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The most fundamental undecidable question on tilings is the Domino Problem that asks whether a Wang tileset tiles the discrete plane. Lukkarila proved in 2009 that it remains undecidable when restricting the input to the class of 4-way deterministic tilesets. Due to the existence of aperiodic tilesets, the most natural distinct variant of this problem is the Periodic Domino Problem which asks whether a Wang tileset admits a periodic tiling of the plane. This problem is also undecidable. Jeandel recently discovered a new and elegant proof for this result. Inspired by this new proof technique and some ingredients from Lukkarila's construction, we prove that it remains undecidable when restricted to 4-way deterministic tilesets.

Wang tiles are unit square tiles with a color on each edge. Wang tiles and their purely combinatorial and syntactical formalism of discrete tilings were introduced by Wang [START_REF] Wang | Proving theorems by Pattern Recognition II[END_REF] in relation to the decision question of the ∀∃∀ fragment of the first-order logic. The most common associated decision problem is the Domino Problem which consists in deciding whether a Wang tileset (given as input) tiles the discrete plane. This problem was proved undecidable by Berger [START_REF] Berger | The Undecidability of the Domino Problem[END_REF]. A simpler construction was later introduced by Robinson [START_REF] Robinson | Undecidability and nonperiodicity for tilings of the plane[END_REF]. Several recent more synthetic approaches to this problem also exist in the literature [START_REF] Kari | The tiling problem revisited[END_REF][START_REF] Ollinger | Two-by-two substitution systems and the undecidability of the domino problem[END_REF][START_REF] Durand | Fixed point and aperiodic tilings[END_REF].

The undecidability of the Domino problem is tightly related to the existence of aperiodic tilesets, i.e. tilesets that tile the plane but never in a periodic way. Indeed, a classical variant of the Domino Problem is the Periodic Domino Problem that asks whether a Wang tileset given as input admits a periodic tiling. As the Domino Problem is co-recursively enumerable while its periodic variant is recursively enumerable, both problems would be equal and decidable in a world without aperiodicity. The Periodic Domino Problem was proved undecidable by Gurevich and Koryakov [7]. This result is obtained by a slight modification of Berger's construction [START_REF] Berger | The Undecidability of the Domino Problem[END_REF] for the Domino Problem. Similarly, Robinson's construction from [START_REF] Robinson | Undecidability and nonperiodicity for tilings of the plane[END_REF] can be adapted to prove this result as detailed in [START_REF] Allauzen | Tiling Problems, in: The Classical Decision Problem[END_REF] for instance. It can also easily be seen that the undecidability of the Periodic Domino Problem is equivalent to the recusive inseparability of the aperiodic tilesets from the periodic ones (tilesets that admit a periodic tiling). A new and in many ways simpler proof technique was recently introduced by Jeandel [START_REF] Jeandel | The periodic domino problem revisited[END_REF]. This method does not rely anymore on a previous proof of the undecidability of the Domino Problem, but simply takes as input any arbitrary aperiodic tileset.

A Wang tileset is 4-way deterministic if any of its tilings is uniquely determined and can be locally reconstructed from the tiles from any path crossing each line and column of the discrete plane. Deterministic tilesets were originally introduced by Kari [START_REF] Kari | The nilpotency problem of one-dimensional cellular automata[END_REF] to prove the undecidability of the nilpotency problem of one-dimensional cellular automata by reduction of the Domino Problem with input restricted to one-way deterministic tilesets. This problem had actually already been considered and proved undecidable in a somehow forgotten proof of the undecidability of the Domino Problem by Aanderaa and Lewis [START_REF] Aanderaa | Linear Sampling and the ∀∃∀ Case of the Decision Problem[END_REF]. A two-way deterministic aperiodic tileset also already existed in the literature: the 16 Wang tiles derived from the geometrical aperiodic set of Ammann A2 [START_REF] Grunbaum | Tilings and Patterns[END_REF]. A 4-way deterministic aperiodic tileset was first built in 1999 by Kari and Papasoglu [START_REF] Kari | Deterministic aperiodic tile sets[END_REF] and an isomorphic tileset was recently discovered starting from a different construction in [START_REF] Le Gloannec | Substitutions and strongly deterministic tilesets[END_REF]. The Domino Problem with input restricted to the class of 4-way deterministic
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tilesets was proved undecidable ten years later by Lukkarila [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF]. Although the Periodic Domino Problem was proved undecidable when restricted to one-way deterministic tilesets by Mazoyer and Rapaport [START_REF] Mazoyer | Global fixed point attractors of circular cellular automata and periodic tilings of the plane: Undecidability results[END_REF] to derive the undecidability of the nilpotency of one-dimensional cellular automata over periodic configurations, the far more restrictive setting of 4-way deterministic tilesets remained untreated.

