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Abstract

One of the key activities during the initial phase of the international GEOTRACES program was an extensive
international intercalibration effort, to ensure that results for a range of trace elements and isotopes (TEIs) from
different cruises and from different laboratories can be compared in a meaningful way. Here we present the
results from the intercalibration efforts on neodymium isotopes and rare earth elements in seawater and marine
particles. Fifteen different laboratories reported results for dissolved **Nd/!4Nd ratios in seawater at three dif-
ferent locations (BATS 15 m, BATS 2000 m, SAFe 3000 m), with an overall agreement within 47 to 57 ppm (20
standard deviation of the mean). A similar agreement was found for analyses of an unknown pure Nd standard
solution carried out by 13 laboratories (56 ppm), indicating that mass spectrometry is the main variable in
achieving accurate and precise Nd isotope ratios. Overall, this result is very satisfactory, as the achieved preci-
sion is a factor of 40 better than the range of Nd isotopic compositions observed in the global ocean.
Intercalibration for dissolved rare earth element concentrations (REEs) by six laboratories for two water depths
at BATS yielded a reproducibility of 15% or better for all REE except Ce, which seems to be the most blank-sen-
sitive REE. Neodymium concentrations from 12 laboratories show an agreement within 9%, reflecting the best
currently possible reproducibility. Results for Nd isotopic compositions and REE concentrations on marine par-
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ticles are inconclusive, and should be revisited in the future.

The neodymium isotopic composition of seawater has been
of interest to the scientific community for more than three
decades. The feasibility to directly measure Nd isotopes in sea-
water was first demonstrated by Piepgras et al. (1979). It was
these measurements, alongside indirect studies of seawater Nd
isotopes based on fish debris (DePaolo and Wasserburg 1977)
and ferromanganese nodules (O’Nions et al. 1978) from which
the picture emerged that the 43Nd/!*‘Nd isotope ratio in the
different ocean basins is closely coupled to that of the sur-
rounding continents. The provinciality between different
ocean basins implied by the early data (see also Piepgras and
Wasserburg 1980) has been verified and refined in many stud-
ies since, and points to a residence time of Nd in seawater on
the order of, or shorter than, the global turnover time of the
ocean (500-1000 y; Tachikawa et al. 2003). The lowest values
for dissolved Nd isotopes are observed around the old cratons
in the North Atlantic (Stordal and Wasserburg 1986), while
the highest values are found next to young volcanic areas in
the Pacific (Piepgras and Jacobsen 1988; Vance et al. 2004),
yielding an overall range in the global ocean of more than 20
epsilon units (143Nd/!**Nd ratios are expressed in epsilon units,
which denotes the deviation of a sample **Nd/¢Nd ratio
from the “CHondritic Uniform Reservoir” value in parts per
10000; CHUR = 0.512638; Jacobsen and Wasserburg 1980).

However, uncertainties remain when trying to exploit dis-
solved Nd isotopes as a tracer for water mass mixing (Gold-
stein and Hemming 2003), or as a tracer for continental inputs
and exchange with the ocean margins (Lacan and Jeandel
2005). Our current understanding of sources, sinks, and espe-
cially of the internal cycling of Nd in the ocean is relatively
poor, mainly due to a scarce number of observations. As of
today, only ~700 measurements on dissolved Nd isotopes are
published from the global ocean, more than a quarter of
which are surface water samples. Furthermore, the geographic
spread of sampling locations is very poor with ~ 50% of all
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depth profiles being located in the North Atlantic and the
North Pacific Ocean.

The international GEOTRACES program is bound to
improve this situation, as its three research objectives are
defined as follows (GEOTRACES Science Plan 2006):

(1) To determine global ocean distributions of selected trace
elements and isotopes (TEls), including their concentration,
chemical speciation, and physical form, and to evaluate the
sources, sinks, and internal cycling of these species to charac-
terize more completely the physical, chemical, and biological
processes regulating their distributions;

(2) To understand the processes involved in oceanic trace-
element cycles sufficiently well that the response of these
cycles to global change can be predicted, and their impact on
the carbon cycle and climate understood; and

(3) To understand the processes that control the concentra-
tions of geochemical species used for proxies of the past envi-
ronment, both in the water column and in the substrates that
reflect the water column.

A set of ‘key TEIs’ (Trace Elements and Isotopes; among
them dissolved Nd isotopes) considered central to these
broader goals of GEOTRACES were identified and have to be
measured on every GEOTRACES cruise (GEOTRACES Science
Plan 2006). Before the start of the major field program, a phase
of intercalibration activities was launched for a number of
TEIs, including all ‘key TEIs’.

No international intercalibration has ever been carried out
for Nd isotopes — neither for seawater, nor in hard rocks. The
hard rock community could overcome this problem by analyses
of readily available USGS reference materials (e.g., BCR-1 and 2,
BHVO-1 and 2, AGV-1 and 2, G-2, GSP-2; see Weis et al. 2006 for
a recent example). No reference material however is available
that resembles the matrix of seawater and requires analytical
procedures to extract small abundances of REE from a large vol-
ume of sample. Here we report the results on the GEOTRACES
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intercalibration efforts for dissolved Nd isotopes, which include
a total of 15 participating laboratories, some of which have a
long-standing history of seawater Nd isotope measurements,
and some of which are relatively new to the field.

Although not one of the key parameters of the GEOTRACES
program, the REE concentrations in seawater have been his-
torically used by a large number of laboratories to decipher lat-
eral and vertical processes in the water column as well as water
mass provenance (e.g., Elderfield and Greaves 1982; Piepgras
and Jacobsen 1992; Alibo and Nozaki 1999). We therefore used
the opportunity offered by the Nd isotope study to gather
intercalibration data on dissolved rare earth element concen-
trations (REEs), as well as Nd isotopic compositions and REE
concentrations from marine particles.

Our goal was to assess the precision and accuracy possible
for dissolved and particulate Nd isotopes (and REEs). Follow-
ing documentation and assessment of the data, we will pres-
ent some recommendations to achieve precise and accurate
results on future GEOTRACES cruises. This article is accompa-
nied by a second article that takes a closer look at the seago-
ing side of achieving accurate and precise results for dissolved
and particulate Nd isotopes and REE, by presenting results on
systematic tests on different materials and methods involved
(Pahnke et al. 2012). The second article also presents the first
GEOTRACES baseline profiles for Nd isotopes (and REEs) for
the Bermuda Atlantic Time-Series Station (BATS) in the NW
Atlantic Ocean and the SAFe station (Sampling and Analysis of
Fe) in the Pacific Ocean.

Materials and procedures

Shipboard sampling of seawater and particles

Samples used during this intercalibration exercise were col-
lected on two GEOTRACES intercalibration cruises, carried out
on the R/V Knorr in June-July 2008 in the Atlantic Ocean
(Bermuda-Norfolk, KN193-6), and in May 2009 in the Pacific
Ocean (Honolulu-San Diego, KN195-8). The two cruises were
chosen to sample fundamentally different water masses and
biogeochemical regimes and to occupy previously well char-
acterized time-series stations in the Atlantic Ocean (BATS) and
the Pacific Ocean (SAFe).

For intercalibration of Nd isotopes and REE concentrations,
both dissolved and particulate samples were collected. For dis-
solved samples, large volumes of filtered and homogenized
seawater were collected from three different locations: BATS
deep water (2000 m), BATS sub-surface water (15 m), and SAFe
deep water (3000 m). Deep water samples were collected using
multiple casts of the trace metal clean GEOTRACES rosette
deployed on a Kevlar hydroline, whereas sub-surface water
was collected using the UCSC designed “GeoFish” towed sam-
pling system. Filtration of seawater was carried out using 0.2
pm Osmonics cartridge filters in a portable clean van envi-
ronment. Water from the same water depth was transferred
through Teflon tubing into two interconnected 500 L tanks
made of fluorinated low density polyethylene, which were
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homogenized using an all PFA Teflon diaphragm pump (UCSC
SAFe tanks). Homogenized 500-1000 L of seawater were acidi-
fied to pH < 2 using ultrapure Seastar HCI. Individual sample
containers ranged from 0.5 L to 20 L, and were provided and
precleaned by the individual intercalibration participants.
Overall, most laboratories received 2 x 10 L seawater from
each of the three locations for duplicate analyses of Nd iso-
topes, and 0.5 L of seawater for REE concentration mea-
surements. Filling of individual sample containers was per-
formed directly from the SAFe tanks under a tent on deck the
R/V Knorr.

Particle samples were derived from the three following
locations: BATS deep water (2000 m), BATS sub-surface water
(30 m), and Virgina slope water (98 m). Two complementary
pumping systems were deployed for Nd isotope and REE inter-
calibration purposes: McLane pumps (deep water location at
BATS), and MULVES (Multiple Unit Large Volume Filtration
System; other two location) (Maiti et al. 2012; Bishop et al.
2008). Using the McLane pumps, about 600 L seawater were
pumped through each 0.45 pm Supor filter (142 mm diame-
ter). Filters were dried onboard in a dedicated clean environ-
ment, and cut into halves using a PVC template fitted with a
ceramic knife (pie-cutter). Each laboratory participating in the
Nd isotope intercalibration was provided half of a filter and
half of a corresponding dipped blank. For REE intercalibration,
2 cm punches, corresponding to ~20 L pumped seawater, were
taken out of a few of the filter halves for REE measurements
(e.g., some of the isotope laboratories received slightly smaller
samples). Larger water volumes (>1000 L) were pumped with
the MULVES system, equipped with large quartz fiber filters
(QMA; 506.7 cm? area, 1 pm pore size). Four 4.5 cm punches
were taken out of the filters for Nd isotope samples, repre-
senting ~380 L pumped water volume, accompanied by two
2.5 cm punches from dipped blanks. For REE measurements,
four 1.2 cm punches (~27 L pumped water volume) were col-
lected from dried filters together with two 1.2 cm punches
from dipped blanks. All filters were stored and shipped in pre-
cleaned containers.

