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The 4-way deterministic Periodic Domino Problem is undecidable

Bastien Le Gloannec

Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans, France

Abstract

The most fundamental undecidable question on tilings is the Domino Problem that asks whether a Wang
tileset tiles the discrete plane. Lukkarila proved in 2009 that it remains undecidable when restricting the
input to the class of 4-way deterministic tilesets. Due to the existence of aperiodic tilesets, the most natural
distinct variant of this problem is the Periodic Domino Problem which asks whether a Wang tileset admits
a periodic tiling of the plane. This problem is also undecidable. Jeandel recently discovered a new and
elegant proof for this result. Inspired by this new proof technique and some ingredients from Lukkarila’s
construction, we prove that it remains undecidable when restricted to 4-way deterministic tilesets.
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Wang tiles are unit square tiles with a color on each edge. Wang tiles and their purely combinatorial
and syntactical formalism of discrete tilings were introduced by Wang [1] in relation to the decision question
of the ∀∃∀ fragment of the first-order logic. The most common associated decision problem is the Domino
Problem which consists in deciding whether a Wang tileset (given as input) tiles the discrete plane. This
problem was proved undecidable by Berger [2]. A simpler construction was later introduced by Robinson [3].
Several recent more synthetic approaches to this problem also exist in the literature [4, 5, 6].

The undecidability of the Domino problem is tightly related to the existence of aperiodic tilesets, i.e.
tilesets that tile the plane but never in a periodic way. Indeed, a classical variant of the Domino Problem
is the Periodic Domino Problem that asks whether a Wang tileset given as input admits a periodic tiling.
As the Domino Problem is co-recursively enumerable while its periodic variant is recursively enumerable,
both problems would be equal and decidable in a world without aperiodicity. The Periodic Domino Problem
was proved undecidable by Gurevich and Koryakov [7]. This result is obtained by a slight modification
of Berger’s construction [2] for the Domino Problem. Similarly, Robinson’s construction from [3] can be
adapted to prove this result as detailed in [8] for instance. It can also easily be seen that the undecidability
of the Periodic Domino Problem is equivalent to the recusive inseparability of the aperiodic tilesets from
the periodic ones (tilesets that admit a periodic tiling). A new and in many ways simpler proof technique
was recently introduced by Jeandel [9]. This method does not rely anymore on a previous proof of the
undecidability of the Domino Problem, but simply takes as input any arbitrary aperiodic tileset.

A Wang tileset is 4-way deterministic if any of its tilings is uniquely determined and can be locally
reconstructed from the tiles from any path crossing each line and column of the discrete plane. Deterministic
tilesets were originally introduced by Kari [10] to prove the undecidability of the nilpotency problem of
one-dimensional cellular automata by reduction of the Domino Problem with input restricted to one-way
deterministic tilesets. This problem had actually already been considered and proved undecidable in a
somehow forgotten proof of the undecidability of the Domino Problem by Aanderaa and Lewis [11]. A
two-way deterministic aperiodic tileset also already existed in the literature: the 16 Wang tiles derived
from the geometrical aperiodic set of Ammann A2 [12]. A 4-way deterministic aperiodic tileset was first
built in 1999 by Kari and Papasoglu [13] and an isomorphic tileset was recently discovered starting from a
different construction in [14]. The Domino Problem with input restricted to the class of 4-way deterministic
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tilesets was proved undecidable ten years later by Lukkarila [15]. Although the Periodic Domino Problem
was proved undecidable when restricted to one-way deterministic tilesets by Mazoyer and Rapaport [16] to
derive the undecidability of the nilpotency of one-dimensional cellular automata over periodic configurations,
the far more restrictive setting of 4-way deterministic tilesets remained untreated.

We prove in this article that the 4-way deterministic Periodic Domino Problem is undecidable. A quite
natural strategy to obtain such a result would be to determinize a construction from an existing proof of
undecidability in the non-deterministic case. Some constructions are however intrinsically non-deterministic.
Moreover, determinism is a low-level, i.e. syntactical, property of the tileset, hence the determinization
process requires a comprehensive knowledge and understanding of the construction at the level of the tiles
and a careful treatment of non-determinism issues. Instead, we are inspired here by the general idea of the
proof technique from Jeandel [9], which allows a rather neat high-level presentation and prevents us from a
lot of purely technical annoying considerations. Our proof also builds upon the 4-way deterministic Turing
machine simulation from Lukkarila [15].