We prove in this article that the 4-way deterministic Periodic Domino Problem is undecidable. A quite natural strategy to obtain such a result would be to determinize a construction from an existing proof of undecidability in the non-deterministic case. Some constructions are however intrinsically non-deterministic. Moreover, determinism is a low-level, i.e. syntactical, property of the tileset, hence the determinization process requires a comprehensive knowledge and understanding of the construction at the level of the tiles and a careful treatment of non-determinism issues. Instead, we are inspired here by the general idea of the proof technique from Jeandel [START_REF] Jeandel | The periodic domino problem revisited[END_REF], which allows a rather neat high-level presentation and prevents us from a lot of purely technical annoying considerations. Our proof also builds upon the 4-way deterministic Turing machine simulation from Lukkarila [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF].

Wang tiles and determinism

A Wang tile is a unit square tile with a color on each edge. Formally, it is a quadruple t = (t W , t S , t E , t N ) ∈ C 4 where C is a finite set of colors, as depicted in figure 1. A tileset is a finite set of Wang tiles. Given a tileset τ , a tiling of the discrete plane is a map c : Z 2 → τ that associates to each point of the plane a tile of τ such that adjacent tiles share the same color on their common edge: for all (x, y) ∈ Z 2 , t(x, y) E = t(x + 1, y) W and t(x, y) N = t(x, y + 1) S .

It is often convenient to describe Wang tiles by drawing simple patterns on them, instead of explicitely writing color letters. In that case, the color matching condition for tilings is represented by the continuity of pattern lines when crossing edges.

A tiling c is periodic if there exists a periodicity vector p ∈ Z 2 such that for all x ∈ Z 2 , c(x + p) = c(x). A tiling is bi-periodic if it admits two linearly independent periodicity vectors, or equivalently if it admits both a horizontal and a vertical period. The following lemma (folklore) links these notions regarding sets of tilings.

Lemma 1 (folklore). The set of tilings by a tileset τ contains a periodic tiling if and only if it contains a bi-periodic tiling.

A tileset is aperiodic if the set of tilings by τ is non-empty and does not contain any periodic tiling. A tileset τ is ne-deterministic if each tile t ∈ τ is uniquely determined by its pair of colors (t W , t S ). Equivalently, for any pair of tiles (t W , t S ) ∈ τ 2 , there is at most one tile t ∈ τ that is simultaneously compatible to its west side with t W and to its south side with t S . {nw, sw, se}-determinism are defined symmetrically. A tileset is 4-way deterministic if it is simultaneously deterministic in the four directions. In this article, we will essentially consider 4-way deterministic tilesets. As we will often make use of this without mentionning it, observe that it clearly follows from the definitions that any subset of a 4-way deterministic tileset remains 4-way deterministic.

The earliest and most common decision problem in the literature on tilings is the following.

Problem 1 (Domino Problem, [START_REF] Wang | Proving theorems by Pattern Recognition II[END_REF]). Given a tileset τ , decide whether there exists a tiling by τ .

This problem was proved undecidable in [START_REF] Berger | The Undecidability of the Domino Problem[END_REF]. The periodic variant of the Domino Problem is the following. Problem 2 (Periodic Domino Problem). Given a tileset τ , decide whether there exists a periodic tiling by τ .

