
HAL Id: hal-00985416
https://hal.science/hal-00985416

Submitted on 29 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

α-registres
David Bonnin, Corentin Travers

To cite this version:
David Bonnin, Corentin Travers. α-registres. ALGOTEL 2014 – 16èmes Rencontres Francophones sur
les Aspects Algorithmiques des Télécommunications, Jun 2014, Le Bois-Plage-en-Ré, France. pp.1-4.
�hal-00985416�

https://hal.science/hal-00985416
https://hal.archives-ouvertes.fr

α-registres

David Bonnin and Corentin Travers

LaBRI, Université de Bordeaux, France

name.surname@labri.fr

On sait que, dans un système distribué asynchrone avec communication par envoi de messages, il est possible de simuler

un registre atomique, à condition que la majorité des processus ne tombent pas en panne. À l’inverse, si une majorité

des processus peuvent tomber en panne, cette simulation est impossible. Cet article explore des variantes faibles des

registres atomiques qui peuvent être simulées en tolérant une majorité de pannes. Plus précisément, cet article introduit

une nouvelle classe de registres, appelés α-registres, et montre comment les simuler. Avec les registres atomiques, une

lecture retourne la dernière valeur écrite. Les α-registres les généralisent de la façon suivante : pour tout intervalle de

temps I ne contenant pas d’écriture, au plus α valeurs distinctes sont retournées par les opérations de lecture ayant

lieu pendant I. Une simulation d’un α-registre tolérant f pannes dans un système à n processus est présentée pour

α = 2M−1, avec M = max(1,2 f −n+2). Cette simulation est optimale à un facteur constant près : les α-registres ne

peuvent pas être simulés en tolérant f pannes si α≤M.

Keywords: Envoi de message, tolérance aux pannes, simulation de mémoire partagée.

1 Introduction

Registers A register is a basic shared object that allows processes to store and retrieve values. The state

of a register consists in a value in some set V ; it supports two operation : WRITE(v), that changes its state to

v and READ() that returns the value stored in the register. Several consistency conditions have been defined

that specify correct responses for READ() operations overlapping concurrent WRITE() operations [7]. In

their strongest form, registers are atomic : each operation appears to take place instantaneously. Registers

are useful in distributed computing, because it is often easier to write algorithms and prove results with

shared registers than in message-passing systems.

More than twenty years ago, Attiya, Bar-Noy and Dolev showed that atomic registers can be emulated

in asynchronous, crash prone message passing systems provided that a majority of the processes do not

fail [2]. This fundamental result enables shared-memory algorithms to be automatically implemented in

message passing environment, and thus, problems solvable with shared-memory are solvable in message

passing systems. Furthermore, impossibility results and lower bounds established in the message passing

model can directly be translated to shared memory.

Beyond the majority barrier A key ingredient of the simulation of registers in message passing is a

quorum system, that is a collection of sets of processes such that any two sets intersect. In Attiya, Bar-Noy

and Dolev protocol (ABD protocol [2]), a quorum is any set of n− f processes, where n is the total number

of processes in the system and f < n
2

an upper bound on the number of failures. Quorums defined as set

of n− f processes are live, in the sense that any process can broadcast a request and eventually receives

replies from n− f processes. Each READ() or WRITE() operation uses a quorum of processes to, respec-

tively, gather and propagate information. However, if less than a majority of the processes are non-faulty,

i.e. f ≥ n
2
, two quorums may not intersect, leading to READ() operations returning outdated values, because

there is no process in the intersection of READ() and WRITE() quorums that could transmit the information

of the last written value. Indeed, simulating atomic registers while tolerating f ≥ n
2

failures in asynchronous

message passing is not possible [2].

A few approaches have been proposed to circumvent this impossibility. Probabilistic quorums systems

allow two quorums to be non-intersecting with some small probability [1, 5, 8], leading to a small probabil-

David Bonnin and Corentin Travers

ity that READ() operations return stall values. The approaches [6] is based on stronger model assumptions :

in particular on a quorum oracle that forces quorums of consecutive write/read to intersect.