1. Wang tiles and determinism

AWang tile is a unit square tile with a color on each edge. Formally, it is a quadruple t = (tW , tS , tE , tN ) ∈
C4 where C is a finite set of colors, as depicted in figure 1. A tileset is a finite set of Wang tiles. Given a tileset
τ , a tiling of the discrete plane is a map c : Z2 → τ that associates to each point of the plane a tile of τ such
that adjacent tiles share the same color on their common edge: for all (x, y) ∈ Z

2, t(x, y)E = t(x + 1, y)W
and t(x, y)N = t(x, y + 1)S .

It is often convenient to describe Wang tiles by drawing simple patterns on them, instead of explicitely
writing color letters. In that case, the color matching condition for tilings is represented by the continuity
of pattern lines when crossing edges.

A tiling c is periodic if there exists a periodicity vector p ∈ Z
2 such that for all x ∈ Z

2, c(x+ p) = c(x).
A tiling is bi-periodic if it admits two linearly independent periodicity vectors, or equivalently if it admits
both a horizontal and a vertical period. The following lemma (folklore) links these notions regarding sets of
tilings.

Lemma 1 (folklore). The set of tilings by a tileset τ contains a periodic tiling if and only if it contains a
bi-periodic tiling.

A tileset is aperiodic if the set of tilings by τ is non-empty and does not contain any periodic tiling.
A tileset τ is ne-deterministic if each tile t ∈ τ is uniquely determined by its pair of colors (tW , tS).

Equivalently, for any pair of tiles (tW , tS) ∈ τ2, there is at most one tile t ∈ τ that is simultaneously
compatible to its west side with tW and to its south side with tS . {nw, sw, se}-determinism are defined
symmetrically. A tileset is 4-way deterministic if it is simultaneously deterministic in the four directions. In
this article, we will essentially consider 4-way deterministic tilesets. As we will often make use of this without
mentionning it, observe that it clearly follows from the definitions that any subset of a 4-way deterministic
tileset remains 4-way deterministic.

The earliest and most common decision problem in the literature on tilings is the following.

Problem 1 (Domino Problem, [1]). Given a tileset τ , decide whether there exists a tiling by τ .

This problem was proved undecidable in [2].
The periodic variant of the Domino Problem is the following.
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Figure 2: A tile by τ and the corresponding tiles in τh, τv and τc

Problem 2 (Periodic Domino Problem). Given a tileset τ , decide whether there exists a periodic tiling by
τ .

This problem was introduced and proved undecidable in [7]. A new proof technique was recently discov-
ered in [9].

In this article, we are interested in the 4-way deterministic restrictions of these problems where the input
tileset is furthermore required to be 4-way deterministic. The 4-way deterministic Domino Problem was
proved undecidable in [15]. We prove in the following of this article that the 4-way deterministic Periodic
Domino Problem is also undecidable.

2. Some transformations on tilesets

In this section, we introduce some simple operations or transformations on tilesets that preserve the
determinism and will be useful in our construction.

Product. Given two tilesets τ1 ⊆ C4

1
and τ2 ⊆ C4

2
, the product tileset τ = τ1 × τ2 is formally defined as the

Wang tileset
τ = {((w1, w2), (s1, s2), (e1, e2), (n1, n2)), (wi, si, ei, ni) ∈ τi, 1 ≤ i ≤ 2}

over the set of colors C1×C2. Although the set τ is not strictly speaking the cartesian product of sets τ1 and
τ2, it is convenient to interpret it as such, seeing a product tileset as a two-layered tileset whose tiles hold
a tile of τ1 on the first layer and a tile of τ2 on the second layer with a local matching condition requiring
that the matching conditions of both layers are verified.

It is not difficult to see that if τ1 and τ2 are 4-way deterministic, then τ1× τ2 is also 4-way deterministic.

Disjoint mirror. Given a tileset τ over a set of colors C, the horizontal disjoint mirror tileset of τ is the tileset
τh obtained by duplicating all colors and swapping west and east colors of tiles from τ . More formally, we
create a disjoint copy Ch of C whose colors are denoted ah for each a ∈ C and we define τh = {(eh, sh, wh, nh) ∈
C4

h
, (w, s, e, n) ∈ τ)}. We symmetrically define the vertical disjoint mirror τa

v over a disjoint copy Cv of C
(whose colors are denoted av for each a ∈ C) by τv = {(wv, nv, ev, sv) ∈ C4

v , (w, s, e, n) ∈ τ)}. We finally
define the central disjoint mirror τ c over a disjoint copy Cc of C (whose colors are denoted ac for each a ∈ C)
by τ c = {(ec, nc, wc, sc) ∈ C4

v , (w, s, e, n) ∈ τ)}. This last transformation corresponds to the combination of
the two previous ones (hence to a central symmetry on the tiles). These three definitions are illustrated on
figure 2.