This problem was introduced and proved undecidable in [START_REF] Gurevich | Remarks on Berger's paper on the domino problem[END_REF]. A new proof technique was recently discovered in [START_REF] Jeandel | The periodic domino problem revisited[END_REF].

In this article, we are interested in the 4-way deterministic restrictions of these problems where the input tileset is furthermore required to be 4-way deterministic. The 4-way deterministic Domino Problem was proved undecidable in [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF]. We prove in the following of this article that the 4-way deterministic Periodic Domino Problem is also undecidable.

Some transformations on tilesets

In this section, we introduce some simple operations or transformations on tilesets that preserve the determinism and will be useful in our construction.

Product. Given two tilesets τ 1 ⊆ C 4 1 and τ 2 ⊆ C 4 2 , the product tileset τ = τ 1 × τ 2 is formally defined as the Wang tileset τ = {((w 1 , w 2 ), (s 1 , s 2 ), (e 1 , e 2 ), (n 1 , n 2 )), (w i , s i , e i , n i ) ∈ τ i , 1 ≤ i ≤ 2} over the set of colors C 1 × C 2 .
Although the set τ is not strictly speaking the cartesian product of sets τ 1 and τ 2 , it is convenient to interpret it as such, seeing a product tileset as a two-layered tileset whose tiles hold a tile of τ 1 on the first layer and a tile of τ 2 on the second layer with a local matching condition requiring that the matching conditions of both layers are verified. It is not difficult to see that if τ 1 and τ 2 are 4-way deterministic, then τ 1 × τ 2 is also 4-way deterministic.

Disjoint mirror. Given a tileset τ over a set of colors C, the horizontal disjoint mirror tileset of τ is the tileset τ h obtained by duplicating all colors and swapping west and east colors of tiles from τ . More formally, we create a disjoint copy C h of C whose colors are denoted a h for each a ∈ C and we define τ h = {(e h , s h , w h , n h ) ∈ C 4 h , (w, s, e, n) ∈ τ )}. We symmetrically define the vertical disjoint mirror τ a v over a disjoint copy C v of C (whose colors are denoted a v for each a ∈ C) by

τ v = {(w v , n v , e v , s v ) ∈ C 4 v , (w, s, e, n) ∈ τ )}.
We finally define the central disjoint mirror τ c over a disjoint copy C c of C (whose colors are denoted a c for each a ∈ C) by τ c = {(e c , n c , w c , s c ) ∈ C 4 v , (w, s, e, n) ∈ τ )}. This last transformation corresponds to the combination of the two previous ones (hence to a central symmetry on the tiles). These three definitions are illustrated on figure 2.

It is clear that if a tileset is 4-way deterministic, any of its disjoint mirrors is also 4-way deterministic (even though some determinism directions are interchanged in the transformation process). As their sets of colors are disjoint, any of the (disjoint) unions of a tileset with some of its disjoint mirrors, in particular τ ⊔ τ h ⊔ τ v ⊔ τ c , is also 4-way deterministic.

Grouping. Given a tileset τ , the 2 × 2 grouping of τ is the tileset τ 2×2 over the set of colors τ 2 defined by

τ 2×2 = (ac, cd, bd, ab) ∈ (τ 2 ) 4 , a b c d is a valid 2 × 2

pattern by τ

The tileset τ 2×2 simply is a coding in Wang tiles of 2 × 2 patterns by τ with the local matching condition that two horizontally (resp. vertically) adjacent patterns overlap on one column (resp. row). Considering a tile of τ 2×2 , we will use the notations , , and to identify the four underlying tiles of τ . Observe that if τ is 4-way deterministic, then its 2 × 2 grouping τ 2×2 is also 4-way deterministic. 

The deterministic reduction

In this section, we prove the following result.

Theorem 1. The Periodic Domino Problem restricted to 4-way deterministic tilesets is undecidable.