The question addressed in the paper Given n and n
2
≤ f < n, what type of (weak) register can be sim-

ulated in an n-processes asynchronous message passing system tolerating f failures ?

By the ABD emulation, shared memory may be seen as an high-level language to design message passing

algorithms tolerating a minority of failures. The question above thus amounts to finding an equivalent high

level construct for the case in which a majority of the processes may fail.

Contributions of the paper The contribution of the paper is threefold : (1) it introduces α-registers, a

new type of register that generalizes atomic registers, where α represents a bound on the number of distinct

values that can be read in a period without WRITE() operations (Section 2) ; this property is non-trivial, since

the ABD emulation (or simple variants) would lead to an unbounded such number (α = ∞) . (2) for f ≥ n
2

and M = 2 f −n+2, it presents a f -resilient message passing implementation of a single-writer multi-reader

α-register with α = 2M−1 (Section 3). (3) finally, the paper establishes a lower bound linking f ,n and α,

namely there is no n-processes, f -resilient implementation of an α-register for α≤M (Section 4).

2 Computational Model and Definition of α-Registers

Message passing asynchronous distributed system We consider a distributed system made of a set Π of

n asynchronous processes {p1, . . . , pn}, as described in e.g. [3]. Each pair of processes {pi, p j} is connected

by a bi-directional channel. Channels are reliable and asynchronous, meaning that each message sent by pi

to p j is received by p j after some finite, but unknown, time ; there is no global upper bound on message

transfer delays. The algorithm in Section 3 assumes FIFO channels, that is for any pair of processes pi, p j,

the order in which the messages sent by pi to p j are received is the same as the order in which they are sent.

An execution is a possibly infinite sequence of steps. Processes may fail by crashing. A process that crashes

prematurely halts and never recovers. In an execution, a process is faulty if it fails and correct otherwise. f

denote an upper bound on the maximal number of processes that may fail.

Definition of α-registers As classical read/write registers, an α-register supports two operations : WRITE(v),
where v is value taken from some set V and READ(). A WRITE(v) operation returns an acknowledgment

ok and a READ() returns a value u ∈ V ∪{⊥}, ⊥ being the initial value of the α-register. In an admissi-

ble execution, no process starts a WRITE(v) or READ() operation while its previous operation, if any, has

not returned. The execution interval I(op) of an operation op by process p lasts from the invocation of

op until it returns ; if p never returns, I(op) has no end. Two operations op1 and op2 are concurrent if

I(op1)∩ I(op2) 6= /0. A terminating operation op1 precedes operation op2 if I(op1)∩ I(op2) = /0 and I(op1)
ends before I(op2) begins, written op1 ≺ op2. An operation op is active in an interval I if I∩ I(op) 6= /0. To

simplify the exposition, we assume without loss of generality that no two distinct WRITE() operations have

the same input value. We will write op1 � op2 if op1 precedes or is concurrent to op2.

In any admissible execution e, a α-register satisfies the following properties.

1. Termination. Any READ() or WRITE(v) operation performed by a correct process terminates.

2. Non-spurious value. For any terminating READ() operation R that returns u, either u =⊥ or there exists

a WRITE(u) operation W such that W � R.

3. Chronological read. Let R,R′ be two terminating READ() operations performed by the same process in

that order and let u, u′ be the values returned. If u 6=⊥, then u′ 6=⊥ and WRITE(u)� WRITE(u′).
4. Non-triviality. Let R be a READ() operation by process p, returning value u. If there is a WRITE() oper-

ation by p that precedes R, u 6= ⊥. Moreover, if W is the last WRITE() operation by p that precedes R,

WRITE(u) is either W or a WRITE() operation W ′ by another process such that W �W ′.

5. Propagation. Let u ∈ V such that a correct process performed a terminating WRITE(u) or a READ()

returning u. Eventually, for every terminating READ() with return value u′, then WRITE(u) � WRITE(u′).

6. α-Bounded reads. Let R1, . . . ,Rℓ be terminating READ() operations performed in an interval I , returning

values {u1, . . . ,uℓ} = VR. Let VW be the set of values written during I (∀v ∈ VW , some Write(v) was

active during I). Then, VO = VR \VW , the set of old values read during I , is of size at most α.