It is clear that if a tileset is 4-way deterministic, any of its disjoint mirrors is also 4-way deterministic
(even though some determinism directions are interchanged in the transformation process). As their sets of
colors are disjoint, any of the (disjoint) unions of a tileset with some of its disjoint mirrors, in particular
τ ⊔ τh ⊔ τv ⊔ τ c, is also 4-way deterministic.

Grouping. Given a tileset τ , the 2× 2 grouping of τ is the tileset τ2×2 over the set of colors τ2 defined by

τ2×2 =
{

(ac, cd, bd, ab) ∈ (τ2)4, a b
c d

is a valid 2× 2 pattern by τ
}

The tileset τ2×2 simply is a coding in Wang tiles of 2 × 2 patterns by τ with the local matching condition
that two horizontally (resp. vertically) adjacent patterns overlap on one column (resp. row). Considering a
tile of τ2×2, we will use the notations ��

��, ��
��, ��

�� and ��
�� to identify the four underlying tiles of τ .

Observe that if τ is 4-way deterministic, then its 2× 2 grouping τ2×2 is also 4-way deterministic.
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Figure 3: Description of tileset τ1

3. The deterministic reduction

In this section, we prove the following result.

Theorem 1. The Periodic Domino Problem restricted to 4-way deterministic tilesets is undecidable.

We proceed by reduction of the Halting problem of Turing machines on the empty tape. Both problems
are recursively enumerable. Given a Turing machine M , we build a 4-way deterministic tileset that always
admits non-periodic tilings (some of them will actually not even contain Turing computations) but admits
periodic tilings if and only if the computation of M halts from the empty tape.

The built tileset will be a product of several layers, each of which will be 4-way deterministic.

First layer: Aperiodic layer with vertical mirror lines. We consider here a 4-way deterministic aperiodic
tileset τa on the set of colors C. As already mentioned, such tilesets exist, some are built in [13, 14]. Let
us stress that we do not need here to know anything about the way they are built or the structure of their
tilings, the only required properties are 4-way determinism and aperiodicity. Let us consider the horizontal
disjoint mirror τa

h of tileset τa over a disjoint copy Ch of C (whose colors are denoted ah for each a ∈ C). It
is clear by construction that τa

h is aperiodic. We also add a set of vertical mirror line tiles by introducing a
new color # /∈ C ∪ Ch and defining Mv = {(a,#, ah,#) and (ah,#, a,#), a ∈ C} as depicted in figure 3(a)
(where the color # is painted black). We then define the tileset τ1 as the disjoint union of the three previously
considered tilesets τ1 = τa ⊔ τa

h ⊔Mv.
A typical tiling by τ1 is represented on figure 3(b). Due to the addition of mirror lines, this set is no

longer aperiodic.

Lemma 2. τ1 satisfies the following properties:

1. τ1 is 4-way deterministic.

2. Every horizontally periodic tiling by τ1 contains a vertical mirror line. Hence, by periodicity, it contains
infinitely many such lines, the distance between two consecutive lines being bounded.

Proof. For the point 1, as τa is 4-way deterministic, τa
h also has this property. As their sets of colors are

disjoint, τa ⊔ τa
h is 4-way deterministic. The tileset Mv is also 4-way deterministic since the color on each

side of a mirror line is uniquely determined by the color on the other side. The color # introduced in Mv

being new, τ1 is in turn 4-way deterministic.
For 2, if such a tiling does not contain any vertical mirror line, then it must be a tiling by one of the

aperiodic tilesets τa or τa
h. It is hence non-periodic, a contradiction.
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Figure 4: Computation layer of τM

Second layer: Aperiodic layer with horizontal mirror lines. Let us enrich the previous tileset by building,
symmetrically to what we have just done1, the vertical counterpart τv of τ1 and define the two-layered tileset
τ2 = τ1 × τv.

Lemma 3. τ2 satisfies the following properties:

1. τ2 is 4-way deterministic.

2. Every bi-periodic tiling by τ2 contains a (irregular) grid (whose vertical and horizontal lines are to be
read on the first and second layer respectively) with bounded rectangle size.

Proof. The point 1 is clear as τ2 is a product of 4-way deterministic tilesets.
The point 2 is a direct consequence of the argument of lemma 2 (point 2) applied both horizontally on

τ1 and vertically on τv.

