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Abstract 

Two new methods to identify the mechanical parameters in induction motor based field oriented drives are presented in this paper. 

The identified parameters are: the moment of inertia and the viscous damping coefficient. The proposed methods are based on the 

adaptive linear neuron (ADALINE) networks. The two parameters are derived and optimised during the online training process. 

During the identification phase, the motor torque is controlled by the well-known field oriented control strategy. This torque is 

subjected to variations in order to obtain mechanical speed transients. The two proposed methods are simple to implement compared 

to the previous techniques. They require only the stator current and mechanical speed measurements. Finally, the effectiveness of the 

two methods and the accuracy of the derived parameters are proven experimentally by two direct starting tests. The originality of this 

work is the building of a model representation that it is suitable for implementation with ADALINE networks. This leads to a simple 

implementation and ease of mechanical parameters identification. 
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1. Introduction 

To achieve high dynamic performance of induction motor (IM) speed control, knowledge of electric parameters is not sufficient. 

The mechanical parameters such as the moment of inertia and the viscous damping coefficient are needed and very important to 

design controllers and/or states observers. Therefore, it is essential to develop algorithms for IM mechanical parameters identification. 

There are many proposed techniques that identify the motor parameters off-line. However, when these parameters are subject to 

variations, the motor control performances are deteriorated and the system becomes detuned. It is therefore suitable to track these 

changes online in order to ensure optimal controller tuning at any time. To identify the moment of inertia J, conventional methods can 

be used. They are based on direct and indirect techniques. The direct techniques consist of extracting the rotor and performing 

measurements which require other devices and not always adaptable for all electric motors. For indirect techniques, the slowdown 

method can be mentioned. This method requires that the turning system “shaft-end” should be accessible. Measurement is carried out 

by adding a known inertia wheel J0 to the motor shaft. The slowdown curves both with and without the added inertia permit the 

deduction of the inertia moment J. The viscous damping coefficient f can be estimated in steady state by measuring the power 

consumption at a given speed in no-load test. The use of conventional techniques in industrial environments for determining the 

mechanical parameters can be an arduous and complicated task. Moreover, these techniques are not able to track changes in the 

system parameters. 

In recent years, several estimation strategies have been developed for mechanical parameters identification in field oriented 

controller drives. The advantage of the field oriented control (FOC) drives is the possibility to obtain the knowledge of the motor 

torque since the stator currents and the rotor flux are known [14]. In these conditions, many techniques are developed. The methods 

based on the least mean squares (LMS) algorithms and recursive least squares algorithms used for online identification [15] can be 

mentioned. The main limitation of these methods is due to its noise sensitivity. In several papers, observer’s techniques have been 

attempted [3, 9]. In [3], an algorithm is proposed for identifying the moment of inertia by observing the position error signal generated 

by a speed observer which contains error information on the moment of inertia. A reduced-order extended Luenberger observer is also 

proposed to estimate the motor inertia value [10]. However, these methods require that some conditions such as observability must be 

checked and need a long computing-time at the implementation. 

Recently, heuristic approaches for IM parameters identification are proposed and have provided efficient results. An off-line 

method based on the genetic algorithm is proposed to estimate mechanical and electrical parameters. Particle swarm optimisation 

algorithms are also attempted in order to identify the IM parameters. However, the most known and used heuristic method is that 

based on artificial neural networks (ANNs) [20]. For a few years, these techniques have been proposed and developed as an 

alternative to conventional methods for modern control challenges [8,11,13]. Latest papers demonstrate the ANN effectiveness in the 
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state variable estimation and the IM parameters identification [2,5,20]. Among the ANN techniques, the most attractive for linear 

system identification is that based on single layer called adaptive linear neuron (ADALINE) networks. The main advantages of this 

technique are its simplicity and the ability to be trained online. In addition, the ADALINE weights can be interpreted physically 

[2,12]. It is thus very efficient for parameters identification of linear systems. In some areas such as adaptive signal processing [6] or 

current harmonics identification in power systems [12], the ADALINE has become a powerful tool. 

This paper proposes and investigates the use of two new methods for online identification of IM mechanical parameters. These 

methods are based on the ADALINE and use LMS learning rule to perform the online training. The hardware implementation is very 

simple and does not require any additional costs other than that commonly used in FOC. The input/output vectors of the ADALINE 

are the stator current and the mechanical speed, respectively. These input/output vectors can be obtained by using simple sensor 

devices. The two methods provide the two parameters J and f online. It represents a main advantage when an online tuning controller 

is required. 