α-registres

3 Single-writer Multiple-reader α-register

This section presents a protocol (Algorithm 3.1) that implements a single-writer multiple-readers (SWMR)

α-register in an asynchronous system in which up to f ≤ n−1 processes may fail, with α = 2M−1, where

M = 2 f −n+2 if f ≥ n
2

and M = 1 otherwise. The algorithm assumes that channels are FIFO.

Algorithm 3.1 SWMR α-register (code for process pi)

1: INITIALIZATION

2: seqi← 1 ; 〈vi, tsi〉 ← 〈⊥,0〉 ; 〈vri, tsri〉 ← 〈⊥,0〉 ; Qri← /0 ; Qei← /0 ; Qwi← /0 ;

3: Accepti[1..n]← [2, . . . ,2] ; ⊲ array of n integers initialized to 2

4: for each p j : 1≤ j ≤ n do send UPDATE(seqi, 〈vi, tsi〉, 0)

5: function WRITE(v)

6: 〈vi, tsi〉 ← 〈v, tsi +1〉 ; seqi← seqi +1 ; Qwi← /0 ;

7: wait until |Qwi| ≥ n− f ;

8: return ok

9: function READ()

10: n iter← 0 ;

11: repeat

12: 〈vri, tsri〉 ← 〈vi, tsi〉 ; seqi← seqi +1 ; Qri← /0 ; Qei← /0 ; n iter← n iter+1 ;

13: wait until |Qri∪Qei| ≥ n− f ;

14: until (|Qei| ≥ n− f) or (n iter ≥ N) ⊲ N = (4 f +2)(⌊ n
n− f
⌋+1)+1

15: return vri

16: WHEN UPDATE(seq, 〈v, ts〉, old seq) FROM PROCESS p j IS RECEIVED

17: if old seq = seqi then

18: if ts = tsi then Qwi← Qwi∪{p j}

19: if ts > tsri then Qri← Qri∪{p j}

20: if ts = tsri then Qei← Qei∪{p j}

21: if ts > tsi then

22: if Accepti[j]> 0 then Accepti[j]← Accepti[j]−1

23: else 〈vi, tsi〉 ← 〈v, ts〉 ; Accepti[1..n]← [2, . . . ,2] ⊲ if Accepti[j] = 0

24: send UPDATE(seqi, 〈vi, tsi〉, seq) to p j

As in the ABD protocol [2], each time a new value is written it is first associated with a unique timestamp

(line 6). As there is a single writer, no two values are associated with the same timestamp. Each process pi

maintains a pair of local variables 〈vi, tsi〉 which store the most recent value pi knows of together with its

timestamp. We say that pi accepts a pair 〈v, t〉 when pi changes 〈vi, tsi〉 to 〈v, t〉 (line 23).

Although the timestamps are unbounded integers in this algorithm, it is possible to have a similar imple-

mentation that only uses a finite number of different timestamps. This can be done by using the principles

described in [2], but would probably need a larger namespace for timestamps.

Processes constantly exchange messages of type UPDATE containing data of the form (sq,〈v, ts〉,osq),

where 〈v, ts〉 is the local 〈vi, tsi〉 variable of the sender. The sq and osq are sequence numbers such that a

process can determine whether this message is related to its current operation or not.

Write() operations The implementation of a WRITE(v) operations is similar to the implementation in the

ABD protocol [2]. After a new timestamp t has been associated with v line 6, the writer pn changes its local

variable 〈vn, tsn〉 to 〈v, t〉. It then waits until each process in a quorum of (n− f) processes have accepted

〈v, t〉, and the operation then returns (line 7–line 8).

Values dissemination The new pair 〈v, t〉 is disseminated by the UPDATE messages sent by the writer :

once 〈vn, tsn〉 has been changed, every UPDATE sent by pn contains 〈v, t〉, until a new WRITE() starts.

We want α to be as small as possible. To that end, the algorithm first bounds the number of messages

sent but not delivered. Indeed, at any time, each channel contains at most 2 messages. Hence, at any given

David Bonnin and Corentin Travers

time, the system contains at most O(n2) distinct values stored either locally by the processes or carried by

not yet delivered messages. Of note, α is unbounded for the ABD protocol when used with f ≥ n/2.