Third layer: Turing computation. We consider here the 4-way deterministic tileset introduced by Lukkarila
in [15] (section 5, theorem 6) to simulate any given Turing machine in the tilings. This tileset is used to prove
the undecidability of the 4-way deterministic Domino Problem with a seed tile, that asks whether a 4-way
deterministic input tileset containing an identified seed tile admits a tiling of the plane in which the seed
tile appears. It is generally easier to deal with that problem than the general Domino Problem as the seed
tile can for instance be used to properly initialize an empty Turing machine tape with exactly one machine
head. This tileset is a subset of a product of several layers, one of them (the first layer in [15], section 5.2)
being a classical simulation of a Turing machine (whose head always moves at each transition) in Wang tiles
using the tiles represented on figure 4(a) (where qi is the initial state and B the blank letter). Such a tileset
is obviously not itself 4-way deterministic, one of the difficulties overcame in [15] was to determinize it by
coupling it with a particular structure on other layers. The built tileset draws the space-time diagram of
the machine in the tilings, as depicted in figure 4(b). The lines of the tiling realize the transitions, each line
of the diagram of the machine can be read at the edge between two lines of the tiling.

Consider a Turing machine M and the associated 4-way deterministic simulation tileset τM with unique
seed tile t0 (which simulation layer contains the indicated seed tile of figure 4(a)). We denote as F ⊆ τM the
set of tiles in τM whose Turing machine simulation layer transmits a final state of M from its west or east

1Both steps could actually have been done simultaneously combining directly the four mirrors of τa, we however believe
that a two-step presentation is lighter and clearer.
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color to its north color. Tiles of F mark the end of the simulated Turing computation. Note that a tiling
of the whole plane cannot contain both t0 and a tile of F : Assuming that transitions from a final state are
undefined in the Turing machine (which is the usual convention), there is no transition tile in the set with
a final state as south color, hence the line directly on top of the line containing a tile of F cannot be tiled
without error.

Let us consider the three disjoint mirrors of τM , over the set of colors C, denoted as τM
h, τM

v, τM
c, over

the respective sets of colors Ch, Cv, Cc (disjoint copies of C). We assemble these four tilesets using a parity
grid tileset GM whose tiles are represented on figure 5(a). Their purpose is to draw a grid with four types
of rectangles alternating depending on the horizontal and vertical parities, as depicted in figure 5(b). The
following constraint on GM will be crucial for our final result and cannot be read on the figure: Basically
any color of τM (and its mirrors) can appear along grid lines of τM except for horizontal colors containing
a machine state that cannot appear along vertical grid lines. The purpose of this alphabetical restriction
is to forbid a Turing machine head from leaving its rectangle and complementarily to forbid any other
Turing machine head from appearing unexpectedly in a rectangle. As the grid lines of GM play the role of
mirror lines for the colors of the four mirror tilesets of τM , GM is easily seen 4-way deterministic. We define
τ ′
M

= τM ⊔ τM
h ⊔ τM

v ⊔ τM
c ⊔ GM . Because the colors associated to the grid lines of GM do not appear

in any of the four mirror tilesets of τM , it is not difficult to see that τ ′
M

is 4-way deterministic. The tilings
by τ ′

M
are simply irregular parity grids (with possibly infinite rectangles) with patterns by each of the four

mirror versions of τM in each of the four types of rectangles, as depicted in figure 5(b). Patterns are locally
symmetrized along grid lines.

Let us assemble τ ′
M

with our previous construction τ2 by defining a three-layered tileset τ3 as a subset
of τ2 × τ ′

M
(as τ2 has two layers, we consider here the tiles of τ ′

M
as the third layer) with the following

restriction on tiles: A vertical (resp. horizontal) mirror line appears on the first (resp. second) layer (tiles of
τ1, resp. τv) if and only if it is coupled with a vertical (resp. horizontal) grid line tile or a cross of GM on the
third layer (tiles of τ ′

M
). Note that as a consequence, a vertical mirror line on the first layer is coupled with

a horizontal mirror line on the second layer if and only if the third layer holds a cross of the grid. Moreover,
a tile of τM ⊔ τM

h ⊔ τM
v ⊔ τM

c appears on the third layer if and only if it is coupled with tiles from the
aperiodic sets on the first and second layers.

Lemma 4. τ3 verifies the following properties:

1. τ3 is 4-way deterministic.
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2. Every bi-periodic tiling by τ3 contains a grid on its third layer with finite patterns (possibly empty) by
one of each of the four mirror tilesets of τM in each of its four types of rectangles.

Proof. τ3 is 4-way deterministic as a subset (restriction on tiles) of the product of the 4-way deterministic
tilesets τ2 and τ ′

M
.

