David Bonnin

Corentin Travers

α-registres

Keywords: Envoi de message, tolérance aux pannes, simulation de mémoire partagée

On sait que, dans un système distribué asynchrone avec communication par envoi de messages, il est possible de simuler un registre atomique, à condition que la majorité des processus ne tombent pas en panne. À l'inverse, si une majorité des processus peuvent tomber en panne, cette simulation est impossible. Cet article explore des variantes faibles des registres atomiques qui peuvent être simulées en tolérant une majorité de pannes. Plus précisément, cet article introduit une nouvelle classe de registres, appelés α-registres, et montre comment les simuler. Avec les registres atomiques, une lecture retourne la dernière valeur écrite. Les α-registres les généralisent de la fac ¸on suivante : pour tout intervalle de temps I ne contenant pas d'écriture, au plus α valeurs distinctes sont retournées par les opérations de lecture ayant lieu pendant I. Une simulation d'un α-registre tolérant f pannes dans un système à n processus est présentée pour α = 2M -1, avec M = max(1, 2 fn + 2). Cette simulation est optimale à un facteur constant près : les α-registres ne peuvent pas être simulés en tolérant f pannes si α ≤ M.

Introduction

Registers A register is a basic shared object that allows processes to store and retrieve values. The state of a register consists in a value in some set V ; it supports two operation : WRITE(v), that changes its state to v and READ() that returns the value stored in the register. Several consistency conditions have been defined that specify correct responses for READ() operations overlapping concurrent WRITE() operations [START_REF] Lamport | On interprocess communication[END_REF]. In their strongest form, registers are atomic : each operation appears to take place instantaneously. Registers are useful in distributed computing, because it is often easier to write algorithms and prove results with shared registers than in message-passing systems.

More than twenty years ago, Attiya, Bar-Noy and Dolev showed that atomic registers can be emulated in asynchronous, crash prone message passing systems provided that a majority of the processes do not fail [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF]. This fundamental result enables shared-memory algorithms to be automatically implemented in message passing environment, and thus, problems solvable with shared-memory are solvable in message passing systems. Furthermore, impossibility results and lower bounds established in the message passing model can directly be translated to shared memory.

Beyond the majority barrier A key ingredient of the simulation of registers in message passing is a quorum system, that is a collection of sets of processes such that any two sets intersect. In Attiya, Bar-Noy and Dolev protocol (ABD protocol [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF]), a quorum is any set of nf processes, where n is the total number of processes in the system and f < n 2 an upper bound on the number of failures. Quorums defined as set of nf processes are live, in the sense that any process can broadcast a request and eventually receives replies from nf processes. Each READ() or WRITE() operation uses a quorum of processes to, respectively, gather and propagate information. However, if less than a majority of the processes are non-faulty, i.e. f ≥ n 2 , two quorums may not intersect, leading to READ() operations returning outdated values, because there is no process in the intersection of READ() and WRITE() quorums that could transmit the information of the last written value. Indeed, simulating atomic registers while tolerating f ≥ n 2 failures in asynchronous message passing is not possible [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF].

A few approaches have been proposed to circumvent this impossibility. Probabilistic quorums systems allow two quorums to be non-intersecting with some small probability [START_REF] Abraham | Probabilistic quorums for dynamic systems[END_REF][START_REF] Friedman | Probabilistic quorum systems in wireless ad hoc networks[END_REF][START_REF] Malkhi | Probabilistic quorum systems[END_REF], leading to a small probabil-ity that READ() operations return stall values. The approaches [START_REF] Friedman | Two abstractions for implementing atomic objects in dynamic systems[END_REF] is based on stronger model assumptions : in particular on a quorum oracle that forces quorums of consecutive write/read to intersect.

The question addressed in the paper Given n and n 2 ≤ f < n, what type of (weak) register can be simulated in an n-processes asynchronous message passing system tolerating f failures ?

By the ABD emulation, shared memory may be seen as an high-level language to design message passing algorithms tolerating a minority of failures. The question above thus amounts to finding an equivalent high level construct for the case in which a majority of the processes may fail.

Contributions of the paper

The contribution of the paper is threefold : (1) it introduces α-registers, a new type of register that generalizes atomic registers, where α represents a bound on the number of distinct values that can be read in a period without WRITE() operations (Section 2) ; this property is non-trivial, since the ABD emulation (or simple variants) would lead to an unbounded such number (α = ∞) . (2) for f ≥ n 2 and M = 2 fn + 2, it presents a f -resilient message passing implementation of a single-writer multi-reader α-register with α = 2M -1 (Section 3). (3) finally, the paper establishes a lower bound linking f , n and α, namely there is no n-processes, f -resilient implementation of an α-register for α ≤ M (Section 4).

