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ABSTRACT 

In this paper, we propose a method for turbulence characterization using sparse representation of channel’s impulse response. 

We consider the case of moving vortices created naturally or artificially that do not conserve their physical properties when 

observed at two distinct positions in space. Existing amplitude–based techniques fail to provide an accurate representation 

when the physical properties of the dynamic turbulence are altered. A two stages approach is proposed in this paper. The first 

one deals with the design of robust waveforms for sensing of turbulent phenomena. The second stage consists in sparsely 

representing the decomposition of the turbulence’s impulse response, based on a physically driven decomposition basis. Tests 

carried out in a reduced scale experimental facility show, on real data, the efficiency of the turbulence tracking. We compare 

several types of signals and show that wide band signals are best suited for the application, achieving a high resolution 

combined to excellent results in terms of robustness. 

 

Keywords— sparse representation, wide band waveforms, underwater acoustic propagation, turbulence, decomposition. 

 

1. INTRODUCTION 

 

The dynamics of aquatic phenomena can be understood as the propagation of vortices produced either naturally 

(natural turbulence embedded in water flow, marine life such as fish and mammals) or artificially (underwater obstacles, 

submarines, vessels). These vortices are detected and analyzed using pairs of acoustic transducers. If a vortex intersects the 
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path between two pairs of active transducers, the signatures observed on the received signal’s amplitudes are quantifiable. 

However, specific phenomena associated to the context (attenuation, dispersion, obstacles, etc.) alter the signature when the 

turbulence travels to another pair of transducers and thus the similarity between the two signatures can be weak.  

An alternative is to decompose the impulse responses corresponding to the two transducers pairs on basis of 

elementary functions. In order to adapt the basis to the context of our application, two concepts are studied in this paper. 

First, we propose to design a decomposition basis inspired by the physical characteristics of the vortex “seen’ by the impulse 

response of two propagating acoustic paths.     

The second concept is the one of the sparse representation [1]: the analyzed phenomena can be recovered only using 

some of the decomposition coefficients that are relevant with respect of the minimization criterion, thus obtaining a sparse 

representation of the phenomena. At this level, we show the interest of the L1 norm.  

The article is structured as follows: section 2 presents an analysis of the best waveform to carry turbulence 

information,  section 3 presents the theoretical concepts used in our work: waveform decomposition and sparse 

representation. Section 4 presents the main results and remarks of our work and section 5 presents the concluding remarks 

and future work.  

 

2. TURBULENT FLOW INTERACTION WITH DIFFERENT WAVEFORMS 

 

 The analysis of turbulent phenomena is of major importance in the field of hydraulic systems or monitoring of 

natural environments. Conventional techniques rely on short sine pulses that are transmitted into the turbulent environment. 

The turbulence modifies the amplitudes of pulses in a random way and the analysis of the amplitude modification, when 

analyzed in bi-static configurations, conducts to the estimation of the turbulence’s dynamics [2]. However, these techniques 

quickly reach their limitations because they provide little information regarding the dynamics of the turbulent flow. It is 

therefore necessary to construct more advanced waveforms to better understand the evolution of underwater turbulence.  

The first research direction consists of adaptive waveform design that will be used for robust sensing of the 

turbulence. As a reference, typical to existing techniques, the short pulses are used as emitted signal.  Two types of signals 

are then investigated for their potential to deliver a most accurate description of the turbulence dynamics:  frequency shift 

keying (F.S.K.) signals and linear frequency modulations (CHIRPS). These signals are illustrated in the figure 1.  
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Figure 1. Different types of signals used to characterize turbulent phenomena. 

 

In order to illustrate the motivation of our approach, the next example shows the evolution of impulse responses 

obtained via a matched filtering procedure, corresponding to the three types of signals, when the sensing waveforms interact 

with a moving vortex.  

  

Figure 2. Impulse responses – pulse (conventional techniques). 
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Figure 3. Impulse responses – FSK signals. 

 

Figure 4. Impulse responses – CHIRP signals. 