We proceed by reduction of the Halting problem of Turing machines on the empty tape. Both problems are recursively enumerable. Given a Turing machine M , we build a 4-way deterministic tileset that always admits non-periodic tilings (some of them will actually not even contain Turing computations) but admits periodic tilings if and only if the computation of M halts from the empty tape.

The built tileset will be a product of several layers, each of which will be 4-way deterministic.

First layer: Aperiodic layer with vertical mirror lines. We consider here a 4-way deterministic aperiodic tileset τ a on the set of colors C. As already mentioned, such tilesets exist, some are built in [START_REF] Kari | Deterministic aperiodic tile sets[END_REF][START_REF] Le Gloannec | Substitutions and strongly deterministic tilesets[END_REF]. Let us stress that we do not need here to know anything about the way they are built or the structure of their tilings, the only required properties are 4-way determinism and aperiodicity. Let us consider the horizontal disjoint mirror τ a h of tileset τ a over a disjoint copy C h of C (whose colors are denoted a h for each a ∈ C). It is clear by construction that τ a h is aperiodic. We also add a set of vertical mirror line tiles by introducing a new color # / ∈ C ∪ C h and defining M v = {(a, #, a h , #) and (a h , #, a, #), a ∈ C} as depicted in figure 3(a) (where the color # is painted black). We then define the tileset τ 1 as the disjoint union of the three previously considered tilesets τ 1 = τ a ⊔ τ a h ⊔ M v . A typical tiling by τ 1 is represented on figure 3(b). Due to the addition of mirror lines, this set is no longer aperiodic.

Lemma 2. τ 1 satisfies the following properties:

1. τ 1 is 4-way deterministic.

Every horizontally periodic tiling by τ 1 contains a vertical mirror line. Hence, by periodicity, it contains infinitely many such lines, the distance between two consecutive lines being bounded.

Proof. For the point 1, as τ a is 4-way deterministic, τ a h also has this property. As their sets of colors are disjoint, τ a ⊔ τ a h is 4-way deterministic. The tileset M v is also 4-way deterministic since the color on each side of a mirror line is uniquely determined by the color on the other side. The color # introduced in M v being new, τ 1 is in turn 4-way deterministic.

For 2, if such a tiling does not contain any vertical mirror line, then it must be a tiling by one of the aperiodic tilesets τ a or τ a h . It is hence non-periodic, a contradiction. 

τ 2 = τ 1 × τ v .
Lemma 3. τ 2 satisfies the following properties:

1. τ 2 is 4-way deterministic.

2. Every bi-periodic tiling by τ 2 contains a (irregular) grid (whose vertical and horizontal lines are to be read on the first and second layer respectively) with bounded rectangle size.

Proof. The point 1 is clear as τ 2 is a product of 4-way deterministic tilesets. The point 2 is a direct consequence of the argument of lemma 2 (point 2) applied both horizontally on τ 1 and vertically on τ v .

Third layer: Turing computation. We consider here the 4-way deterministic tileset introduced by Lukkarila in [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF] (section 5, theorem 6) to simulate any given Turing machine in the tilings. This tileset is used to prove the undecidability of the 4-way deterministic Domino Problem with a seed tile, that asks whether a 4-way deterministic input tileset containing an identified seed tile admits a tiling of the plane in which the seed tile appears. It is generally easier to deal with that problem than the general Domino Problem as the seed tile can for instance be used to properly initialize an empty Turing machine tape with exactly one machine head. This tileset is a subset of a product of several layers, one of them (the first layer in [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF], section 5.2) being a classical simulation of a Turing machine (whose head always moves at each transition) in Wang tiles using the tiles represented on figure 4(a) (where q i is the initial state and B the blank letter). Such a tileset is obviously not itself 4-way deterministic, one of the difficulties overcame in [START_REF] Lukkarila | The 4-way deterministic tiling problem is undecidable[END_REF] was to determinize it by coupling it with a particular structure on other layers. The built tileset draws the space-time diagram of the machine in the tilings, as depicted in figure 4(b). The lines of the tiling realize the transitions, each line of the diagram of the machine can be read at the edge between two lines of the tiling.

