risk R for a decision d is:

R(d) = min{cP (x), c(1 − P (x)), r}. (3)
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From figure 6, one can see that rejecting a pattern is a viable option if
and only if r < c

2
. Bays rule can than be stated as:

0 (1−Po)  0.5    Po  1
0
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c/2
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posterior probabilities   P(x)

R
is

k

Figure 6: Expected losses against posterior probabilities P (x).

d(x) =






+1 if P (Y = 1|X = x) > Po ,
−1 if P (Y = 1|X = x) < (1 − Po) ,
0 otherwise .

(4)

To minimize the empirical counterpart of the risk 3 computationally not
feasible, one could replace it by surrogate loss functions. The most popular
are the hinge loss motivated by [18] leading to sparse solutions [19, 20] and the
logistic regression model offering ability to estimate the posterior probability
P (Y = 1|X = x) and then a good choice of the threshold δ. In this study,
P (Y = 1|X = x) have to be accurate only in the vicinity of of Po and 1−Po

(see equation 4). As in [19], we built a hinge loss function tangent to neg-
log-likelihood at f+ = log[Po/(1 − Po)] and at f− = log[(1 − Po)/Po]. The
decision rule can be expressed in terms of the function f as follows:

d∗(x, f) =






+1 if f(x) > f+ ,
−1 if f(x) < f− ,
0 otherwise .

(5)

where the output f(x) of the SVM corresponds to the decision d∗, minimizer
of the risk (3).
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4.2. Optimization

Introducing the double hinge loss results in an optimization problem that
is similar to the standard SVMs problem. Let C be the penalization param-
eter to optimize in the training phase, D = C(1 − Po). The optimization
problem is:






min
f,b,ξ,η

1

2
‖f‖2 + C

n∑

i=1

ξi + D
n∑

i=1

ηi ,

S.c yi(f(xi) + b) ≥ τ − ξi i = 1, . . . , n ,
yi(f(xi) + b) ≥ −ηi i = 1, . . . , n ,
ξi ≥ 0 , ηi ≥ 0 i = 1, . . . , n .

(6)

where τ = (Po log(Po))/(1 − Po) − log(1 − Po). To compute the solution
of 6, we use an active set algorithm following a strategy that proved to be
efficient for standard SVMs. We refer to [19] for a detailed discussion.

5. Results and discussion

The input of the classifier is a set of 15 element vectors xi, representing
the ECG beats. To fine tune a global classifier, we have selected 10 records
containing the largest number of PVC beats. This is done to provide a rela-
tive balance between the positive class and the negative class in the training
set. we used the first 5 min of data taken in the selected records. This
practice conforms to the AAMI-recommended procedure allowing the usage
of at most 5-min section from the beginning of each patients recording for
training [21]. From each segment of 5 min, were selected 150 beats leading
to a training set of 1500 vectors. During the test phase, only the last 25 min
in each type are used. Hence, the testing data are never part of any training
data.

To explain the effectiveness of the classification methodology and the
impact of the reject option, we simply apply standard statistical data visual-
ization technique by projecting the high-dimensional data onto a 2D space.
Figure 7 shows an example of the reject region produced by the SVM clas-
sifier when our algorithm is applied to 221 and 214 containing together a
negative classe of 3574 beats (1543 of Normal beats and 2003 of L beats) and
652 of V beats considered as a positive classe. On this figure, we can see the
reject thresholds given by equation (5); f+ = 0.8473 and f− = −0.8473.

A complete description of a such classifier is given by the error-reject
tradeoff (the error rate E against the reject rate R). A typical tradeoff curve
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Figure 7: scatter plot showing the reject region induced by the reject thresholds in correspon-
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regions correspond to no decision. The lines +0.8473 and −0.8473 correspond respectively
to f+ and f

−
and the line 0 corresponds to f(x) = 0 or P (Y = 1 | X = x) = 0.5.

is displayed on figure 8(a). For small rejection rate (R < 1.9%), the curve
shows a high slope. This means that the majority of the rejected patterns
would have been erroneously classified. We point out that the advantage of
classifying with rejection can be judged by the error-reject tradeoff. figure
8(b) indicates the variation of the classification cost given by

Cc = [c(FN + FP ) + rRrej]/Ntot (7)

where FP (False Positive) is the number of examples labeled −1 and cate-
gorized in the positive class, FN (False Negative) the number of examples
labeled +1 and categorized in the negative class, Rrej the number of rejected
examples and Ntot, the number total of examples. This figure shows that the
optimal classification cost Cc corresponds to a good error-reject tradeoff.

A statistical parameter is also used to compare detection algorithms. The
sensitivity of the classifier is computed by

Se =
TP

TP + FN

where True Positive (TP) are the samples labeled +1 categorized in the
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positive class.
A lot of studies dealing with heartbeat classification using the same

database are present in the literature. All previous works used a two de-
cision rule (No Rejection). The results we obtained with No Rejection (NR)
show to be competitive to average results reported by other authors sepa-
rating beats whose origin is from the SA node from premature ventricular
contractions (see Table 1). On the same table, we reported our achieved
results corresponding to the Minimal Classification Cost (MCc). Note how-
ever that the main advantage of our approach is the ability to optimize the
classification cost.

Table 1: Comparison of the performances of our classifier with others using Artificial Neu-
ral Network (ANN) or hybrid Genetic Algorithm-SVM (SVMGA) in terms of sensitivity.

Method Model classifier Se(%)
[2] ANN 94.4
[4] SVMGA 98.91
[7] ANN 98.4
Our algorithm with NR — 98,2
Our algorithm for MCc — 99
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6. Conclusion

In this paper, we proposed an automated heartbeat classifier, using Sup-
port Vector Machines with an embedded reject option. The proposed system
accomplishes preprocessing, feature extraction and recognition tasks for ec-
topic heartbeats detection.

A set of features including frequency informations, RR intervals, QRS
morphology and AC power of QRS detail coefficients is exploited to charac-
terize each beat. The resultant feature vector representing each ECG heart-
beat is used as input of the modified SVM classifier.

For this purpose, a cost-sensitive reject rule for SVMs is set. The main
feature of our system is that the decision rule uses dynamic reject thresholds
following the cost of rejecting a sample and the cost of misclassifying a sample
in order to optimize the classification cost. This approach is important in
medical applications when rejection may even be more preferable than risking
misclassifications.

Our results shown above illustrate a good error reject tradeoff and indicate
an error rate of 2.8% with no rejection and less than 1.2% for the minimal
classification cost. These results are competitive to other published studies.
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