The paper is organized as follows. Section 2 gives the IM model and the FOC principle used during the identification process. In 

section 3, the ADALINE basic concept, the learning process and the identification strategies are given. The obtained experimental 

results are presented in section 4. Finally, section 5 is devoted to conclusions. 

 

Nomenclature 

 

 

Ls Stator cyclic inductance. 

Rs Stator resistance. 

Tr Rotor time constant. 

J Moment of inertia. 

f Viscous damping coefficient. 

Tl Total load torque. 

Td Disturbance load torque. 

Γs Coulomb friction. 

Tem Electromagnetic torque. 

Irmd, Irmq Rotor magnetizing currents in (d,q) frame. 

Irm=(Irmd
2
+Irmq

2
)

1/2
 Module of the rotor magnetizing current. 

p Number of pole pairs. 

ωs Synchronous pulsation. 

Ω Mechanical speed. 

σ Leakage factor. 

s , r Subscripts indicating stator and rotor. 

Te Sampling period. 

2. Induction motor mechanical model under field-oriented control 

The main objective of the FOC is, as in DC motors, to independently control the electromagnetic torque and the rotor flux. This is 

performed by using a d-q rotating frame synchronously with the rotor flux space vector. As shown in Fig. 1, the d axis is aligned with 

the rotor magnetizing current space vector, which yields Irmq=0 and Irmd=Irm. The rotor magnetizing current Irm is generated by the Isd 

component. Under steady state conditions, Isd is equal to Irm. The rotor flux angular speed ωs is calculated by adding the rotor electric 

speed (p.Ω) to the motor slip pulsation ωr. The direct and inverse Park transformations require an input angle θs obtained by 

integrating the field pulsation ωs. The slip pulsation is expressed by the rotor time constant Tr, the quadratic stator current Isq and the 

rotor magnetizing current Irm. 

If suitable orientation of the stator current and the rotor flux is maintained, the rotor flux and the electromagnetic torque can be 

controlled independently [14]. The Isd current controls the rotor flux through the direct axis stator voltage Vsd and the Isq current 

controls the electromagnetic torque Tem through the quadratic axis stator voltage Vsq. This is the key of indirect FOC. 
With the FOC implementation, Irm, ωs and Tem can be estimated by 

                                                      1

1

ˆ
rm sd

a
I I

s a
= +                                                                                                                                  (1) 

                                                      1
ˆ ˆ
em rmd sqT b I I=                                                                                                                                   (2) 

                                                      1 _
ˆˆ ˆ /s r sq rm refp p a I Iω ω= Ω + = Ω +                                                                                                (3) 

with a1=1/Tr and b1=p(1-σ)Ls. 
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The IM control scheme adopted for the mechanical parameters identification is shown in Fig. 1. Two proportional-integral (PI) 

regulators are used to control the electromagnetic torque Tem and the rotor magnetizing current Irmd. In order to reconstitute the voltage 

vectors Vsd and Vsq, to be applied to the IM, the decoupling terms Ed and Eq are added at the output of each regulator. 

 
 

Fig. 1. IM control scheme used in the identification process. 

 

The functional diagram of the mechanical system is shown in Fig. 2. This model is described by the following differential equation: 

                                                      ( )/ /em ld dt T T JΩ = −                                                                                                                        (4) 

with: 

                                                      ( )l s dT f sign T= Ω+ Ω Γ +                                                                                                                   (5) 

 

 
 

Fig. 2. Functional diagram of the mechanical system. 

 

Under some assumptions like Td=0 and Γs=0, the relationship between the rotor speed and the electromagnetic torque is given by 

the following transfer function: 

                                                      
1em m

K

T sτ
Ω = +                                                                                                                                    (6) 

Where: K=1/f and τm=J/f. 

Though the IM dynamic behaviour is the same of the DC motor, the IM control performance is still significantly influenced by the 

system uncertainties including mechanical parameters. To improve the process control, the constants K and τm must be known 

accurately. Thereafter, the mathematical model given by (6) will be used to determinate the parameters K and τm. 

3. ADALINE principles 

3.1. ADALINE architecture 

The ADALINE neural network is well-known in the ANNs architecture. It has been applied successfully in many power 

applications, including current harmonics estimation [12], voltage and current components extraction of an unbalanced three-phase 
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system [4], power quality disturbances detection [1], IM electric parameters identification [2,7], and feature of control [16]. As shown 

in Fig. 3, the ADALINE is equivalent to one neuron which is composed of an input vector Xk, a weights matrix Wk, and an activation 

function f(v). The weights vector Wk=[w0k w1k … wnk]
T
 corresponds to the whole neuron synaptic forces. The input vector Xk=[1 x1k … 

xnk] corresponds to the whole neuron input stimulus. The activation function f(v) specifies the neuron behaviour. 