Figure 2 shows that due to the short duration of the pulse and thus low level of transmitted energy, the turbulence 

signature is reduced and therefore this type of signal is not suited for our application. Little information can be extracted, as 

most methods rely on the time delay between the emitted and received signal and amplitude changes.  In addition to that, the 

signals can be easily corrupted by unwanted interference (equipment noise, vibrations, echoes, etc.) and therefore the range of 

applications is limited.   In figure 3 however, the results are improved, but a relevant signature is still unavailable. This is due 
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to the short duration of the F.S.K. steps. Initially developed for coding binary information, the F.S.K. signals’ capability of 

encoding turbulence information is limited. In addition, the on/off commutation of transducers in a short time (successive 

pulses that are injected into the transducers in short amount of time), such as the pulses in the first 120µs in the second 

subplot of figure one can cause more problems. The acoustic transducers do not support very short energy keying times (of 

the order of tens of µs) and received signals may be distorted. Also due to the short duration between these steps reflection 

might occur which render the technique less robust to interference. 

Figure 4 illustrates the case of CHIRP signals. A more precise description of the turbulent phenomena is provided as 

expected. The reason is that the wide band signal’s duration is large enough to capture the passage of a turbulent front even in 

situations where the transmission has a high attenuation (small detail in figure 4). This represents an increase in the 

sensitivity of the method.  

Consider the emission of two wide band signals from figure 1 using two acoustic transducers, se1(t) and se2(t), in the 

form of  two linear frequency modulations, described by the following equation:  

 

 
2

e1 e2 0
t

s ( t ) s ( t ) A exp j t ,
2

                  (2.1) 

 
where Ȧ0 + γt is the linear frequency variation law. The received signals sr1(t) and sr2(t)  for each transducer can be 

expressed, ignoring the noise, as: 

 
r1 r1 e1

r2 r2 e2

s ( t ) A ( t ) s ( t )

s ( t ) A ( t ) s ( t )




  
  

  (2.2) 

 
where τ is the propagation time of the vortex between the emission and reception transducers. The envelopes Ar1 and Ar2 in 

the equations (2.2) contain the information about the turbulence evolution. We calculate the impulse response of the system 

for each transmission by correlating the received signal with the emitted one [3]: 
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

  (2.3) 
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Based on (2.3), the turbulence signature can be perceived as an inhomogeneity that appears on an otherwise straight 

wave profile, as illustrated in figure 5.  

 

Figure 5. The signature of turbulence on the envelope of the impulse response.  

 

3. DECOMPOSITION BY SPARSE REPRESENTATION 

 

The general layout of the analyzed phenomena is illustrated in figure 6. Wide band signals are transmitted using two 

pairs of sensors placed on the Upstream and Downstream sides. The reason for a second pair of sensor resides in the fact that 

turbulence dynamics changes with distance. The sources of these changes must be identified (natural energetic decay, 

artificial and natural sources) or reduced in order to recover almost identical signatures of the same turbulence at two 

different paths separated by a certain distance. 

In the absence of turbulence (such as a vortex), there are no changes in the shape of the impulse responses of the 

channels defined by the two pairs of transducers. The passage of  turbulence between the transducers introduces 

modifications on the amplitudes of the impulse responses, calculated for each transmission, a fact that can be seen as 

signatures of the turbulence’s source.  

However, the vortex can change the characteristics while moving from one pair of sensors to the other, the similarity 

of the two signatures is low and can be considered as belonging to two different phenomena. The simple observation of the 

impulse responses is not enough for turbulence dynamics estimation. 
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Therefore, the turbulence dynamics must be estimated by analyzing the impulse responses using their decomposition 

based on a physically – driven dictionary. That is, the decomposition attempts to highlight the common elements that will 

allow us to identify the turbulence. 

 

 

Figure 6. Vortex travelling with the flow of water  

 

 

Figure 7. Decomposition principle of an turbulence extracted from an impulse response. 
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However, the extraction of this signature must take into account the fact that due to occurring reflection of echoes, a 

secondary much smaller peak appears. This representation of the signature (amplitude data) cannot reveal accurate amount of 

information regarding the physical properties of the vortex. Therefore, we propose the analysis via a decomposition using an 

appropriate dictionary function constructed from the waveform received by the first pair of sensors (upstream acoustic path) 

having an amplitude variation similar to the one introduced by the vortex (see figure 7).   

The basic principle of the decomposition is illustrated, using real data, in figure 7. Step one of the sparse 

representation consists in constructing the elements of the initial dictionary which is the same for both hr1(t) and hr2(t), with a 

zero mean and a rapid decrease. The dictionary starts from an initial waveform ȥ0, which is a modulated sine wave centered 

on the resonance frequency of the transducers as illustrated in equation (2.4): 

 

 0 0( t ) A( t ) exp( j t ),       (2.4) 

 

where Ȧ0 corresponds to the  resonance frequency of the transducers. The term A(t) represents the amplitude modulation 

produced by the dynamic vortex over the impulse responses. The choice of this term is based on the physics of the vortex: 

from one path to another, the envelopes are similar, but due to the heterogeneity induced by the vortex the shape of the 

envelope suffers a contraction in time (figure 8).  