Shore-based methods to determine dissolved and particu-
late Nd isotopic compositions and REE concentrations

As this article documents the first intercalibration effort for
Nd isotopes (and REE concentrations) in seawater and marine
particles, no particular analytical method was prescribed. This
approach allowed a variety of routine procedures to be com-
pared (e.g., different sample preconcentration, ion chro-
matography, and mass spectrometry procedures). Below we
briefly summarize the main differences in the analytical meth-
ods applied. Methodological information for each
anonymized laboratory can be found in Tables 1a and 1b.
Neodymium isotope measurements in seawater samples

To preconcentrate Nd from the seawater matrix most labo-
ratories performed a Fe coprecipitation step, where Fe is added
to seawater, most typically as FeCl, and equilibrated for 24-48
h. A subsequent increase to a pH of ~8, using ultraclean
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Table 1a: Details for processing seawater samples for their Nd isotopic composition in different laboratories.

mass

lab spike preconcentration of Nd ion chromatography spectrometry blank
Fe co-precipitation . TIMS (Nd*)/
1 NA (100 mg Fe for 20L of seawater) cation exchange DEP column MC-ICP-MS <20 pg
. Fe co-precipitation . P 30 pg
2 mixed '®Nd-"%°Sm (8 mg Fe per litre of seawater) cation exchange Ln Spec MC-ICP-MS (275 pg*)
Fe co-precipitation .
3 NA (50 mg Fe for 10L of seawater) RE Spec a-HIBA TIMS (NdO") 3pg
42 NA (50 mgFlieccf)c_)‘:rfgll_pcl)t?:ggwater) cation exchange Ln Spec MC-ICP-MS <2 pg
n NA prﬁ?g;’grg;aﬂtsgg?'- NA Ln Spec MC-ICP-MS ND
spiked samples 511 and 311 o anion exchange, cation exchange,
5 ) 0 Fe co-precipitation TRU spec column, Ln Spec column, TIMS (Nd*) 70 pg
with 250ug “Be Eichrom prefilter material
Fe co-precipitation anion exchange, TRU Spec, . 8-12 pg®
6 'Nd, ’Sm (14 mg Fe for 3.6L seawater) Ln Spec TIMS (Nd") 4pd
Fe co-precipitation cation exchange, Mitsubishi P
” NA (60 mg Fe for 10L seawater) resion, Ln Spec MC-ICP-MS 25pg
- NA prﬁ?g;’grg;aﬂtsgg?'- NA Ln Spec MC-ICP-MS 2.5 pg
preconcentrated 10L . TIMS (Nd*)/
8 NA on C18 cartridge cation exchange Ln Spec MC-ICP-MS 187 pg
. o anion exchange, cation exchange .
9 NA Fe co-precipitation (x2), Ln Spec column TIMS (Nd*) 120 pg
Fe co-precipitation
10 NA (1 mg Fe per litre of seawater) TRU Spec Ln Spec MC-ICP-MS ND
Fe co-precipitation .
" NA (50 mg Fe for 10L of seawater) RE Spec a-HIBA TIMS (NdO") 3pg
reconcentrated 10L 7 pa®
12 NA P o 18 contidae TRU Spec Ln Spec TIMS (NdO") P9
9 20pa*
13 NA prsﬁog;:gr:;arttsgg;m cation exchange Ln Spec MC-ICP-MS 8 pg
14 NA 05 gii%‘:f%cl_l%tfast:):water) cation exchange  Ln Spec MC-ICP-MS ND
15 NA preconcentrated 10L cation exchange Ln Spec TIMS (Nd*) <300 pg

on C18 cartridge

* blank of Fe solution, which was measured for its isotopic composition and would imply a correction of 0.02 to 0.1 epsilon units,
which the lab refrained from applying; remaining analytical blank (chemistry and mass spectrometry): 30pg

@ method used for intercalibration samples from BATS
® method used for intercalibration samples from SaFE
¢ column chemistry and loading blank

9 total procedural blank derived from pumping 10L ultraclean water through two cartridges and subtracting the water blank

ND = not determined; NA = not applicable

ammonium hydroxide leads to the formation of iron hydrox-
ides, which in turn, efficiently scavenge rare earth elements
out of the seawater solution (e.g., Piepgras and Wasserburg
1987). Depending on the laboratory, between 1 and 25 mg
purified Fe are added per liter of seawater. Purification of Fe is
typically carried out by isopropyl ether back-extraction (Dod-
son et al. 1936), or by ion exchange chromatography. Lack of
careful purification has been reported as the most likely can-

didate to introduce a significant procedural blank (e.g., a few
hundred picograms; see Table 1a). A few laboratories choose to
concentrate Nd from the seawater matrix by liquid-liquid
extraction, pumping 10 L seawater aliquots, adjusted to a pH
of ~3.5, through two coupled Sep-Pack C18 cartridges, each
filled with 300 mg of a mixture of 65% bis(2-ethylhexyl)
hydrogen phosphate (HDEHP) and 35% 2-ethylhexyl dihy-
drogen phosphate (H,MEHP), at a speed of 20 mL/min (Sha-
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Table 1b: Details for processing seawater samples for Nd concentrations and other rare earth element concentrations in different laboratories.

lab concentrations aliquoting spike technique mass spectrometry

8&C

seaFAST system with a column containing resin with
1 [REE] 4mL aliquot no ethylenediaminetriacetic acid and iminodiacetic acid ICP-MS
functional groups to preconcentrate REE

2 [Nd], [Sm] spiked larae volume sample for isotope work with "**Nd and "°Sm and processed as described in Table 1a MC-ICP-MS
3 [REE] 50 to 150mL aliquot mixed REE spike (““La, "“Ce, "*Nd, **Sm, "Eu, chrorT(:Z’;ggr]er:I;?r:?tv;e/i?hRanlcEixtgszgigfasggﬁéizduce MC-ICP-MS
%Gd, "*'Gd, "’Er, and ""'Yb) Fe
solvent extraction following Shabani et al (1992)
s e 500 i o
exchange chemistry

6 [Nd], [Sm] spiked entire sample with "*°Nd and "’Sm and processed as described in Table 1a TIMS

8 [REE] 500mL aliquot 150Ng. T2y co-precipitated REE wictglﬁ;:rr?g Fe; anion exchange ICP-MS

9 [Nd] 500mL aliquot 145N g co-precipitated REE with Fe; anion exchange column ICP-MS
10 [REE] 600 mL aliquot ~20 ug Tm solution (100.2 ppm) co-precipitated REE with 1ml 1000ppm Fe solution ICP-MS
1 [Nd] 250 mL aliquot 146N g co-precipitated REE with Fe; RE Spec column ICP-MS
12 [Nd] spiked larae volume for isotope work with *Nd and processed as described in Table 1a TIMS

16 [REE] 180-190g of seawater “SNd, 7'Yb co-precipitated REE with Fe; anion exchange column ICP-MS

10L of seawater: used a fraction of the REE co-precipitated REE with Fe; cation exchange column,

17*2 [REE] . no Mitsubishi resin column; Re and Rh as internal ICP-MS
cut from column chemistry
standards

preconcentration of REE on C-18 cartridges; Ln Spec

b i 150 - -
17 [Nd] 500mL aliquot Nd column MC-ICP-MS
* seawater concentrations were calculated assuming a total sample volume of 10L for the two intercalibration samples from BATS
2 method used for intercalibration samples from BATS
® method used for analyses of unknown REE standard
z g
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54) or Multiple Collector Inductively Coupled Plasma Mass
Spectrometry (MC-ICP-MS: Nu Plasma or Neptune). While his-
torically TIMS was the method of choice for all laboratories,
the past 15 y have seen a quick rise of MC-ICP-MS as a replace-
ment for many routine analyses previously performed by
TIMS. Arguments in favor of MC-ICP-MS measurements are
the speediness of data collection achieved by significantly
reduced analysis time, while maintaining a similar precision
to that achieved by TIMS (for a summary on MC-ICP-MS, see
Halliday et al. 2000). The advantage of TIMS measurements,
especially when considering improved ionization during
neodymium oxide measurements (NdO*) compared with
metal runs (Nd*), is the ability to return high precision data on
small abundance samples (e.g., Li et al. 2007; Chu et al. 2009;
Harvey and Baxter 2009). Extensive literature exists on appro-
priate measurement setups, especially on eliminating the rela-
tively large mass discrimination effect observed for mea-
surements by MC-ICP-MS (e.g., Vance and Thirlwall 2002;
Wombacher and Rehkdmper 2003) and on carrying out the
numerous oxide interference corrections and using the appro-
priate oxygen isotopic composition during TIMS mea-
surements (e.g., Thirlwall 1991a, 1991b). Discussing the
details of applied mass spectrometry between the 15 partici-
pating laboratories goes beyond the scope of this article and
would violate agreed anonymity. It is, however, important to
note that all laboratories corrected for instrumental mass bias
using a **Nd/"*Nd of 0.7219 (O’Nions et al. 1977), making
the results directly comparable.
Neodymium isotope measurements in marine particles
The main difference in processing marine particles for their
Nd isotopic composition, compared with seawater samples, is
the initial sample dissolution step. As different digestion and
leaching methods of filters are likely to result in varying
amounts of REE being removed from the particles on the fil-
ters, two methods were prescribed for the particle samples
from deep waters at BATS and shallow water at BATS, respec-
tively. For the Supor filters (deep water particles at BATS), a
total digest of the filter was targeted by following the method
used by Cullen and Sherrell (1999). Briefly, filters were placed
in precleaned Teflon vials together with a mixture of concen-
trated HNO, and concentrated HF (19:1). Complete digestion
of any particles was achieved by refluxing at 120°C for 4 h.
This procedure also leads to a total digestion of the Supor fil-
ter, which however does not constitute a major blank issue
(see “Assessment and discussion of results” below). One labo-
ratory deviated from this procedure and instead followed a
digestion method adapted from Landing and Lewis (1991)
that avoids total digestion of the filter material (Table 5). The
large blank of quartz fiber filters (QMA) in contrast precludes
total digestion, and the approach chosen targets a leaching of
the REE fraction not bound to the silicate phases (Collier and
Edmond 1984). As described in Jeandel et al. (1995), samples
were leached in 0.6M HCI at 60°C for 20 h. For the third set of
filters from the Virginia slope station, individual laboratories
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were free to choose a different method. The only deviation
from above outlined methods for samples from the Virginia
slope station was performed however by laboratory number 2,
where QMA filters were leached for 3.5 h at 90°C in a mixture
of 0.005M hydroxylamine hydrochloride, 1.5% acetic acid,
and 2 nM EDTA solution (pH of 3.5), with an ultrasonification
step performed every hour.

Rare earth element concentration measurements in seawa-
ter samples

In general, the procedure for determining REE concentra-
tions on seawater samples can follow a similar methodology
to the one described above for the first steps in determining
the Nd isotopic composition. Most laboratories use Fe copre-
cipitation or liquid-liquid extraction to preconcentrate the
REE, followed by ion exchange chromatography to separate
the REE fraction from the sample matrix (typically anion
exchange or RE Spec; Table 1b).