 

 
 

Fig. 3. ADALINE topology. 

 

Various activation functions can be used in the ANN theory. However, the ADALINE uses the linear activation function f(v)=v. 

Consequently, the ADALINE output yk is given by: yk=XkWk. When the ADALINE is excited, it produces the output yk which depends 

on the input vector. The weights vector Wk is continuously modified during the network learning process with the purpose of 

approaching as close as possible the desired output dk. 

3.2. ADALINE training 

In the ADALINE theory, the most known training process is that called μ-LMS algorithm [17,18,19]. The weight vector is updated 

after the presentation of each input sample. The μ-LMS algorithm is performed by using the steepest-descent gradient. It starts with an 

arbitrary initial value W0 for the system’s weight vector. The instantaneous gradient 
k∇  upon the square of the instantaneous linear 

error is measured and the weight vector is altered in the direction corresponding to the measured negative gradient. The procedure is 

repeated, causing the mean square error to be successively reduced on average and causing the weight vector to approach a locally 

optimal value. The method of steepest descent can be described by the following expression: 

                                                      

2

1 ( ) k
k k k k

k

e
W W W

W
µ µ+

∂= + −∇ = − ∂                                                                                                (7) 

where μ is a parameter that controls stability and convergence rate, and 
k∇  is the instantaneous gradient value at W=Wk. 

The ADALINE uses a supervised learning, so a desired output dk is provided with each input Xk during the training phase. The error 

information is 

                                                      
T

k k k k k ke d y d X W= − = −                                                                                                                (8) 

 

Performing the differentiation in (7) and replacing the linear error given by (8), we can write 

                                                      

2

1 2k k
k k k k

k k

e e
W W W e

W W
µ µ+
∂ ∂= − = −∂ ∂                                                                                            (9) 

and  

                                                      1

( )
2

T

k k k
k k k

k

d X W
W W e

W
µ+
∂ −= − ∂                                                                                                   (10) 

dk and Xk are independent of Wk, that leading to 

                                                      1 2 T

k k k kW W e Xµ+ = −                                                                                                                       (11) 
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3.3. Learning rate 

The learning constant μ determines stability and convergence rate. For time independent input patterns, the weight vector mean and 

variance convergence is ensured for most practical purposes if 

                                                      0<µ<1/trace[R]                                                                                                                                 (12) 

Where trace[R]=Σ (diagona1 elements of R) and R is the input correlation matrix defined in ensemble average terms: R= E(X.X
T
). 

The learning rate μ is an important parameter. The choice of a small value for μ leads to a better network stability but the weights 

convergence can become very slow. Therefore, to accelerate the weights convergence and to refine the results, μ must be variable 

during the training process. Its value will be selected relatively high at the beginning, and will decrease significantly and have a small 

value at the end. The expression of μ can be selected by the following equation: 

                                                      ( ) max /
t

t
i f iµ µ µ µ=                                                                                                                        (13) 

μi and μf are respectively the initial and the final values of the learning rate. tmax is the maximal training time. 

4. Identification strategies based on ADALINE 

The theoretical basis of this identification strategy is to find and to exploit the linear relationship existing between the weights and 

the mechanical parameters. If the weights adjustment gives the error between the actual and the estimated rotor speed to the minimum 

value, then the mechanical parameters are well known. 

4.1. Mechanical equation based method 

This method can be implemented with any form of torque command Tem_ref and the resulted speed Ω. To have a valid viscous 

damping coefficient in a wide speed range, it is preferable to apply alternate torques which lead to positive and negative speeds close 

to the nominal value. 

Let us consider the mechanical equation (6) written in the recursive form 

                                                      ( ) ( ) ( )0 0 -1-1 em kk B k A TΩ = Ω +                                                                                                  (14) 

The coefficients B0 and A0 are equivalent to the ADALINE weights, w1 and w2 respectively, as represented in Fig. 4. They are given 

by the following expressions: 

                                                      
( )

( )( )0 1

0 2

exp - /

1- exp - /

e m

e m

B w T

A w K T

τ
τ

 = = = =
                                                                                                  (15) 

Once the optimal weights w1 and w2 are correctly known during the training process, they can be used to calculate the parameters f 

and J by inversion of (15). Their expressions will be as follows: 

                                                      ( )
1

2

1

1-
1/

- / lnm e

w
f K

w

J f fT wτ
 = = = =

                                                                                                              (16) 

The implementation block diagram of this method is shown in Fig. 4. 