Computational Model and Definition of α-Registers

Message passing asynchronous distributed system We consider a distributed system made of a set Π of n asynchronous processes {p 1 , . . . , p n }, as described in e.g. [START_REF] Attiya | Distributed Computing : Fundamentals, Simulations, and Advanced Topics[END_REF]. Each pair of processes {p i , p j } is connected by a bi-directional channel. Channels are reliable and asynchronous, meaning that each message sent by p i to p j is received by p j after some finite, but unknown, time ; there is no global upper bound on message transfer delays. The algorithm in Section 3 assumes FIFO channels, that is for any pair of processes p i , p j , the order in which the messages sent by p i to p j are received is the same as the order in which they are sent. An execution is a possibly infinite sequence of steps. Processes may fail by crashing. A process that crashes prematurely halts and never recovers. In an execution, a process is faulty if it fails and correct otherwise. f denote an upper bound on the maximal number of processes that may fail.

Definition of α-registers

As classical read/write registers, an α-register supports two operations : WRITE(v), where v is value taken from some set V and READ(). A WRITE(v) operation returns an acknowledgment ok and a READ() returns a value u ∈ V ∪ {⊥}, ⊥ being the initial value of the α-register. In an admissible execution, no process starts a WRITE(v) or READ() operation while its previous operation, if any, has not returned. The execution interval I(op) of an operation op by process p lasts from the invocation of op until it returns ; if p never returns, I(op) has no end. Two operations op 1 and op 2 are concurrent if I(op 1) ∩ I(op 2) = / 0. A terminating operation op 1 precedes operation op 2 if I(op 1) ∩ I(op 2) = / 0 and I(op 1) ends before I(op 2) begins, written op 1 ≺ op 2 . An operation op is active in an interval I if I ∩ I(op) = / 0. To simplify the exposition, we assume without loss of generality that no two distinct WRITE() operations have the same input value. We will write op 1 op 2 if op 1 precedes or is concurrent to op 2 .

In any admissible execution e, a α-register satisfies the following properties.

1. Termination. Any READ() or WRITE(v) operation performed by a correct process terminates. 2. Non-spurious value. For any terminating READ() operation R that returns u, either u = ⊥ or there exists a WRITE(u) operation W such that W R. 3. Chronological read. Let R, R ′ be two terminating READ() operations performed by the same process in that order and let u, u ′ be the values returned. If u = ⊥, then u ′ = ⊥ and WRITE(u) WRITE(u ′). 4. Non-triviality. Let R be a READ() operation by process p, returning value u. If there is a WRITE() operation by p that precedes R, u = ⊥. Moreover, if W is the last WRITE() operation by p that precedes R, WRITE(u) is either W or a WRITE() operation W ′ by another process such that W W ′ .

5.

Propagation. Let u ∈ V such that a correct process performed a terminating WRITE(u) or a READ() returning u. Eventually, for every terminating READ() with return value u ′ , then WRITE(u) WRITE(u ′).

6. α-Bounded reads. Let R 1 , . . . , R ℓ be terminating READ() operations performed in an interval I , returning values {u 1 , . . . , u ℓ } = V R . Let V W be the set of values written during I (∀v ∈ V W , some Write(v) was active during I). Then, V O = V R \ V W , the set of old values read during I , is of size at most α.

This section presents a protocol (Algorithm 3.1) that implements a single-writer multiple-readers (SWMR) α-register in an asynchronous system in which up to f ≤ n -1 processes may fail, with α = 2M -1, where

M = 2 f -n + 2 if f ≥ n
2 and M = 1 otherwise. The algorithm assumes that channels are FIFO.

Algorithm 3.1 SWMR α-register (code for process p i)

vr i , tsr i ← v i ,ts i ; seq i ← seq i + 1 ; Qr i ← / 0 ; Qe i ← / 0 ; n iter ← n iter + 1 ; 13: wait until |Qr i ∪ Qe i | ≥ n -f ; 14: until (|Qe i | ≥ n -f) or (n iter ≥ N) ⊲ N = (4 f + 2)(⌊ n n-f ⌋ + 1)
if Accept i [j] > 0 then Accept i [j] ← Accept i [j] -1 23: else v i ,ts i ← v,ts ; Accept i [1..n] ← [2, . . . , 2] ⊲ if Accept i [j] = 0 24:
send UPDATE(seq i , v i ,ts i , seq) to p j

As in the ABD protocol [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF], each time a new value is written it is first associated with a unique timestamp (line 6). As there is a single writer, no two values are associated with the same timestamp. Each process p i maintains a pair of local variables v i ,ts i which store the most recent value p i knows of together with its timestamp. We say that p i accepts a pair v,t when p i changes v i ,ts i to v,t (line 23).