The major difference between isotope and concentrations
measurements is the smaller water volume required for con-
centration analyses (between 4 mL and 600 mL; Table 1b), and
the addition of an isotopically enriched tracer (“spike”) before
preconcentration. This addition is crucial to correct for ele-
mental fractionation, which may happen during preconcen-
tration and/or ion chromatography. The types of spikes used
for this intercalibration exercise include multi-element mixed
REE isotope spikes, two-element isotope spikes, and the addi-
tion of monoisotopic elements (Table 1b). Traditionally, REE
concentrations were analyzed by isotope dilution methods
and TIMS (e.g., Elderfield and Greaves 1982), but for this inter-
calibration, REE patterns were mostly analyzed by ICP-MS
(Agilent 7500, Element 2, HP-4500, Perkin Elmer Elan DRCII,
Yokogawa PMS-2000). Five laboratories report results for Nd
concentrations only, which in three cases, were determined
on the same large volume sample used for isotopic analyses
through spiking before coprecipitation. In these cases, mea-
surements were performed by TIMS/MC-ICP-MS.

Notably, one laboratory (nr 1) used the seaFAST system, a
commercially available system (Elemental Scientific) with a
column containing a resin with ethylendiaminetriacetic acid
and iminodiacetic acid functional groups to preconcentrate
REEs. This system can be directly connected to an ICP-MS, and
blanks, standards, and samples are passed through the column
in the same manner, and eluted directly into the spray cham-
ber of the ICP-MS.

Rare earth element concentration measurements in marine
particles

Rare earth element concentrations of marine particles were
attempted by four laboratories. Partial return of data, as well
as some deviation from recommended methodologies, yielded
a poor statistical basis for assessing the results. We, therefore,
refrain from reporting the actual values in the article, but will
make some qualitative comments on the results in the next
sections to encourage and guide future efforts.
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Assessment and discussion of results

Neodymium isotope intercalibration in seawater at BATS
and SAFe

To achieve comparability of results, all measured
143Nd/'**Nd ratios have been normalized relative to a JNd, ratio
of 0.512115 (Tanaka et al. 2000) or a La Jolla ratio of 0.511858
(Lugmair et al. 1983) using standard values reported by each
laboratory (see caption of Table 2). For laboratories that rou-
tinely use other in-house standards than the ones listed above,
their reported cross-calibration for their respective standards
relative to JNd/La Jolla was used. Figs. 1 and 2 and Tables 2
and 3 show the results for the Nd isotopic composition of sea-
water at three distinct water depths at BATS and SAFe as mea-
sured by 15 different laboratories. Sub-surface water at BATS
yielded an average Nd isotopic composition of -9.2 + 0.6, deep
water at BATS a value of -13.1 + 0.6, and the average Nd iso-
topic composition of deep water at SAFe is -3.2 + 0.5 (errors:
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Fig. 1. Dissolved neodymium isotopic composition for two water depths
at BATS (NW Atlantic). Results display good agreement of the interna-
tional community (15 individual laboratories) on measuring the Nd iso-
topic composition of seawater (i.e., values agree within 57 ppm; two
sigma standard deviation of the mean). Details on samples and laborato-
ries are given in Tables 1a and 2. Errors plotted are external two sigma
standard deviations reported by each laboratory (based on repeat analy-
ses of isotopic standards; see Table 2 caption), or internal two sigma stan-
dard error, depending on which error was the larger one.
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two sigma standard deviations of the mean). Interpretation of
the results concerning comparability to published literature
values can be found in the accompanying paper by Pahnke et
al. (2012). Here we focus on assessing the agreement achieved
between the different laboratories (i.e., reproducibility; repro-
ducibility is here defined as the two sigma standard deviation
of the mean of all individual data points considered for a
given location).

The reproducibility for the three sample sets is found to be
between 47 and 57 ppm. Considering that the external two
sigma standard deviation reported by each laboratory for
145Nd/1*4Nd ratios varies between 10 and 100 ppm (see values
reported on La Jolla, JNd,, or other in house standard runs in
the caption of Tables 2 and 3), this is an excellent result. How-
ever, two thirds of all laboratories report a more narrow range
of external reproducibilities between 20 and 40 ppm for their
145Nd/*4Nd analyses. Two questions emerge at this point: (1)
Is a better agreement of natural seawater measurements possi-
ble (e.g., what is the reproducibility on natural samples com-
pared to pure standard solutions and how do various method-
ologies feature in the statistics?), and (2) what is the reason for
the larger external errors reported by some laboratories, and
how do their values influence the overall statistics.

Starting with the first point, a simple exercise was under-
taken to constrain whether the spread in data observed in Figs.
1 and 2 is an artifact of incomplete matrix removal from natu-
ral samples during ion chromatography, and subsequent mass
spectrometry, or whether the spread in *3Nd/'*Nd ratios arises
from the analyses themselves (i.e., different methods applied
during mass spectrometry yielding different degrees of accu-
racy and precision). Fig. 3 illustrates results obtained for an
‘unknown standard solution’. The standard was produced from
Nd,O, powder at Imperial College London in an ultraclean lab-
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-2.0 A

-2.5 1

-3.0 1
3.5

40 -
45 4
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Fig. 2. Dissolved neodymium isotopic composition at 3 km water depth
at SAFe (NE Pacific). Results display good agreement of the international
community (8 individual laboratories) on measuring the Nd isotopic com-
position of seawater (i.e., all values agree within 47 ppm; two sigma stan-
dard deviation of the mean). Details on samples and laboratories are
given in Tables Ta and 3. Errors plotted are external two sigma standard
deviations reported by each laboratory (based on repeat analyses of iso-
topic standards; see Table 3 caption).
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Table 2: International intercalibration for Nd isotopes in seawater at BATS.

sample  13Ng/“Ng internal 13NG/ NG internal ~ external  deviation from
lab sample ID engl
volume  measured 20 SE normalized* N 20SE 20 SD* average

BATS, 2000m
1 KN193-6-Nd-301 20L 0.511914 + 0.000011 0.511979 -129 + 0.2 04 0.3
2 KN193-6-Nd-305 5L 0.511957 + 0.000008 0.511966 -131 £ 0.2 0.1 0.0
2 KN193-6-Nd-305 5L 0.511968 + 0.000009 0.511977 -129 £ 0.2 0.1 0.2
3 KN193-6-Nd-324 10L 0.511943 + 0.000015 0.511956 -133 £ 03 04 -0.2
3 KN193-6-Nd-323 10L 0.511941 + 0.000008 0.511954 -133 £ 0.2 0.4 -0.2
4 KN193-6-Nd-314 10L 0.511942 + 0.000018 0.511949 -134 £+ 03 0.2 -0.3
4 KN193-6-Nd-314 10L 0.511978 + 0.000020 0.511985 -12.7 £ 04 0.2 0.4
5 KN193-6-Nd-310 10L 0.511927 + 0.000008 0.511959 -132 £ 0.2 0.3 -0.1
5 KN193-6-Nd-311 10L 0.511918 + 0.000008 0.511950 -134 £ 0.2 0.3 -0.3
6 KN193-6-Nd-315 10L 0.511974 + 0.000019 0.511984 -128 + 04 0.4 0.4
6 KN193-6-Nd-318 10L 0.511927 + 0.000022 0.511937 -13.7 £ 04 0.4 -0.5
7 KN193-6-Nd-309 10L 0.511936 + 0.000020 0.511948 -135 + 04 0.3 -0.3
7 KN193-6-Nd-308 10L 0.511957 + 0.000010 0.511969 -13.1 £ 0.2 0.3 0.1
8 KN193-6-Nd-304A 10L 0.512004 + 0.000018 0.511961 -13.2 £ 04 0.2 -0.1
8 KN193-6-Nd-304B 10L 0.511997 + 0.000027 0.511954 -133 £ 05 0.2 -0.2
9 KN193-6-Nd312 10L 0.511950 + 0.000017 0.511967 -131 £ 03 0.3 0.1
9 KN193-6-Nd313 10L 0.511940 + 0.000015 0.511957 -133 £ 03 0.3 -0.1
10 KN193-6-Nd-302 10L 0.512040 + 0.000014 0.511978 -129 + 03 0.8 0.3
10 KN193-6-Nd-303 10L 0.512087 + 0.000022 0.512003 -124 + 04 1.0 0.8
1" KNR193-6-706 10L 0.511937 + 0.000012 0.511958 -13.3 + 0.2 0.3 -0.1
" KNR193-6-711 10L 0.511941 + 0.000007 0.511962 -13.2 £ 01 0.3 -0.1
12 KN193-6-Hf-315a 10L 0.511955 + 0.000008 0.511968 -13.1 £ 0.2 0.2 0.1
12 KN193-6-Hf-315b 10L 0.511945 + 0.000009 0.511958 -13.3 £+ 0.2 0.2 -0.1
13 KN193-6-Nd-325 10L 0.511950 + 0.000022 0.511963 -13.2 £ 04 0.3 0.0

average BATS 2000m -13.1

20SD 0.6

BATS, 15m
1 KN193-6-Nd-501 20L 0.512114 + 0.000011 0.512179 9.0 £ 02 0.4 0.2
2 KN193-6-Nd-505 5L 0.512148 + 0.000010 0.512157 94 + 02 0.1 -0.2
2 KN193-6-Nd-505 5L 0.512161 + 0.000008 0.512170 91 £ 02 0.1 0.1
3 KN193-6-Nd-526 10L 0.512149 + 0.000008 0.512162 93 £ 02 0.4 -0.1
3 KN193-6-Nd-527 10L 0.512132 + 0.000011 0.512145 9.6 £ 0.2 0.4 -0.4
4 KN193-6-Nd-517 10L 0.512159 + 0.000018 0.512166 92 + 04 0.2 0.0
4 KN193-6-Nd-517 10L 0.512169 + 0.000018 0.512176 9.0 £ 04 0.2 0.2
5 KN193-6-Nd-510 10L 0.512117 + 0.000009 0.512149 95 £+ 0.2 0.3 -0.3
5 KN193-6-Nd-511 10L 0.512060 + 0.000032 0.512092 -10.7 £ 0.6 0.3 -1.5
5 KN193-6-Nd-512 & 513 20L 0.512127 + 0.000010 0.512159 93 £ 0.2 0.3 -0.1
6 KN193-6-Nd-516 10L 0.512202 + 0.000030 0.512212 -83 £+ 0.6 0.4 0.9
6 KN193-6-Nd-518 10L 0.512166 + 0.000057 0.512176 9.0 + 1.1 0.4 0.2
7 KN193-6-Nd-509 10L 0.512178 + 0.000010 0.512190 -8.7 £ 0.2 0.3 0.5
7 KN193-6-Nd-508 10L 0.512149 + 0.000015 0.512161 93 £+ 03 0.3 -0.1
8% KN193-6-Nd-504 20L 0.512194 + 0.000021 0.512151 95 + 04 0.2 -0.3
9 KN193-6-Nd-514 & 515 20L 0.512152 + 0.000014 0.512170 9.1 £ 03 0.3 0.1
10 KN193-6-Nd-502 10L 0.512246 + 0.000019 0.512162 93 + 04 1.0 -0.1
10 KN193-6-Nd-503 10L 0.512231 + 0.000011 0.512169 9.2 £ 0.2 0.8 0.0
12 KN193-6-Hf-539a 10L 0.512155 + 0.000006 0.512168 9.2 + 0.1 0.2 0.0
12 KN193-6-Hf-539b 10L 0.512157 + 0.000008 0.512170 9.1 £ 0.2 0.2 0.1
13 KN193-6-Nd-529 10L 0.512145 + 0.000022 0.512158 94 + 04 0.3 -0.2
15 KN193-6-Nd-521 10L 0.512152 + 0.000012 0.512153 95 £+ 0.2 0.3 -0.3
15 KN193-6-Nd-520 10L 0.512162 + 0.000011 0.512163 93 £ 02 0.3 -0.1

average BATS 15m -9.2

20SD 0.6

* 3Nd/"**Nd ratios were normalized using the reported standard data for each lab, relative to a JNdi value of 0.512115 (Tanaka

etal,
Teyg values were calculated relative to a CHUR of 0.512638 (Jacobsen and Wasserburg, 1980).
* external errors are derived from repeat standard analyses during the measurement session; if internal errors are larger than