Consider a Turing machine M and the associated 4-way deterministic simulation tileset τ M with unique seed tile t 0 (which simulation layer contains the indicated seed tile of figure 4(a)). We denote as F ⊆ τ M the set of tiles in τ M whose Turing machine simulation layer transmits a final state of M from its west or east color to its north color. Tiles of F mark the end of the simulated Turing computation. Note that a tiling of the whole plane cannot contain both t 0 and a tile of F : Assuming that transitions from a final state are undefined in the Turing machine (which is the usual convention), there is no transition tile in the set with a final state as south color, hence the line directly on top of the line containing a tile of F cannot be tiled without error. Let us consider the three disjoint mirrors of τ M , over the set of colors C, denoted as τ M h , τ M v , τ M c , over the respective sets of colors C h , C v , C c (disjoint copies of C). We assemble these four tilesets using a parity grid tileset G M whose tiles are represented on figure 5(a). Their purpose is to draw a grid with four types of rectangles alternating depending on the horizontal and vertical parities, as depicted in figure 5(b). The following constraint on G M will be crucial for our final result and cannot be read on the figure: Basically any color of τ M (and its mirrors) can appear along grid lines of τ M except for horizontal colors containing a machine state that cannot appear along vertical grid lines. The purpose of this alphabetical restriction is to forbid a Turing machine head from leaving its rectangle and complementarily to forbid any other Turing machine head from appearing unexpectedly in a rectangle. As the grid lines of G M play the role of mirror lines for the colors of the four mirror tilesets of τ M , G M is easily seen 4-way deterministic. We define

τ ′ M = τ M ⊔ τ M h ⊔ τ M v ⊔ τ M c ⊔ G M .
Because the colors associated to the grid lines of G M do not appear in any of the four mirror tilesets of τ M , it is not difficult to see that τ ′ M is 4-way deterministic. The tilings by τ ′ M are simply irregular parity grids (with possibly infinite rectangles) with patterns by each of the four mirror versions of τ M in each of the four types of rectangles, as depicted in figure 5(b). Patterns are locally symmetrized along grid lines.

Let us assemble τ ′ M with our previous construction τ 2 by defining a three-layered tileset τ 3 as a subset of τ 2 × τ ′ M (as τ 2 has two layers, we consider here the tiles of τ ′ M as the third layer) with the following restriction on tiles: A vertical (resp. horizontal) mirror line appears on the first (resp. second) layer (tiles of τ 1 , resp. τ v ) if and only if it is coupled with a vertical (resp. horizontal) grid line tile or a cross of G M on the third layer (tiles of τ ′ M ). Note that as a consequence, a vertical mirror line on the first layer is coupled with a horizontal mirror line on the second layer if and only if the third layer holds a cross of the grid. Moreover, a tile of τ M ⊔ τ M h ⊔ τ M v ⊔ τ M c appears on the third layer if and only if it is coupled with tiles from the aperiodic sets on the first and second layers. Lemma 4. τ 3 verifies the following properties: Proof. τ 3 is 4-way deterministic as a subset (restriction on tiles) of the product of the 4-way deterministic tilesets τ 2 and τ ′ M . By lemma 3 (point 2), the third layer of any bi-periodic tiling by τ 3 contains a grid of finite rectangles. By construction of τ ′ M , each of the four types of rectangles contains a finite pattern by its associated mirror tileset of τ M . Note however that any patterns can appear provided that they are correctly locally symmetrized along grid lines (and that they do not contain a machine head in their horizontal border colors due to the restriction on G M ). grid tiles G M , no other machine head can appear in the rectangle and the original machine head cannot leave the pattern. Hence the local rules of the tileset τ M (whose computation layer is depicted in figure 4) enforce the following rows to contain exactly the successive configurations of the Turing machine tape. As the head cannot leave without tiling error, the pattern width is necessarily sufficiently large for the head not to leave the pattern at the right border. Because of the additional requirements on the machine, its computation can be simulated without the head leaving the pattern at the left border. Hence the computation of the machine starting on the empty tape is correctly simulated in the pattern. As a final state is required in the top-right corner, the computation is required to halt. Thus the simulated machine M halts from the empty tape, which is the requested result. Moreover, the height of the pattern is exactly the halting time of the machine and its width is exactly the distance between the starting cell and the cell where the head halts, which exactly corresponds to the space used by the computation (due to the additional requirements on the machine). Thus, as considering patterns by the three mirror tilesets of τ M would lead to symmetrical descriptions, the third layer of a bi-periodic tiling must be of the kind of the figure 7.