Next, to further decrease α, the algorithm tries to reduce the number of values accepted by each process.

Each process pi is endowed with an array Accepti[1..n] with one entry per process. Initially, Accepti[j] = 2

and at any time, Accepti[j] ∈ {0,1,2} for any j,1 ≤ j ≤ n. Accepti[j] < 2 means that pi knows that its

current value is outdated by p j’s current value (line 21 – line 22). However, pi does not update immediately

〈vi, tsi〉 with the more recent pair 〈v, t〉 it has just received. Indeed, this pair may no longer be stored by

any process, that is 〈v, t〉 is only contained in messages not yet delivered. Instead, the algorithm ensures

that when pi changes 〈vi, tsi〉 to 〈v, t〉, 〈v, t〉 is actually stored locally by some process at some time since

pi discovers that 〈vi, tsi〉 contains an outdated pair (line 21–line 23). Hence, for any given interval I, each

process pi may accept and thus read only one value among the values carried by the messages it its input

channels at the beginning of I. Therefore, assuming that no WRITE() operations overlap I, α = O(n). A

finer analysis, taking into account the fact values read in the absence of concurrent WRITE() operations are

accepted by at least n− f processes, leads to α = 2M−1 = 4 f −2n+3.

Read() operations A READ() operation (line 10–line 15) by process pi consists in up to N = O(f n
n− f

)

iterations. At the beginning of iteration s, the variable 〈vri, tsri〉 is updated, and the two sets Qei and Qri,

intended to contain processes that hold a pair equal to or more recent than, respectively, 〈vri, tsri〉, are emp-

tied (line 12). An iteration terminates when pi knows that at least n− f processes store values at least as

recent as vri (line 13). The READ() operation terminates (1) immediately if |Qei| ≥ n− f , i.e., for at least

n− f processes p j, there is a time at which v j = vri or (2) after N iterations have been performed.

Condition (1) may never be reached in any number of iterations if the READ() operation is concurrent to a

large number of WRITE() operations. But, if the READ() operation is performed in the absence of concurrent

WRITE() operations, condition (1) will necessarily be reached in less than N iterations, as shown in [4].

The proof of this algorithm, i.e., the fact that this algorithm satisfies the properties of an α-register with

α = 2M−1, is presented in [4].

4 Lower bound

In [4], a lower bound has also been proven, presented as the following theorem :

Theorem 4.1. Let n, f such that f ≥ n
2
. For any implementation of a SWMR α-register for n processes that

tolerates f failures, α≥M.

The idea of the proof is to assume there exists an algorithm implementing an α-register with α < M,

and then to construct a family of executions leading to M distinct values being returned by READ() opera-

tions during a period without WRITE(). Those executions are described both at high level, with the calls of

operations by some processes, and lower level, with the forced delay of messages in channels.

Références
[1] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic systems. Distributed Computing, 18 :113–124,

2005.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. J. ACM, 42 :124–142,

1995.

[3] H. Attiya and J. Welch. Distributed Computing : Fundamentals, Simulations, and Advanced Topics. Wiley Series

on Parallel and Distributed Computing. Wiley, 2004.

[4] D. Bonnin and C. Travers. α-register. In Principles of Distributed Systems, volume 8304 of LNCS, pages 53–67.

Springer, 2013.

[5] R. Friedman, G. Kliot, and C. Avin. Probabilistic quorum systems in wireless ad hoc networks. ACM Trans.

Comput. Syst., 28 :7 :1–7 :50, 2008.

[6] R. Friedman, M. Raynal, and C. Travers. Two abstractions for implementing atomic objects in dynamic systems.

In Principles of Distributed Systems, volume 3974 of LNCS, pages 73–87. Springer, 2006.

[7] L. Lamport. On interprocess communication. Distributed Computing, 1 :77–85, 1986.

[8] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum systems. Inf. Comput., 170 :184–206,

2001.

	Introduction
	Computational Model and Definition of -Registers
	Single-writer Multiple-reader -register
	Lower bound