2000) or a La Jolla value of 0.511858 (Lugmair et al., 1983).

external errors, these are plotted in Figure 1.

n sample was flagged as contaminated by the lab and is not included in the calculated average and not shown in Figure 1.
$lab reported that error bars were larger than usual, and speculated that their new Fe solution was not sufficiently clean.

*'lab reported sample loss during preconcentration.

lab 1:
lab 2:
lab 3:
lab 4:
lab 5:

lab 6:

lab 7:

lab 8:
lab 9:

lab 10:

lab 11:

lab 12:
lab 13:
lab 15:

JNd, "*Nd/"*Nd ratios of 0.512050 + 0.000018 (n=184; 15 ng loads).

La Jolla "*Nd/"*“Nd of 0.511849 + 0.000007 (n=11; 50 ppb solution, uptake of 0.3 ml per analysis).

La Jolla ***Nd/"**Nd of 0.511845 + 0.000021 (n=10; 15 ng loads).
La Jolla **Nd/"*Nd of 0.511851 + 0.000012 (20 ppb solution).

La Jolla "*Nd/"*Nd of 0.511815 + 0.000010 (n=1; 50ng load run at low beam intensity to match sample beam);

JNd, "*Nd/"*Nd of 0.512083 + 0.000013 (n=8; 20 ng loads).

La Jolla **Nd/"**Nd of 0.511848 + 0.000004 (n=12, loads of 100-400nq). 20 loads of 4-12 ng of an inhouse standard

yielded an error of 0.000022.
JNd, "*Nd/"*Nd of 0.512103 + 0.000014 (n=65; 60 ppb solution).
La Jolla "**Nd/**Nd of 0.511902 + 0.000010 (n=8; 15-30 nq loads).

JNd, "*Nd/"**Nd of 0.512098 + 0.000017 (n=6; 250 ng loads, often runs one filament repeatedly).
Second deep water sample and first shallow water sample have been normalized using a JNd, "“*Nd/**Nd of 0.512199 +

0.000051 (n=3; 9 ppb solution); remaining ratios are normalized based on JNd, "**Nd/"*Nd of 0.512177 + 0.000038

(n=4; 13 ppb solution).
La Jolla "*Nd/**Nd of 0.511838 + 0.000015 (n=4; 10 ng loads).
JNd, "*Nd/"*Nd of 0.512102 + 0.000008 (n=12; 5ng loads).

JMC "*Nd/"**Nd of 0.511110 + 0.000018 (n=3; 15 ppb solution), calibrated to correspond to a JNd, value of 0.512102.

La Jolla **Nd/"*Nd of 0.511857 + 0.000011 (n=4; 10-20 ng loads).

241

Intercalibration of Seawater Nd Isotopes

oratory environment using distilled
acids only. Two different stock solu-
tions (15ppb Nd in 0.1M HNO, and 15
ppm Nd in 4M HNO,) were prepared
from a single digest of the powder, and
aliquots were subsequently sent out to
each laboratory (15 ppb and 15 ppm
solutions dependent on the use of MC-
ICP-MS or TIMS respectively). Concen-
trations were chosen to mimic those
typical for Atlantic seawater. Data
returns from 13 laboratories yielded an
average Nd isotopic composition of
-17.3 + 0.6 (Table 4). The two sigma
standard deviation of 56 ppm from the
mean of all individual measurements is
very similar to the reproducibility
obtained on seawater samples (47 to 57
ppm). The two sigma standard devia-
tion calculated for each laboratory on
the unknown standard solution varies
between 11 and 86 ppm (Table 4),
which is similar to the range reported
by individual laboratories on La Jolla,
JNd,, and other in house standard runs
(Tables 2,3; 6-100 ppm). Detailed com-
parison shows that some laboratories
may underestimate their external
errors, whereas others report rather
conservative errors. Hence, it can be
concluded that the major variable in
obtaining good agreement for Nd iso-
topic measurements between different
laboratories is mass spectrometry.
Although very different preconcentra-
tion methods and ion chromatographic
protocols are used by the different lab-
oratories (see Table 1a), these parts of
the methodology do not seem to add
significantly to the uncertainty of the
final results. What has a larger effect,
however, on the precision possible dur-
ing mass spectrometry is the concentra-
tion of Nd analyzed (i.e., counting sta-
tistics). Analyses of 15 ng loads by TIMS
typically produce more precise results
than 15 ppb runs by MC-ICP-MS, an
outcome that is expected due to the
higher transmission efficiency of TIMS
analyses, especially when performed as
NdO* (e.g., Li et al. 2007; Chu et al.
2009; Harvey and Baxter 2009). How-
ever, Nd* measurements are not neces-
sarily superior to analyses performed on
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Table 3: International intercalibration for Nd isotopes in seawater at SAFe.

sample  143Ng/'%Nd internal 43N d/“4Nd internal  external deviation from
lab sample ID ) Enal
volume  measured 20 SE normalized* N 20SE 25 8D¥ average

SAFe, 3000m
2 KNR195-8-Nd-2143 2.5L 0.512461 = 0.000006 0.512473 -3.2 £ 041 0.1 -0.1
2 KNR195-8-Nd-2144 2.5L 0.512461 + 0.000006 0.512473 -3.2 + 041 0.1 0.0
2 KNR195-8-Nd-2162 2.5L 0.512469 = 0.000006 0.512481 -3.1 = 041 0.1 0.1
4 KNR195-8-Nd-2157 5L 0.512473 + 0.000008 0.512468 -3.3 £ 0.2 0.2 -0.2
4 KNR195-8-Nd-2157 5L 0.512456 + 0.000010 0.512465 -34 = 0.2 0.2 -0.2
4 KNR195-8-Nd-2157 5L 0.512460 + 0.000010 0.512469 -3.3 £ 0.2 0.2 -0.1
4 KNR195-8-Nd-2158 5L 0.512429 + 0.000011 0.512438 -39 + 0.2 0.2 -0.7
6 KNR195-8-Nd-2159 10L 0.512471 = 0.000008 0.512481 -3.1 £ 0.2 04 0.1
6 KNR195-8-Nd-2160 10L 0.512476 = 0.000006 0.512486 -3.0 £ 01 04 0.2
7 KNR195-8-Nd-2156 10L 0.512485 + 0.000009 0.512497 2.8 + 0.2 0.3 0.4
8 KNR195-8-Nd-2145 10L 0.512465 + 0.000007 0.512466 -34 = 041 0.3 -0.2
8 KNR195-8-Nd-2146 10L 0.512475 + 0.000005 0.512476 -3.2 + 0.1 0.3 0.0
1 KNR195-8-Nd-2202 10L 0.512457 + 0.000005 0.512478 3.1 £ 0.1 0.3 0.0
1 KNR195-8-Nd-2305 10L 0.512456 + 0.000004 0.512475 -3.2 = 01 0.3 0.0
12 KNR195-8-Nd-2306 5L 0.512467 + 0.000008 0.512480 -3.1 £ 0.2 0.1 0.1
14 KNR195-8-Nd-2147_run1 5L 0.512533 + 0.000008 0.512484 -3.0 £ 0.2 0.2 0.2
14 KNR195-8-Nd-2147_run2 5L 0.512534 + 0.000008 0.512484 -3.0 + 0.2 0.2 0.2
14 KNR195-8-Nd-2148_run1 5L 0.512533 + 0.000006 0.512483 -3.0 £ 01 0.2 0.1
14 KNR195-8-Nd-2148_run2 5L 0.512529 + 0.000008 0.512480 3.1 £ 0.2 0.2 0.1

average SAFe 3000m -3.2

26 SD 0.5

* 3N d/"**Nd ratios were normalized using the reported standard data for each lab, relative to a JNd, value of 0.512115
Tanaka et al. (2000) or a La Jolla value of 0.511858 (Lugmair et al., 1983).

Teyq values were calculated relative to a CHUR of 0.512638 (Jacobsen and Wasserburg, 1980).

* external errors are derived from repeat standard analyses during the measurement session

lab 2: La Jolla “*Nd/"*Nd of 0.511846 + 0.000005 (n=16).

lab 4: Samples were normalised to two measurement sessions yielding JNd, "**Nd/"**Nd of 0.512120 + 0.000008 (n=7) and
JNd; “*Nd/"*Nd of 0.512106 + 0.000005 (n=19) respectively. For chemical separation: see Table 2.

lab 6: La Jolla “*Nd/"*Nd of 0.511848 + 0.000004 (12 loads of 100-400ng; 19 loads of 10-20ng of an inhouse standard
yielded an error of 0.000018).

lab 7:  JNdi "**Nd/"**Nd of 0.512103 + 0.000014 (n=45). For chemical separation: see Table 2.

lab 8: La Jolla “*Nd/"*“Nd of 0.511857 + 0.000015 (n=17). Samples were processed in lab 8, but analyzed in lab 2.

lab 11: La Jolla “*Nd/***Nd of 0.511837 + 0.000013 (n=5).

lab 12: JNdi"**Nd/"**Nd of 0.512102 + 0.000003 (n=5).

lab 14: JNd, “*Nd/"**Nd of 0.512164 + 0.000011 (n=11; 40 ppb solution).

a sensitive MC-ICP-MS (e.g., a set-up that yields large ion
beams even for small abundances of Nd; see Fig. 3 and Table 4).
The two laboratories that stand out in Fig. 3 with the largest
data spread (numbers 7 and 10), both report results from MC-
ICP-MS runs where machine sensitivity hampered a better
reproducibility on 15 ppb solutions. In general, a combination
of time-resolved analyses, which allows acquisition of isotopic
ratios at a faster speed and optimized sample solution concen-
tration to achieve the largest possible Nd beam can potentially
improve results (i.e., individual laboratories were requested to
run the original 15 ppb solutions).