 

 
 

Fig. 4. Overall structure of ADALINE identifier for mechanical equation based method. 
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4.2. Harmonic speed response based method 

This method can be applied only if the imposed torque command Tem_ref has a sinusoidal form. Theoretically, with this form of 

torque, the motor speed response would be also sinusoidal. The use of an ADALINE with two sinusoidal terms (sinωt and cosωt) as 

inputs is suggested (Fig. 5). The ADALINE weights w1 and w2 will be adjusted during the training process to approach the measured 

mechanical speed. Once the weights converge towards fixed and optimal values, it is easy to derive the required mechanical 

parameters f and J. 

Let us give the mathematical formulation of this method. If the reference torque is defined as 

                                                      _ max sinem ref emT T tω=                                                                                                                    (17) 

and if the IM mechanical model is accurately given by (6), then, in steady state operating conditions the obtained speed response will 

be written as follows: 

                                                      max( ) sin( )t tω φΩ =Ω +                                                                                                                 (18) 

The constants maxΩ  and φ  are given by 

                                                      

2 2
max

max 2 2 1

arctan

em

m

m

K T

τ ω
φ τ ω

Ω = + = −
                                                                                                                     (19) 

The speed response given by (18) can be subdivided into two terms in the following way: 

                                                      
[ ]max

1 1

( ) cos sin sin cos

sin cos

t t t

A t B t

φ ω φ ω
ω ω

Ω =Ω +
= +                                                                                       (20) 

Where:           
1 max

1 max

cos

sin

A

B

φ
φ

= Ω = Ω  

The two terms sinɷt and cosɷt will be considered as ADALINE inputs. As shown in Fig. 5, the constant terms A1 and B1 coincide 

with ADALINE weights w1 and w2 respectively. Once the weights are known, it is easy to reconstitute the mechanical parameters in 

the following way: 

                                                      
1 1 2 1

2 2 2 2
max 1 1 1 2

tan / /B A w w

A B w w

φ = =Ω = + = +
                                                                                                  (21) 

Combining the relationships (19) with those given by (21) permits to obtain 

                                                      

2 2
2 2 max
1 2 2 2

2 1

1

/

em

m

m

K T
w w

w w

τ ω
τ ω

 + = + = −
                                                                                                                   (22) 

Finally, solving the system (22) permits to derive the mechanical parameters 

                                                      

1 max

2 2
2 1 2

2

1

1 em

m

w T
f

K w w w

w
J f f

w
τ ω

 = = + = = −
                                                                                                               (23) 

The implementation principle diagram of this method is explained in Fig. 5. 
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Fig. 5. Overall structure of ADALINE identifier for harmonic speed response based method. 

5. Experimental results 

The identified system is a squirrel cage IM. The electric parameters Rs, Ls, σ and Tr have been successfully identified by using 

ADALINE strategies [2]. The IM characteristics are given in Table 1. The IM is supplied by a voltage-source IGBT inverter. The 

FOC strategy, the Pulse Width Modulation (PWM) signals generation and the signals conditioning are carried out numerically via a 

dSPACE board based on a TMS320C31 floating point DSP. The control and the identification algorithms are implemented in 

MATLAB–Simulink using Runge-Kutta resolution method. The real-time interface is used to build real-time code (C language) and 

execute it on dSPACE hardware. The mechanical speed is measured by an incremental encoder with a global resolution of 2.10
4
 

point/round. The stator phase currents are measured by Hall Effect transducers. All the signals can be visualized and recorded on a 

computer via the ControlDesk visualization software. A view of the test bench is given in Fig. 6. 

 

Table 1 
Induction motor characteristics 

Rated power (kW) Pn=3 

Rated supply voltage ∆/Y (V) Usn=220/380 

Stator rated current ∆/Y (A) Isn=11/6.3 

Rated speed (rpm) Nn=1415 

Number of pole-pairs  p=2 

Stator resistance (Ω) Rs=1.5 

Stator cyclic inductance (H) Ls=0.22 

Leakage factor  σ=0.0872 

Rotor time constant (s) Tr=0.099 

 

 

 
 

Fig. 6. View of the test bench. 

 

To obtain an accurate identification and a fast convergence of the used methods, some adjustments were carried out. The 

identification signals must contain the least amount of noise possible. Therefore, the mechanical speed signal, delivered by the 

incremental encoder, is filtered by a first order low-pass filter. The actual torque is substituted by the torque reference. This 

approximation is justified since the identification signals are relatively slow compared to the torque regulator response time. The 

identification was carried out with a sinusoidal torque reference. Its magnitude is 2.25 Nm and the pulsation is set to 0.6rad/s. The 
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motor rotation speed reaches 90 rad/s. The maximal and minimal values of the learning rates, ensuring an optimal speed convergence, 

are experimentally adjusted respectively to ηmax=4.10
-5

 and ηmin=10
-7

. The sampling period used in the identification process is 

Te=0.5ms. 