Although the timestamps are unbounded integers in this algorithm, it is possible to have a similar implementation that only uses a finite number of different timestamps. This can be done by using the principles described in [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF], but would probably need a larger namespace for timestamps.

Processes constantly exchange messages of type UPDATE containing data of the form (sq, v,ts , osq), where v,ts is the local v i ,ts i variable of the sender. The sq and osq are sequence numbers such that a process can determine whether this message is related to its current operation or not.

Write() operations The implementation of a WRITE(v) operations is similar to the implementation in the ABD protocol [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF]. After a new timestamp t has been associated with v line 6, the writer p n changes its local variable v n ,ts n to v,t . It then waits until each process in a quorum of (nf) processes have accepted v,t , and the operation then returns (line 7-line 8).

Values dissemination

The new pair v,t is disseminated by the UPDATE messages sent by the writer : once v n ,ts n has been changed, every UPDATE sent by p n contains v,t , until a new WRITE() starts.

We want α to be as small as possible. To that end, the algorithm first bounds the number of messages sent but not delivered. Indeed, at any time, each channel contains at most 2 messages. Hence, at any given time, the system contains at most O(n 2) distinct values stored either locally by the processes or carried by not yet delivered messages. Of note, α is unbounded for the ABD protocol when used with f ≥ n/2.

Next, to further decrease α, the algorithm tries to reduce the number of values accepted by each process. Each process p i is endowed with an array Accept i [1..n] with one entry per process. Initially, Accept i [j] = 2 and at any time, Accept i [j] ∈ {0, 1, 2} for any j, 1 ≤ j ≤ n. Accept i [j] < 2 means that p i knows that its current value is outdated by p j 's current value (line 21 -line 22). However, p i does not update immediately v i ,ts i with the more recent pair v,t it has just received. Indeed, this pair may no longer be stored by any process, that is v,t is only contained in messages not yet delivered. Instead, the algorithm ensures that when p i changes v i ,ts i to v,t , v,t is actually stored locally by some process at some time since p i discovers that v i ,ts i contains an outdated pair (line 21-line 23). Hence, for any given interval I, each process p i may accept and thus read only one value among the values carried by the messages it its input channels at the beginning of I. Therefore, assuming that no WRITE() operations overlap I, α = O(n). A finer analysis, taking into account the fact values read in the absence of concurrent WRITE() operations are accepted by at least nf processes, leads to α = 2M -1 = 4 f -2n + 3.

Read() operations A READ() operation (line 10-line 15) by process p i consists in up to N = O(f n n-f) iterations. At the beginning of iteration s, the variable vr i ,tsr i is updated, and the two sets Qe i and Qr i , intended to contain processes that hold a pair equal to or more recent than, respectively, vr i ,tsr i , are emptied (line 12). An iteration terminates when p i knows that at least nf processes store values at least as recent as vr i (line 13). The READ() operation terminates (1) immediately if |Qe i | ≥ nf , i.e., for at least nf processes p j , there is a time at which v j = vr i or (2) after N iterations have been performed.

Condition (1) may never be reached in any number of iterations if the READ() operation is concurrent to a large number of WRITE() operations. But, if the READ() operation is performed in the absence of concurrent WRITE() operations, condition (1) will necessarily be reached in less than N iterations, as shown in [START_REF] Bonnin | α-register[END_REF].

The proof of this algorithm, i.e., the fact that this algorithm satisfies the properties of an α-register with α = 2M -1, is presented in [START_REF] Bonnin | α-register[END_REF].

Lower bound

In [START_REF] Bonnin | α-register[END_REF], a lower bound has also been proven, presented as the following theorem : Theorem 4.1. Let n, f such that f ≥ n 2 . For any implementation of a SWMR α-register for n processes that tolerates f failures, α ≥ M.

The idea of the proof is to assume there exists an algorithm implementing an α-register with α < M, and then to construct a family of executions leading to M distinct values being returned by READ() operations during a period without WRITE(). Those executions are described both at high level, with the calls of operations by some processes, and lower level, with the forced delay of messages in channels.

R éf érences