Returning to the individual results on the Nd isotopic com-
position of seawater at BATS (Fig. 1; point (2) above), the
agreement between laboratories improves from a two sigma
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standard deviation of ~60 ppm to ~40 ppm, when omitting
the results for laboratories 6 and 10. There is some justification
to look at the results like this, as laboratory 6 reported prob-
lems with the Fe solution that they used for the seawater
analyses from BATS. As outlined above, Fe solution can be a
significant source of blank, and this blank can only be neg-
lected for small abundance samples when isotopically charac-
terized as done by Laboratory 2 (see Table 1a). Laboratory 10
reports replicate values for each water depth that overlap with
each other, and also overlap within error with the average
from all laboratories. However, error bars are large due to poor
external reproducibility on low concentration standard runs.
The same laboratory reports an improved external repro-
ducibility of 18 to 37 ppm on 100 ppb standard solution. It is
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Fig. 3. Neodymium isotopic compositions for an unknown standard
solution. The unknown Nd isotope standard was produced from a pure
Nd,O, powder. It was distributed in Nd concentrations that mimic sea-
water concentrations, without requiring further treatment in individual
laboratories (i.e., 15 ppm for TIMS laboratories and 15 ppb for MC-ICP-
MS laboratories). Analyses by 13 different laboratories yielded a similar
reproducibility as reported for seawater analyses (i.e., 56 ppm two sigma
standard deviation when taking into account all individual measurements;
for seawater results, see Figs. 1 and 2 and Tables 2 and 3). Results fur-
thermore reveal that some laboratories may underestimate their external
errors when dealing with low abundance samples (see text for further
explanation). Filled symbols: laboratories that carried out analyses by MC-
ICP-MS. Open symbols: laboratories that carried out analyses by TIMS.
Errors plotted are internal two sigma standard errors.

important to note that not all laboratories chose to run their
isotopic standards at the same concentrations as the samples
(see notes in the caption of Table 2). In detail, Laboratories 7
and 9 report results on significantly higher concentrated stan-
dards. In the case of Laboratory 9, ion beam intensity however
was controlled at a level similar to the one obtained during
sample runs. Laboratory 13 reports a much larger repro-
ducibility on the unknown standard than for their in-house
standard (76 versus 25-35 ppm; Tables 2 and 4) for unresolved
reasons. Overall, some laboratories may underestimate their
external errors by not matching standard and sample concen-
trations. Many laboratories however yield consistent results
between 20 and 40 ppm throughout the intercalibration exer-
cise (see captions of Tables 2-4). Furthermore, failure to repro-
duce individual samples within one laboratory could hint at
unidentified blank issues affecting the accuracy of results (Lab-
oratory 4; Fig. 2).
Neodymium isotope intercalibration in marine particles at
BATS

Figure 4 shows the results obtained from six different labo-
ratories on the Nd isotopic composition of marine particulate
matter collected at three different locations in the Atlantic
Ocean, using two different pumping systems. Following the
discussion above on seawater Nd isotope analyses, the differ-
ent laboratories can be expected to achieve *3Nd/*‘Nd results
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Fig. 4. Neodymium isotopic composition of marine particles collected
during the first intercalibration cruise. Results for particle analyses at three
different stations: sub-surface water at BATS (top), Virginia continental
slope (middle), and deep water at BATS (bottom). Whereas good agree-
ment between different laboratories can be observed for the samples
from the shallow water depth at BATS (two sigma standard deviation of
53 ppm), different leaching/digestion methods used as well as outliers in
the analyses make the data for the other two stations inconclusive (two
sigma standard deviations worse than 100 ppm; Table 5).

that agree within ~60 ppm if two important preconditions are
met: (i) the particle composition on each filter was homoge-
nous and reproducible between filters from the same pumping
station, and (ii) all laboratories used the same method to
either leach particles off the filter, or to perform a total filter
and sample digest.

The first point is discussed in more detail in dedicated
papers on analyses and sampling of marine particles (Maiti et
al. 2012 and Bishop et al. 2012). The latter point is fulfilled for
the particle samples from the shallow water depth at BATS, but
violated for the other two intercalibration samples (Fig. 4;
Table 5). Considering that any particle sample from the ocean
is a mixture of biogenic and detrital particles, each of which
could have a distinct Nd concentration and isotopic composi-
tion and react differently to different chemical leaching/diges-
tion procedures, we would expect to see some dependence on
chosen methodology. The actual results are, however, incon-
clusive. Particles from the shallow water depth at BATS, all
leached using the same prescribed methodology following
Jeandel et al. (1995), show an average Nd isotopic composi-
tion of -9.3 and agree within 0.5 epsilon units (2o standard
deviation of the mean; Fig. 4, Table 5). This result could be
interpreted as an excellent agreement for an intercalibration,
although statistics are hampered by the small number of data
submissions (n = 5).
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Table 4: Results from individual laboratories on the ‘unknown’ Nd standard.

\ab NG/ Nd + internal NG/ *Nd et x internal  deviation from lab NG/ *Nd + internal 43NG/*Nd et & internal  deviation from
measured = 20 SE normalized* N T 20 SE average measured ~ 20 SE normalized* N7 20 SE average
1 0.511677 + 0.000008 0.511742 -175 = 0.2 -0.2 8 0.511754 + 0.000027 0.511769 -17.0 £ 05 0.4
1 0.511693 + 0.000008 0.511740 -175 = 0.2 -0.2 8 0.511731 £ 0.000011 0.511746 -174 £ 0.2 -0.1
1 0.511721 + 0.000007 0.511731 -17.7 + 041 -0.4 8 0.511737 + 0.000007 0.511752 -173 + 01 0.0
1 0.511728 + 0.000005 0.511738 -176 + 0.1 -0.2 8 0.511742 + 0.000008 0.511757 -17.2 + 0.2 0.1
average gysand 20 SD, lab 1: -17.6 = 0.2 8 0.511735 + 0.000008 0.511750 -173 + 0.2 0.0
8 0.511799 + 0.000019 0.511769 -17.0 + 04 0.4
2 0.511755 + 0.000011 0.511742 -175 + 0.2 -0.2 8 0.511806 + 0.000024 0.511776 -16.8 £ 0.5 0.5
2 0.511782 + 0.000010 0.511769 -17.0 = 0.2 0.4 8 0.511799 + 0.000006 0.511769 -17.0 £ 0.1 0.4
2 0.511764 + 0.000012 0.511751 -173 = 0.2 0.0 8 0.511798 £ 0.000012 0.511768 -17.0 £ 0.2 0.3
2 0.511767 + 0.000012 0.511754 -172 + 0.2 0.1 average eysand 20 SD, lab 8: 171 = 04
2 0.511766 + 0.000011 0.511753 -173 + 0.2 0.1
2 0.511769 + 0.000011 0.511756 -17.2 + 0.2 0.1 9 0.511725 + 0.000016 0.511738 -17.5 £ 03 -0.2
2 0.511778 + 0.000010 0.511765 -17.0 + 0.2 0.3 9 0.511723 + 0.000014 0.511736 -176 £ 0.3 -0.3
2 0.511766 + 0.000009 0.511753 -17.3 + 0.2 0.0 9 0.511730 + 0.000015 0.511743 -175 £ 03 -0.1
2 0.511777 + 0.000010 0.511764 -171 = 0.2 0.3 9 0.511732 + 0.000016 0.511745 -174 £ 03 -0.1
2 0.511762 + 0.000012 0.511749 -17.3 + 0.2 0.0 9 0.511752 + 0.000015 0.511765 -17.0 + 03 0.3
2 0.511762 + 0.000009 0.511749 -17.3 + 0.2 0.0 9 0.511717 + 0.000017 0.511730 -177 £ 03 -0.4
average &ysand 20 SD, lab 2: <172 = 0.3 9 0.511721 + 0.000015 0.511734 -176 + 0.3 -0.3
9 0.511716 + 0.000013 0.511729 -17.7 + 0.3 -0.4
3 0.511728 + 0.000009 0.511746 -174 + 0.2 -0.1 9 0.511742 + 0.000014 0.511755 -17.2 £ 03 0.1
3 0.511720 + 0.000008 0.511738 -176 = 0.2 -0.2 9 0.511721 + 0.000014 0.511734 -176 £ 03 -0.3
3 0.511720 + 0.000009 0.511738 -176 = 0.2 -0.2 average eysand 20 SD, lab 9: 175 = 04
3 0.511731 + 0.000008 0.511749 -17.3 + 0.2 0.0
3 0.511732 + 0.000007 0.511750 -17.3 + 0.1 0.0 10 0.511873 + 0.000012 0.511784 -16.7 + 0.2 0.7
average &ysand 20 SD, lab 3: -17.4 = 0.2 10 0.511831 + 0.000012 0.511742 -175 + 0.2 -0.2
10 0.511873 + 0.000012 0.511784 -16.7 + 0.2 0.7
4 0.511733 + 0.000007 0.511748 -17.3 = 0.1 0.0 10 0.511828 + 0.000011 0.511739 -17.5 £ 0.2 -0.2
4 0.511740 + 0.000006 0.511755 -17.2 = 041 0.1 10 0.511828 + 0.000010 0.511739 -175 £ 0.2 -0.2
4 0.511745 + 0.000005 0.511760 -17.1 = 041 0.2 10 0.511810 + 0.000010 0.511721 -179 £ 0.2 -0.6
4 0.511737 + 0.000006 0.511752 -17.2 + 041 0.1 10 0.511828 + 0.000010 0.511739 -175 £ 0.2 -0.2
4 0.511745 + 0.000006 0.511763 -17.0 = 0.1 0.3 10 0.511850 + 0.000011 0.511761 -171 £ 0.2 0.2
average gysand 20 SD, lab 4: 171 = 0.2 10 0.511865 + 0.000012 0.511747 -174 + 0.2 -0.1
10 0.511868 + 0.000011 0.511750 -173 + 0.2 0.0
6 0.511746 + 0.000010 0.511756 -172 + 0.2 0.1 10 0.511850 + 0.000010 0.511732 -17.7 £ 0.2 -0.3
6 0.511746 + 0.000010 0.511756 -172 = 0.2 0.1 10 0.511846 + 0.000011 0.511728 -17.7 £ 0.2 -0.4
6 0.511731 + 0.000011 0.511741 -175 + 0.2 -0.2 10 0.511822 + 0.000011 0.511704 -182 + 0.2 -0.9
6 0.511750 + 0.000012 0.511759 -171 £ 0.2 0.2 10 0.511870 + 0.000011 0.511752 -173 £ 02 0.0
6 0.511729 + 0.000009 0.511739 -175 + 0.2 -0.2 10 0.511870 + 0.000011 0.511752 -17.3 £+ 0.2 0.0
6 0.511740 + 0.000013 0.511750 -17.3 = 0.2 0.0 10 0.511894 + 0.000011 0.511776 -16.8 + 0.2 0.5
6 0.511749 + 0.000014 0.511759 -17.2 + 0.3 0.2 average &ysand 20 SD, lab 10: <174 = 0.9
6 0.511736 + 0.000011 0.511746 -174 = 0.2 -0.1
6 0.511742 + 0.000011 0.511752 -173 = 0.2 0.0 " 0.511730 £ 0.000008 0.511750 -173 £ 0.2 0.0
6 0.511738 + 0.000006 0.511748 -17.4 + 041 0.0 1" 0.511728 + 0.000008 0.511748 -174 £ 02 0.0
6 0.511744 + 0.000015 0.511754 -17.3 + 0.3 0.1 1" 0.511736 + 0.000008 0.511756 -17.2 + 0.2 0.1
6 0.511746 + 0.000009 0.511755 -17.2 + 0.2 0.1 1" 0.511720 + 0.000008 0.511740 -17.5 £ 0.2 -0.2
average gysand 20 SD, lab 6: -17.3 = 0.3 11 0.511726 + 0.000009 0.511746 -174 + 0.2 -0.1
average &yqgand 20 SD, lab 11: 174 % 0.2
7 0.511775 + 0.000013 0.511794 -16.5 + 0.3 0.9
7 0.511741 + 0.000013 0.511760 -17.1 + 03 0.2 12 0.511737 + 0.000003 0.511748 -174 + 01 0.0
7 0.511722 + 0.000011 0.511741 -175 + 0.2 -0.2 12 0.511737 + 0.000002 0.511748 -174 £ 01 0.0
7 0.511765 + 0.000009 0.511784 -16.7 + 0.2 0.7 12 0.511739 + 0.000003 0.511750 -17.3 £ 0.1 0.0
7 0.511706 + 0.000010 0.511725 -17.8 + 0.2 -0.5 12 0.511736 + 0.000004 0.511747 -174 £ 0.1 -0.1
7 0.511764 + 0.000010 0.511783 -16.7 + 0.2 0.6 12 0.511733 + 0.000002 0.511744 -174 £ 0.1 -0.1
7 0.511726 + 0.000010 0.511745 -17.4 = 0.2 -0.1 12 0.511732 + 0.000003 0.511743 -174 £ 0.1 -0.1
7 0.511754 + 0.000012 0.511773 -16.9 = 0.2 0.4 12 0.511741 £ 0.000002 0.511752 -173 £ 0.1 0.0
7 0.511722 + 0.000012 0.511741 -175 + 0.2 -0.2 12 0.511739 + 0.000003 0.511750 -173 + 01 0.0
7 0.511726 + 0.000011 0.511745 -174 + 0.2 -0.1 12 0.511736 + 0.000003 0.511747 -174 + 041 -0.1
7 0.511726 + 0.000009 0.511745 -174 + 0.2 -0.1 average gysand 20 SD, lab 12: 174 = 0.1
7 0.511707 + 0.000010 0.511732 -17.7 + 0.2 -0.3
7 0.511725 + 0.000008 0.511750 -17.3 = 0.2 0.0 13 0.511723 + 0.000016 0.511741 -17.5 £ 03 -0.2
7 0.511732 + 0.000009 0.511757 -172 + 0.2 0.1 13 0.511757 + 0.000024 0.511775 -16.8 £ 0.5 0.5
7 0.511726 + 0.000006 0.511751 -17.3 = 0.1 0.0 13 0.511740 £ 0.000014 0.511758 -17.2 £ 03 0.1
average eysand 20 SD, lab 7: -17.2 = 0.8 13 0.511713 + 0.000014 0.511731 -17.7 + 03 -0.4
average gy, and 20 SD, lab 13: -17.3 % 038
14 0.511709 + 0.000006 0.511749 -17.3 + 041 0.0
14 0.511706 + 0.000006 0.511745 -174 + 041 -0.1
14 0.511695 + 0.000007 0.511734 -176 + 041 -0.3
average eysand 20 SD, lab 14: 175 + 03
average of all measurements 0.511750 -17.3
20 SD 0.000029 0.6