By lemma 3 (point 2), the third layer of any bi-periodic tiling by τ3 contains a grid of finite rectangles.
By construction of τ ′

M
, each of the four types of rectangles contains a finite pattern by its associated

mirror tileset of τM . Note however that any patterns can appear provided that they are correctly locally
symmetrized along grid lines (and that they do not contain a machine head in their horizontal border colors
due to the restriction on GM ).

It only remains to enforce correctly initialized and terminating Turing computations in the rectangles of
the third layer of τ3. We denote as th

0
, tv

0
, tc

0
and Fh, F v, F c the mirror versions of the seed tile t0 ∈ τM

and the final set F ⊂ τM in the mirror tilesets τh
M
, τv

M
, τ c

M
respectively. Let us define τ4 as a subset of the

2× 2 grouping of τ3 with the following restriction on the third layer of the 2× 2 grouped tiles:

• if the tile ��
�� is the cross A, then the tile ��

�� must be t0;

• if the tile ��
�� is the cross D, then the tile ��

�� must be in F ;

• if the tile ��
�� is the cross A, then the tile ��

�� must be th
0
;

• if the tile ��
�� is the cross D, then the tile ��

�� must be in Fh;

• if the tile ��
�� is the cross A, then the tile ��

�� must be be tv
0
;

• if the tile ��
�� is the cross D, then the tile ��

�� must be in F v;

• if the tile ��
�� is the cross A, then the tile ��

�� must be be tc
0
;

• if the tile ��
�� is the cross D, then the tile ��

�� must be in F c.

These constraints are summarized on the figure 6.

Lemma 5. τ4 is 4-way deterministic.

Proof. Clear as τ4 is a subset of τ2×2

3
which is 4-way deterministic as τ3 is.

For the following result, we furthermore require the Turing machine M to verify the following properties:

• during the computation, the head never moves to a position situated to the left of its starting position;

• when the computation halts (if it halts), the position of the head is exactly the rightmost position that
has been reached during the computation.
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Figure 7: Computation layer of bi-periodic tilings by τ4

These requirements can be made without loss of generality as any Turing machine is simulated by a machine
satisfying these constraints (which can be recursively obtained from M).

The tileset τM always admits tilings that do not contain Turing computation (all blank on their compu-
tation layer), hence τ4 always admits non-periodic tilings that do not embed any Turing computations on
their third layer.

Proposition 1. τ4 admits periodic tilings if and only if the Turing machine M halts from the empty tape.

Proof. If the machine halts, then it is easy to describe a bi-periodic tiling by τ4. Indeed, there exists a
rectangle pattern P by τM that fully describes the space-time diagram of the computation of M from the
empty tape, with the tile t0 in the bottom-left corner and a tile of F in the top-right corner (due to the
previous additional requirements on M). Then this pattern can be embedded in a rectangle of the grid
of the third layer of τ4 and the three mirror patterns by τh

M
, τv

M
and τ c

M
can be embedded in the three

neighboring rectangles (east, north and north-east) of the grid. The obtained pattern of τ4 can be repeated
bi-periodically. Such a tiling is represented on figure 7.

Conversely, if τ4 admits periodic tilings, then it admits bi-periodic tilings by lemma 1. By lemma 4
(point 2), the third layer of such a tiling draws a grid whose rectangles contain finite patterns by τM and its
three mirror copies. Let us consider the case of such a pattern by τM (one can also observe that the three
other cases would be symmetrical). Due to the restrictions imposed on the grouping, the tile at the bottom-
left corner of this pattern is the seed tile t0. This tile enforces the first (bottom) line of the pattern to be an
empty Turing machine tape with a (unique) head on the first cell. Recall that, due to the restrictions on the
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grid tiles GM , no other machine head can appear in the rectangle and the original machine head cannot leave
the pattern. Hence the local rules of the tileset τM (whose computation layer is depicted in figure 4) enforce
the following rows to contain exactly the successive configurations of the Turing machine tape. As the head
cannot leave without tiling error, the pattern width is necessarily sufficiently large for the head not to leave
the pattern at the right border. Because of the additional requirements on the machine, its computation
can be simulated without the head leaving the pattern at the left border. Hence the computation of the
machine starting on the empty tape is correctly simulated in the pattern. As a final state is required in the
top-right corner, the computation is required to halt. Thus the simulated machine M halts from the empty
tape, which is the requested result. Moreover, the height of the pattern is exactly the halting time of the
machine and its width is exactly the distance between the starting cell and the cell where the head halts,
which exactly corresponds to the space used by the computation (due to the additional requirements on
the machine). Thus, as considering patterns by the three mirror tilesets of τM would lead to symmetrical
descriptions, the third layer of a bi-periodic tiling must be of the kind of the figure 7.

This concludes the reduction and the proof of theorem 1.
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