Fig. 7 shows the identification signals waveform; the torque reference and the measured speed. It can be noted that the resulted 

speed waveform is not completely sinusoidal, especially with the zero crossing. That is explained by the viscous damping coefficient f 

which is not constant but depends on the mechanical speed. Indeed, f is very high at low speeds and becomes small when the IM 

operates at high speeds. 
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Fig. 7. Identification signals: torque reference and rotor speed. 

 

5.1. Mechanical speed equation based method 

Fig. 8(a) shows the ADALINE weights evolution w1 and w2. After the transient state, the weights are stabilized at the values: 

w1=0.9998 and w2=0.0133. As shown in Fig. 8(b), the residual error is very low, which is what justifies the good performance of the 

ADALINE network. Fig. 9 shows the identified parameters. In the steady state, the identified values are: J=0.037 kg.m
2
 (Fig. 9(b)) 

and f=0.012 N.m.s/rad (Fig. 9(a)). The fluctuating value of f is explained by the fact that the viscous dumping coefficient is not 

constant. The obtained value of f is only an average in this speed range. 
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Fig. 9. Identified parameters: viscous damping coefficient (a) and moment of inertia (b). 

 

5.2. Harmonic speed response based method 

Fig. 10 shows the ADALINE weights evolution and the error between the actual and the estimated speed. In Fig. 10(a), the weights 

w1 and w2 are stabilized at 37.2 and -78.1 respectively. The error, as shown in Fig. 10(b), still relatively significant compared to that 

obtained using the first method. This is due to the presence of arctan function in (19) which is very sensitive to the weight variations. 

In Fig. 11, the convergence of the parameters J and f is shown. In the steady state, the two parameters are: J=0.0394 kg.m
2
 and 

f=0.0123 N.m.s/rad. As shown in Fig. 11(a), the viscous damping coefficient f seems better identified than in the first method. A 

significant improvement in precision is obtained. The application of this method consists to filter the speed signal and to extract the 

fundamental component. It results in a constant value of J and f. 
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Fig. 10. Evolution of the weights (a) and the prediction error (b). 
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Fig. 11. Identified parameters: viscous damping coefficient (a) and moment of inertia (b). 
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5.3. Validation tests 

To check the accuracy of the identified parameters related to the two proposed methods; two direct starting tests of the IM are 

carried out. The mechanical speed and the stator phase current are recorded during the transient and steady state. To avoid current 

peaks during the starting phase, the IM is fed by a reduced voltage via a voltage-source IGBT inverter. The maximum of the voltage 

is about 100V and the frequency is set to 30Hz. Two tests are carried out in simulation with the identified parameters and under the 

same conditions. In order to perform a comparison; the experimental measurements and the computed curves of the identified 

parameters are superimposed on the same graph. Fig. 12 and Fig. 13 give the validation results of the identified parameters using the 

two proposed methods. These parameters are summarized in Table 2. 

Incontestably, the identified parameters seem to be identified accurate since the theoretical curves coincide perfectly with those 

obtained by experiment. In both cases, the transient state duration is 0.2s and the maximal current reaches 20A at the beginning, then, 

it’s equal to 3A in the steady state. Nevertheless, a light shift between the simulation and the experiment curves appears at the 

transient period. It is due to the viscous damping coefficient which constitutes only an average value on the considered speed range. 

 

Table 2 
Values of the Identified Parameters 

 J (kg.m2) f (N.m.s/rad) 
Mechanical speed equation based method 0.037 0.012 
Harmonic speed response based method 0.039 0.0123 
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Fig. 12. Validation test (Mechanical speed equation based method). 
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Fig. 13. Validation test (Harmonic speed response based method). 
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6. Conclusion 

This work demonstrates the effectiveness application of the ADALINE for mechanical parameters identification in vector 

controlled IM drives. Two online techniques are presented to identify the moment of inertia and the viscous damping coefficient. 

These methods, based on a single neuron, are very simple to implement. They require the knowledge of the phase currents, the 

mechanical speed, and a FOC. The first method, more general, exploits recursive form of the mechanical equation. The second one is 

applied in case of a sinusoidal form of the torque reference. The suggested methods feasibility has been checked by experiments and 

the identified parameters accuracy has been tested by comparing the experimental results, as well as those obtained from simulations. 

Nevertheless, for the viscous damping coefficient, and regarding its disparate value, the second method is more accurate. A possible 

direction for future work, for the purpose of refining the identification, could be the introduction of a coulomb friction into the torque 

loss. 
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