Al results represent 15 ng loads for TIMS measurements or runs of 15 ppb solutions for MC-ICP-MS.

* 3N d/"Nd ratios were normalized using the reported standard data for each lab, relative to a Jnd; value of 0.512115 (Tanaka et al., 2000) or a La Jolla value of 0.5115858 (Lugmair et al., 1983).

T eyq values were calculated relative to a CHUR of 0.512638 (Jacobsen and Wasserburg, 1980).

lab 1:  First two results are normalized to JNd, “*Nd/'*Nd ratios of 0.512050 + 0.000007 and 0.512068 + 0.000008 respectively. Latter two results are normalized to a JNd, "*Nd/"**Nd
of 0.512105 + 0.000015 (n=6).

lab2: La Jolla "*Nd/"**Nd of 0.511871 £ 0.000008 (n=16).

lab 3:  La Jolla "*Nd/"*Nd of 0.51184 + 0.000014 (n=8); JNd, "*Nd/'*Nd of 0.512095 + 0.000011 (n=8). Values were normalized using the reported La Jolla standards.

lab 4:  Results normalized to two different JNd, values: Results 1-4 are normalized to a JNd; “*Nd/"**Nd of 0.512100 + 0.000015 (n=14) and result 5 is normalized to a JNd, "*Nd/"*Nd
of 0.512097 + 0.000010 (n=7).

lab 6: La Jolla "*Nd/"**Nd of 0.511848 + 0.000009 (n=7).

lab 7: Results from two different measurement sessions. First 11 ratios are normalized using a JNd; “*Nd/'*Nd of 0.512096 + 0.000005 (n=11); remaining ratios are normalized based on JNd,
3Nd/"“Nd of 0.512090 + 0.000006 (n=11) .

lab 8:  First five ratios are the result of dynamic mode analysis normalized to a La Jolla "**Nd/"*Nd of 0.511843 + 0.000012 (n=12). The last four ratios are the result of static mode analysis
normalized to a La Jolla "**Nd/"**Nd of 0.511888 + 0.000019 (n=12).

lab 9:  JNd; "*Nd/"*“Nd of 0.512102 + 0.000015 (n=19).

lab 10: First 11 ratios are normalized using a JNd; "**Nd/"*“Nd of 0.512090 (n=11); remaining ratios are normalized based on JNd; "*Nd/"*Nd of 0.512096 (n=14).

lab 11: La Jolla "*Nd/"**Nd of 0.511838 £ 0.000015 (n=4).

lab 12: JNd, "*Nd/"*Nd of 0.512104 + 0.000003 (n=4).

lab 13: JMC-321 "*Nd/"*Nd of 0.511105 + 0.000013 (n=6), which was calibrated to correspond to a JNd, value of 0.512097.

lab 14: Results are relative to a linear drift correction on the day of analvses. 40ppb JNd; "*Nd/"*/Nd of 0.512164 + 0.000011 (n=11).
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Table 5: International intercalibration for Nd isotopes in marine particulates.

Intercalibration of Seawater Nd Isotopes

lab sample ID \fli(ljttjrzg filter type method® ﬁggé z:gg i;t;rsngl r:;’;‘:;r;gg* eng! ggeé'éal ez)gesrrl];l Nd [pg/L]®
BATS, 30m
2 KN193-6-Nd-133  180L  quartz fibre (QMA) 0.6N HClleach 0.512162 + 0.000016 0.512164 92 +03 0.1 49.90
6 KN193-6-Nd-101  380L  quartz fibre (QMA) 0.6N HClleach 0.512159 + 0.000009 0.512169 9.1 +02 0.4 55.42
7 KN193-6-Nd-111 380L  quartz fibre (QMA) 0.6N HClleach 0.512164 + 0.000016 0.512176 9.0 +03 0.3 40.26
10 KN193-6-Nd-115 ~ 380L  quartz fibre (QMA) 0.6N HCl leach 0.512220 + 0.000013 0.512158 94 +03 0.4 27.01
1 KN193-6-Nd-113 ~ 380L  quartz fibre (QMA) 0.6N HCl leach 0.512121 + 0.000005 0.512140 9.7 + 0.1 0.3 35.54
average BATS 30m -9.3 41.62
20 SD 0.5 22.61
BATS, 2000m
2 KN193-6-Nd-033  136.8L 0.45 um Supor total digest ~ 0.511915 + 0.000019 0.511917 -14.1 + 0.4 0.1 39.45
6 KN193-6-Nd-001  270L 0.45 um Supor total digest ~ 0.511938 + 0.000019  0.511948 -13.5 + 0.4 0.4 51.94
7 KN193-6-Nd-011 300L 0.45 um Supor  0.6N HCl leach  0.511923 + 0.000015 0.511935 -13.7 + 0.3 0.3 36.07
8 KN193-6-Nd-009  270L 0.45 um Supor  other method®  0.511965 + 0.000025 0.511921 -14.0 = 05 0.3 39.65
1 KN193-6-Nd-013  246.24L  0.45 um Supor total digest ~ 0.511814 % 0.000007 0.511833 -15.7 + 0.1 0.3 36.46
average BATS 2000m -14.2 40.71
20SD 1.8 12.98
Slope, 98m
2 KN193-6-Nd-231  216.6L  quartz fibre (QMA) other method®  0.512082 + 0.000011  0.512084 -10.8 + 0.2 0.1 57.19
6 KN193-6-Nd-201  445L  quartz fibre (QMA) 0.6N HClleach 0.512015 + 0.000013 0.512025 -12.0 + 0.3 0.4 75.35
7 KN193-6-Nd-211 ~ 445L  quartz fibre (QMA) 0.6N HCl leach 0.512079 + 0.000012  0.512091 -10.7 = 0.2 0.3 38.02
1 KN193-6-Nd-213  445L  quartz fibre (QMA) 0.6N HClleach 0.512035 + 0.000005 0.512054 1.4 + 0.1 0.3 64.40
average Slope, 98m -11.2 58.74
20 SD 1.2 31.40

$'0.6N HCl leach’ follows the method described in Jeandel et al. (1995); ‘total digest' follows the method described in Cullen and Sherrell (1999).