1. τ 3 is 4-way deterministic. t 0 t c 0 t v 0 t h 0 (a) cross A ∈ F c ∈ F ∈ F h ∈ F v (b) cross D
This concludes the reduction and the proof of theorem 1.
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Both steps could actually have been done simultaneously combining directly the four mirrors of τa, we however believe that a two-step presentation is lighter and clearer.

It only remains to enforce correctly initialized and terminating Turing computations in the rectangles of the third layer of τ 3 . We denote as t h 0 , t v 0 , t c 0 and F h , F v , F c the mirror versions of the seed tile t 0 ∈ τ M and the final set F ⊂ τ M in the mirror tilesets τ h M , τ v M , τ c M respectively. Let us define τ 4 as a subset of the 2 × 2 grouping of τ 3 with the following restriction on the third layer of the 2 × 2 grouped tiles:

• if the tile is the cross A, then the tile must be t 0 ;

• if the tile is the cross D, then the tile must be in F ;

• if the tile is the cross A, then the tile must be t h 0 ; • if the tile is the cross D, then the tile must be in F h ;

• if the tile is the cross A, then the tile must be be t v 0 ; • if the tile is the cross D, then the tile must be in F v ;

• if the tile is the cross A, then the tile must be be t c 0 ; • if the tile is the cross D, then the tile must be in F c .

These constraints are summarized on the figure 6.

Lemma 5. τ 4 is 4-way deterministic.

Proof. Clear as τ 4 is a subset of τ 2×2 3 which is 4-way deterministic as τ 3 is.

For the following result, we furthermore require the Turing machine M to verify the following properties:

• during the computation, the head never moves to a position situated to the left of its starting position;

• when the computation halts (if it halts), the position of the head is exactly the rightmost position that has been reached during the computation. These requirements can be made without loss of generality as any Turing machine is simulated by a machine satisfying these constraints (which can be recursively obtained from M ).

The tileset τ M always admits tilings that do not contain Turing computation (all blank on their computation layer), hence τ 4 always admits non-periodic tilings that do not embed any Turing computations on their third layer. Proposition 1. τ 4 admits periodic tilings if and only if the Turing machine M halts from the empty tape.

Proof. If the machine halts, then it is easy to describe a bi-periodic tiling by τ 4 . Indeed, there exists a rectangle pattern P by τ M that fully describes the space-time diagram of the computation of M from the empty tape, with the tile t 0 in the bottom-left corner and a tile of F in the top-right corner (due to the previous additional requirements on M ). Then this pattern can be embedded in a rectangle of the grid of the third layer of τ 4 and the three mirror patterns by τ h M , τ v M and τ c M can be embedded in the three neighboring rectangles (east, north and north-east) of the grid. The obtained pattern of τ 4 can be repeated bi-periodically. Such a tiling is represented on figure 7.

Conversely, if τ 4 admits periodic tilings, then it admits bi-periodic tilings by lemma 1. By lemma 4 (point 2), the third layer of such a tiling draws a grid whose rectangles contain finite patterns by τ M and its three mirror copies. Let us consider the case of such a pattern by τ M (one can also observe that the three other cases would be symmetrical). Due to the restrictions imposed on the grouping, the tile at the bottomleft corner of this pattern is the seed tile t 0 . This tile enforces the first (bottom) line of the pattern to be an empty Turing machine tape with a (unique) head on the first cell. Recall that, due to the restrictions on the