 

Figure 8. The contraction of the impulse response envelope due to the dynamic vortex. 
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Thus, the choice of A(t) is made from the envelopes of the impulse responses that are affected the most by the 

turbulence, in order to provide a physically adapted dictionary for the decomposition. As the turbulence progresses through 

water, it keeps on enlarging due to its inertial character [4] and its energy decreases with distance.  

      Having defined the initial waveform we construct a set of functions that are shifted in time and scale, according to the 

continuous wavelet methodology [5], thus creating a dictionary of elementary functions, at different scales, shifted in time: 

 

 s,u 0
1 t u

( t ) , s 0.01 n; n 1...N
ss

            (2.5) 

 

where N is the maximum decomposition resolution,  s and u are, respectively, the scale and shift parameters of the initial 

waveform ȥ0. The envelopes of the impulse responses from the Upstream side will be more contracted in time than the ones 

from the Downstream side. The reason for selecting the initial waveform among the impulse responses where the envelope’s 

contraction is the highest resides in the decomposition process. The impulse responses will match the initial waveform ȥ0 at 

different scales highlighted by the s parameter in (2.5). The representation that we wish to obtain for hr1(t) and hr2(t) can be 

written, using the resulting coefficients, as follows [6] : 

 

N
1

r1 s,u s,u
i 1

N
2

r2 s,u s,u
i 1

h ( t ) C ( t )

h ( t ) C ( t )









 

 




  (2.6) 

 

where       and       are the N resulting coefficients issued from the scalar product between the signal and each element of the 

ȥs,u(t) dictionary (basis) for the two impulse responses. The       
 and       coefficients represent the projection of the impulse 

function hr(t) on the ȥs,u(t) set of functions described in (2.4): 

 

 i
s,u r,i s,uC h ,    (2.7)     

The second step of the sparse optimization consists in minimizing the number of coefficients obtained from the 

decomposition. This is defined as a problem of minimization [2] with solutions derived from convex optimization [7].  
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In the case of the turbulence estimation, a possible solution to the problem can be formulated as follows [8]: quantify 

the impact of each coefficient - basis pair between the two estimated turbulence signatures, in our context, and minimize the 

number of coefficients needed to construct two signatures  ̃   and  ̃   with minimum errors.  

Based on (2.6), we calculate a residual for each one of the N coefficients (Ci,j
s,u) and its corresponding dictionary 

element: 

 
P

i i , j
p ri s,u s,u

j 1

R ( t ) h C , P, j 1...N; i 1,2


       (2.8) 

 
where RP

j(t) is the residual calculated for the Pth coefficients of the decomposition. 

In order to quantify the impact of each residual with respect to the decomposition and minimize the number of 

coefficients, we can use the L1 or L2 norm for each of the N residuals and select only the K coefficients corresponding to the 

number of coefficients for which the  norm is minimum [9]. For each transmission, we obtain a residual matrix RP containing 

N residuals calculated form (2.8). The optimum number of coefficients was fund by calculating a L1 or L2 norm for each line 

of the matrix (a residue): 

 

R

R

i
P 11

i
P 22

K min ( t ) u sin g the L norm

K min ( t ) u sin g the L norm

   
   

  (2.9) 

 
We choose to use the L1 norm over the L2 norm because the former leads to fewer coefficients than the latter as 

proved by the figure 9. In this figure, the plots for the L1 and L2 norms are zoomed in around their minima points. 

The minimum of the L1 norm correspond to the lowest number of coefficients used to represent sparsely the two 

signatures  ̃   and  ̃  : 

 

P~ 1
r1 s,u s,u

i 1

P~ 2
r2 s,u s,u

i 1

h ( t ) C ( t )

h ( t ) C ( t )









 

 




  (2.10) 

     Since the basis of the decomposition is the same for both  ̃   and  ̃     , the two signatures will have a very strong 

likelihood, as it will be shown in the next sections.  
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Figure 9. Variation of the L1 and the L2 norms. 