* 3Nd/"“Nd ratios were normalized relative to a JNdi value of 0.512115 (Tanaka et al., 2000) or a La Jolla value of 0.511858 (Lugmair et al., 1983).

Teyg values were calculated relative to a CHUR of 0.512638 (Jacobsen and Wasserburg, 1980).

* external errors are derived from repeat standard analyses during the measurement session; if internal errors are larger than external errors, these are plotted

in Figure 4.

$ Nd concentration are corrected for dipped blanks for labs 2, 6, and 8, but not for labs 7, 10, and 11 (no measurements reported on dipped blanks); additional Nd
concentrations were reported by lab 16 as follows: BATS, 30m: 65.16 pg/L (corrected for dipped blank); slope: 104.83 pg/L (dipped blank correction for this sample
was >200%); for details an external errors on [Nd] methodology see Tables 1b, 6 and 7

@ total digest using a mixture of HCI/HNO3 and traces of HF (following Landing and Lewis 1991).

©0.005M hydroxylamine hydrochloride in 1.5% acetic acid plus 2nM EDTA solution

at pH of 3.5; leached for 3.5hrs on hotplate (90°C) with ultrasonification every hour.

Normalized relative to La Jolla *Nd/"*Nd of 0.511848 + 0.000004 (12 loads of 100-400ng; 20 loads of an inhouse standard yielded an error of

Particulate sample from the slope location did not yield enough Nd

lab 2: Normalized relative to La Jolla “*Nd/"**Nd of 0.511856+ 0.000007 (n=14).
lab 6:
0.000022 for 4-12 ng loads).
lab 7: Normalized relative to JNd; "*Nd/"**Nd of 0.512103 % 0.000014 (n=65).
lab 8: Normalized relative to La Jolla *Nd/"**Nd of 0.511902 + 0.000010 (n=8).
Lab 10:  Normalized relative to JNdi **Nd/"**Nd of 0.512177 + 0.000019 (n=5).
for an isotopic analyses.
Lab 11:  Normalized relative to La Jolla "*Nd/"*Nd of 0.511839 + 0.000014 (n=5).

Applying however the same leaching method at the slope
station (same filter type, same pumping system) yielded
results that do not agree within error (Laboratories 6 and 7:
Fig. 4, Table 5).

Similarly, results from four laboratories for the deep water
samples at BATS show excellent agreement (mean Nd isotopic
composition of —13.8 + 0.6) despite the use of different diges-
tion/leaching methods. Two laboratories (numbers 2 and 6)

followed the prescribed method for total digestion of particles
and filter material described by Cullen and Sherrell (1999).
The method used by Laboratory 8 is not too different (see
Landing and Lewis 1991), but Laboratory 7 carried out a 0.6M
HCI leach. Although using the same digestion method as Lab-
oratories 2 and 6, Laboratory 11 reports a Nd isotopic compo-
sition for deep water particles that deviates significantly from
the other results (g, = -15.7 £ 0.3).
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Fig. 5. Dissolved REE concentrations at two water depths at BATS. Results display good agreement between six international laboratories on measuring
the concentrations of REE in seawater (e.g., agreement with 15%, omitting results from laboratory 17; Table 6). (a) REE concentrations normalized to
hypothetical seawater of the following composition: La-0.57, Ce-0.7, Pr-0.11, Nd-0.51, Sm-0.1, Eu-0.03, Gd-0.17, Tb-0.03, Dy-0.26, Ho-0.07, Er-0.24,
Tm-0.03, Yb-0.18, Lu-0.03 (in [ppt]). (b) REE concentrations normalized to PAAS (Post Archean Australian shale; Nance and Taylor 1976).

At the moment, we can only speculate on the reasons for
the inconsistent results reported above, which go along with
variable total particle Nd concentrations as well as variable cal-
culated Nd concentrations per pumped amount of seawater
(Table 5). Possible explanations include heterogeneous particle
distributions on the filters, differences between the filters from
individual pumps, or contamination either during sampling,
drying, and cutting on the ship, or during processing in the
laboratory.

Due to the difficulties with interpreting Nd concentration
and isotope data, we refrain at this point from reporting full
REE patterns, which were submitted by three laboratories
(Laboratories 10, 16, 17).

Rare earth element concentrations in seawater at BATS

Figures 5a and 5b and Table 6 summarize the results for sea-
water REE concentrations from the two intercalibration sam-
ples collected from BATS, analyzed by seven laboratories with
significantly different experience levels.

Average REE patterns from all participating laboratories
1,3,5,8,10,16,17), except Laboratory 17 (see discussion below),
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show agreement within 12% for deep water at BATS and 15%
for shallow water at BATS (relative 2o SD of the mean = RSD;
Table 6). Overall, slightly better agreement is observed for the
heavy rare earth elements (HREEs), than for the light rare earth
elements (LREE), a result typical for REE measurements. The
exception from this overall agreement are Ce concentrations,
which display a relative two sigma standard deviation of 44%
for individual results from deep waters and 23% for results
from shallow waters. A potential reason for this large spread in
Ce concentrations reported by different labs are significantly
higher blank levels for Ce than for other REEs (4% to 10%).
Those laboratories who measured and reported blanks on their
REE concentrations found a shale-like REE pattern, implying
larger blank contributions to LREE than HREE.

The best fit to the mean REE pattern is observed for Labo-
ratory 3, which reports all REE except La and Ce within 2%
RSD. This is not surprising as this laboratory used a mixed REE
spike consisting of nine individual REE isotopes. Hence iso-
tope dilution calculations could be performed all along the
REE spectrum and not just for one or two isotopes as done by



Table 6: International intercalibration for REE in seawater at BATS.