      

4. RESULTS 

 

The tests were carried out in our reduced scale experimental facility (figure 10). For our experiment, we used two 

pairs of 1 MHz transducers placed on the outer walls of the tank. The length of the acoustic path was 1 meter at a depth of 40 

cm. Wide band signals were generated with a linear frequency modulation between 800 kHz and 1.2 MHz, and were 

downloaded into a signal generator for transmission. The repetition rate of the signals was 1msec and the duration of the wide 

band signal is of 200µs in order to avoid the overlap of echoes over the received signals. First, the pairs of transducers had to 

be set apart by a certain distance because of the occurrence of crosstalk caused by the wide beam angle of each transducer. 

 

 

Figure 10. Reduced scale experiment test bench. 
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Water flow was created using the recirculation pump in order to provide a background turbulence noise that would 

eventually superimpose over the simulated phenomena. Air was pumped through a tube submerged in the flow and the 

created turbulence intersected the two acoustic paths.  

Figures 11 and 12 present the gradient of the impulse response for the Upstream and Downstream paths. Due to the 

use of wide band signals, the similarities between the two signatures are already visible. 

 

Figure 11. Turbulence signature for Upstream path. 

 

Figure 12. Turbulence signature for Downstream path. 
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The scale factor of s (decomposition basis parameter) was set to 0.01 due to resolution considerations (the number of 

elements in the dictionary) and the initial waveform, was selected among the zones extracted from the impulse response 

where the turbulence had the strongest effect, thus creating a physically driven basis. Each received signal yielded 

decomposition and a number of K coefficients was calculated using the L1 norm. It was no surprise that except for the 

moments where the effects of turbulence were strongest, the number of coefficients used for decomposition remained 

constant.  

We compare our results in two ways: first, we show a significant improvement with a typical representation 

technique consisting in calculating the maxima values of the impulse response corresponding to each transmission as 

illustrated in figure 11. This technique is used extensively in certain flow metering applications presented in [10] and [11] 

and is sensible to interference induced by the measurement conditions. 

Secondly, we use the results presented in figure 13 to calculate the average flow velocity between the acoustic paths. 

The accuracy of estimating the average velocity depends on the precision of estimating the time delay between the two 

acoustic paths. This is done by computing the cross correlation of the two signatures (Upstream and Downstream), as 

illustrated in figure 14 (a zoomed region displaying the main peaks of the two cross correlations). 

In the second subplot of figure 13, we can observe an enhanced similarity between the signatures for the two 

acoustic paths, which describes an initial dynamic and random vortex. This result is possible only because of the physically 

driven dictionary that was used in the decomposition.   

The second value (the real value calculated after the decomposition, highlighted on the red dotted trace with the 

vertical black line) corresponds to the correct orientation of the flow and a more pertinent 1.47m/s flow velocity is computed. 

Using the average flow velocities from multiple levels over a square section output the values of flow on that section.  
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Figure 13. Turbulence representation before and after the sparse decomposition. 

  

Figure 14. Flow velocity calculation using the cross correlation between the acoustic paths. 

 

Accurate flow values calculated with existing methods are biased by unfavorable conditions: low turbulence levels 

[11] and transducer spacing [12].   Figure 14 shows that, by comparing with the initial estimation in figure 13, the sparse 

representation manages to provide a correct estimation of a turbulence translated in space. The purpose of sparse 

representation, as shown in [9], was to recover a signal using minimum number of coefficients from incomplete and altered 

measurements.  
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5. CONCLUSIONS 

       

In this paper, we show  that sparse representation and adaptive waveform design  techniques can be successfully  

used to recover a  complete representation of turbulence from incomplete and  contaminated measurements (sparse  

representation).  We highlight the importance of adapting the content of the waveforms by studying the physics of the 

phenomena under measurement. This is due to the failure of a general accepted waveform to provide relevant and accurate 

information. Our method takes into account the turbulent nature of flow and the changes suffered by a waveform as it 

interacts with turbulence.  

A small scale experiment consisted in generating turbulence was carried out and wide band signals were used to 

highlight the passage of the turbulence at two separated acoustic paths, all in the least favorable conditions.  

Results obtained with our technique prove the theoretical concepts of sparse representation and adaptive waveform 

using large band signals: more information can be extracted, leading to more accurate results due to the robustness of the 

processing method.  

Our work will focus in the future on combining adaptive waveform techniques with sparse representations aiming at 

finding a signal that is appropriate to underwater turbulence estimation using an orthonormal decomposition basis.  
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