V444

lab samplelD  sampleno® Lafoptl + 20SE (%) Celontl + 20SE (%) Prioptl + 20SE(%) Ndloptl + 20SE (%) Smiootl + 20SE (%) Eufoptl + 20SE (%) Gdloptl + 20SE (%) Tbloptl + 20 SE (%) Dvioptl + 20 SE (%) Holoptl + 20SE (%) Erlpotl + 20SE (%) Tmootl + 20SE(%) Yblootl + 20 SE (%) Luloptl + 20 SE (%)
BATS, 2000m
1 KN193-6-Nd-329 A 3267 + 0135 0697 + 0097 0548 + 0088 2413 + 0126 0527 + 0121 0143 + 0030 0766 + 0124 0134 = 0024 0919 = 0078 0257 + 0025 0834 + 0075 0120 + 0023 0809 + 0076 0141 * 0015
1 KN193-6-Hf-312 B 3239 & 0086 0574 + 0091 0546 + 0078 2398 + 0249 055 = 0207 0439 * 0023 0774 + 0455 0129 + 0020 0942 + 0153 0254 =+ 002 0835 + 0060 0130 + 0015 0835 + 0109 0144 + 0021
2 KN193-6-Nd-305 Al 2535 0516
2 KN193-6-Nd-305 A2 2471 0500
3 KN193-6-Nd-323 A 3435 & 0608 0699 + 0957 0578 + 0436 2533 + 0970 0520 + 0781 013 + 1125 0772 + 0551 0124 + 0557 0953 = 0531 0247 + 0530 0849 * 1105 0127 + 0599 0827 * 0720 0139 * 0717
3 KN193-6-Nd-324 B 3391 & 0732 0633 + 0797 0568 + 0378 2518 + 0571 0515 + 0887 0133 * 1004 0768 + 0499 0124 + 0591 0952 : 0472 0246 + 0705 0847 + 1120 0126 + 0864 0822 * 0659 0137 * 0603
5 KN193-6-Nd-310 A 3.040 1119 0549 2302 0508 0.129 0.706 0.121 0933 0241 0837 0.17 0.783 0141
5 KN193-6-Nd-311 B 3013 0923 0552 2483 0503 0.125 0.742 0.118 0929 0246 0824 0.126 0820 0139
6 KN193-6-Nd-315 A 2.500
6 KN193-6-Nd-318 B 2.500
8 KN193-6-Nd-304 A 3633 + 0063 0859 + 0015 0620 + 0011 2712 + 0058 0575 + 0015 0149 + 0005 0828 + 0026 0130 + 0004 1001 = 0027 0265 + 0007 0885 + 0024 0130 + 0004 0863 + 0021 0148 + 0003
8 KN193-6-Nd-304 B 3601 + 0046 0831 + 0015 0600 + 0009 2693 + 0050 0564 + 0011 0152 + 0004 0825 + 0033 0129 + 0003 1008 + 0022 0258 + 0005 0889 + 0018 0130 + 0002 0864 + 0024 0146 * 0004
9 KN193-6-Nd-333 A 2540 & 0110
10 KN193-6-Nd-302 Al 3105 0.600 0549 2376 0506 0.137 0772 0129 0935 0249 0823 0815 0137
10 KN193-6-Nd-302 A2 3191 0612 0558 2420 0514 0.142 0.753 0124 0.940 0257 0842 0842 0142
10 KN193-6-Nd-303 B1 3.063 0583 0535 2431 0478 0.130 0.762 0122 0.900 0251 0835 0810 0138
10 KN193-6-Nd-303 B2 3246 0596 0563 2485 0505 0.133 0.795 0133 0.961 0257 0853 0828 0.141
1 KN193-6-Nd-320 2430
12 KN193-6-HI-315 a 2,600
12 KN193-6-Hf-315 b 2560
16 KN193-6-Nd-330 A 3333 0655 0591 2490 0510 0.141 0696 0.116 0.921 0243 0828 0125 0814 0.141
16 KN193-6-Nd-330 B 3351 0660 0597 2495 0507 0.144 0694 0.115 0912 0241 0822 0122 0.808 0.141
17 KN193-6-Nd-309 A 1229 + 0960 0302 + 0600 0293 + 2400  1.355 & 3040 0270 + 1640 0077 + 580 0410 + 1220 0068 + 1060 0504 * 4960 0422 + 1000 0378 + 0580 0045 + 3180 0243 & 1480 0032 * 3320
17 KN193-6-Nd-308 B 1742+ 0660 0423 + 0680 0410 + 0860 1904 + 2720 0387 + 2340 0108 + 1500 0590 + 1360 0095 + 2360 0720 : 1640 0180 + 0600 0572 + 2980 0068 + 3100 0378 & 3460 0050 & 3780
average value (omitting lab 17) 3279 0717 0.568 2499 0519 0138 0.761 0125 0.943 0251 0.843 0126 0824 0141
28D 0.388 0318 0.050 0176 0.051 0015 0.083 0.012 0.062 0015 0.042 0.008 0.043 0.007
relative 20 SD 1.8 444 89 7.0 98 1.2 109 95 65 59 5.0 6.4 53 46
BATS, 15m
1 KN193-6-Nd-532 A 2072 & 0167 1646 + 0145 0438 + 0067 2034 + 0240 0527 + 0170 0138 + 0027 0780 + 0127 0135 = 0016 0969 = 0090 0254 + 0033 0811 + 0068 0124 + 0023 0739 + 0091 0121 + 0013
1 KN193-6-Hf-518 B 1977 + 0143 1455 + 0121 0426 + 0080 1941 + 0176 0510 + 0114 0138 + 0024 0762 + 0106 0135 + 0036 0957 + 0121 0248 + 0037 0810 + 0095 0122 + 0026 0724 % 009 0119 + 0020
2 KN193-6-Nd505 Al 2036 0472
2 KN193-6-Nd505 A2 2038 0474
3 KN193-6-Nd-526 A 2079 & 0636 1539 + 0693 0438 + 0436 2031 + 0630 0483 = 0674 0134 + 1116 0766 + 0619 0120 = 0427 0971 = 0424 0245 + 0692 0813 % 0917 0117 + 0584 0726 + 0713 0115 = 0772
3 KN193-6-Nd-527 B 2057 + 0765 1543 + 0626 0435 + 0557 2021 + 0748 0480 + 0862 0132 + 1217 0766 + 0572 0128 + 0604 0972 = 0461 0245 + 0560 0815 + 0944 0117 + 0625 0730 + 0756 0116 + 0738
5 KN193-6-Nd-510 A 2005 2025 0447 2071 0.480 0127 0.755 0128 0962 0249 0807 0115 0718 0.19
5 KN193-6-Nd-512 c 1777 1.901 0407 1.908 0.454 0120 0683 0.119 0.900 0231 0742 0.105 0632 0109
5 KN193-6-Nd-513 D 1.932 1828 0394 1.938 0.445 0123 0.650 0.109 0.882 0226 0.790 0117 0816 0136
6 KN193-6-Nd-516 A 2.040
6 KN193-6-Nd-518 B 2080
8 KN193-6-Nd-504 A 2345 & 0028 1966 + 0026 0491 = 0007 2277 + 004 0541 = 0020 0146 + 0005 0815 & 0025 0135 = 0004 1057 = 0017 0272 % 0004 0891 + 0025 0126 =+ 0004 0782 + 0019 0130 = 0003
8 KN193-6-Nd-504 B 2286 & 0020 1823 + 0015 0464 + 0007 2182 + 0039 0502 = 0017 0144 + 0004 0801 + 0018 0129 % 0003 0995 = 0026 0254 + 0003 0826 + 0019 0120 = 0002 0728 + 0021 0119 & 0002
8 KN193-6-Nd-504 c 2207 & 0028 1800 + 0023 0475 + 0007 2205 + 0040 0503 =+ 0012 0144 + 0006 0784 + 0029 0128 % 0003 1008 = 0022 0255 + 0003 0845 + 0018 0117 =+ 0003 0735 + 0024 0118 + 0002
9 KN193-6-Nd-536 A 1880 £ 0.130
10 KN193-6-Nd-502 Al 1.928 1479 0426 1.990 0472 0.132 0.736 0124 0914 0232 0.759 0658 0.108
10 KN193-6-Nd-502 A2 1.995 1518 0422 2011 0.446 0.133 0806 0125 0.931 0235 0.759 0673 0102
10 KN193-6-Nd-503 B1 1.873 1444 0414 1.974 0.445 0133 0733 0125 0936 0242 0772 0679 0109
10 KN193-6-Nd-503 82 1.992 1512 0.431 2000 0.480 0.130 0.781 0130 0984 0244 0805 0.716 0114
1 KN193-6-Nd-523 2010
12 KN193-6-Hf-539 a 2.050
12 KN193-6-Hf-539 b 2100
16 KN193-6-Nd-533 A 2072 1.739 0.461 2032 0.481 0.143 0774 0122 0.951 0243 0802 0.116 0715 0.19
16 KN193-6-Nd-533 B 2.081 1.728 0459 2043 0.484 0.144 0.770 0121 0.950 0244 0.804 0.116 0.724 0.118
17 KN193-6-Nd-508 A 0590 + 2500 0558 + 0380 0167 + 2980 0819 + 1240 0185 + 1440 0054 * 3120 0297 + 3360 0050 + 2400 0378 + 2280 0095 + 2100 0293 + 2400 0036 + 2520 0189 * 1480 0027 % 5120
17 KN193-6-Nd-509 B 1080 + 1160 098 + 0840 0293 + 0480  1.359 + 2560 0306 + 9560 0086 + 3440 0477 + 2360 0077 + 1840 0576 * 2820 0135 + 0520 0410 + 1260 0050 + 2560 0257 + 2240 0032 + 3.880
average value (omitting lab 17) 2.048 1.684 0.439 2037 0.482 0135 0.760 0126 0.959 0245 0.803 0118 0.719 0117
20D 0.307 0384 0.052 0179 0.054 0.016 0.086 0013 0.085 0.022 0.071 0.011 0.089 0016
relative 20 SD 15.0 228 1.8 8.8 1.2 1.8 1.4 107 89 9.0 89 9.0 123 138
“Samples Aand B are separate samples from the same station and water depth, numbers indicate repeat analyses of the same sample.
* All concentrations have been converted to ppt. Oriainally reported units are s follows: labs 1. 3. 5. 9. 10: Ipalkal; lab 2: [omol/kal: lab 6: [oMI; lab 8 [optl; lab 11,16: nalL. (no correction for seawater densitv).
Lab 1: Each value reported is the average of a number of individual runs: KN193-6-Nd-329, n=10; KN193-6-H-312, n=9, KN193-6-Nd-532, n=18, KN193-6-Hf-518, n=12. Errors are given as two sigma standard deviations of replicate analyses.
Lab 2: Processed a subsample of the spiked large volume sample for Sm and Nd concentrations (see Table 1).
Lab 3: Reported an external two sigma reproducibility of 3% for Ce, and <2% for all other REE (n=5; in-house standard).
Lab 5: Note that sample KN193-6-Nd-513 was processed with a different method compared to the other samoles (see Table 1b).
Lab 6: Processed a subsample of the spiked large volume sample for Nd concentrations (see Table 1). Estimates a reproducibility of 0.5% of repeat Nd concentration measurements
Lab 9: Reported value represents the average of three measurements with its two sigma standard deviation. External reproducibility for Nd concentrations s reported as 0.1 ppt based on repeated mixed standard-spike analyses.
Lab 10: Reports a relative standard deviation on in house seawater standard measurements of 5% for LREE and 0.7% for HREE (n=6).
Lab 11: Reported value represents the average of seven measurements. The exteral two sigma standard deviation is reported as 0.142.
Lab 12: Processed the spiked large volume sample for Nd concentrations at the same time as measuring the isotopic compositon (see Table 1). External error based on 5 repeat BCR analyses: 5.6%.
Lab 16: Reported an external reproducibility of 8.8% for Ce, 4.8% for Eu and <3.6% for all other REE based on repeat in-house seawater standard measurements (n=29).
Lab 17: Reports a two sigma standard deviation on trace metal data of 10% based on repeated runs of rock standard AGV-1
Table 7: Results from individual laboratories on an "unknown’ REE standard.
lab Lalppm] + 20SE Celooml + 20SE Priooml + 20SE Ndfooml + 20SE Smlooml + 20SE Eulpoml + 20SE Gdipoml + 20SE Tblooml + 20SE Dviooml + 20SE Holpoml + 20SE Erfooml + 20SE Tmlooml + 20SE Ybfooml + 20SE Lufooml # 20SE
1 9.570 12,501 1.951 8.386 1513 0.529 3.557 0.646 4.070 1.376 4.309 0.614 2.868 0513
1 10.019 12.243 1.825 8.465 1.751 0.535 2723 0.555 4.519 1.254 4.020 0.549 3.346 0.484
1 9.927 12.356 1.947 8.774 1.784 0.501 2.924 0.553 4.437 1.270 4.069 0.560 3.187 0518
8 9.107 + 0.192 11.234 + 0.240 1.748 + 0.039 8.053 + 0.171 1571 £ 0.040 0.463 + 0.011 2.791 + 0.066 0.488 + 0.011 3952 + 0094 1111 % 0025 3.781 + 0.089 0.489 + 0.012 2.709 + 0.068 0.449 + 0.011
8 9.032 + 0.180 11.116 + 0.180 1727 + 0.180 7.949 + 0.180 1577 £ 0.180 0.457 + 0.180 2.786 + 0.180 0.498 + 0.180 3983 + 0180 1116 + 0.180 3.804 + 0.180 0.492 + 0.180 2.740 + 0.180 0451 + 0.180
8 9.033 + 0.213 11.162 + 0.264 1.735 + 0.038 7.883 + 0.180 1.554 + 0.040 0.460 + 0.012 2769 + 0.073 0.490 + 0.011 3931 + 0.106 1.09 + 0.028 3.715 + 0.102 0477 + 0.012 2675 + 0.065 0.437 % 0.012
8 9.038 + 0.196 11.220 + 0.248 1.747 + 0.039 7.990 + 0.203 1554 £ 0.046 0.459 + 0.015 2.774 + 0.070 0.490 + 0.012 3905 + 0409 1104 % 0.024 3.774 + 0.097 0.486 + 0.013 2.703 + 0.069 0450 + 0.011
8 9.148 + 0.201 11.283 + 0.249 1753 + 0.043 8072 + 0.228 1562 + 0.046 0.468 + 0.014 2.799 + 0.074 0490 + 0.013 3924 + 0096 1112 £ 0028 3.800 + 0.110 0479 + 0.014 2698 + 0.074 0.445 + 0.009
8 9.040 + 0.206 11.130 + 0.264 1.732 + 0.038 7.923 % 0.201 1.561 + 0.046 0.460 + 0.016 2.768 + 0.080 0.488 + 0.011 3.921 + 0.107 1.105 + 0.028 3.773 + 0.100 0.479 % 0.013 2685 + 0.068 0.446 + 0.013
8 9.173 + 0.190 11.224 + 0.237 1.754 & 0.040 8.059 + 0.198 1581 £ 0.037 0.461 + 0.013 2.762 + 0.070 0.487 + 0.011 3899 + 0087 1102 + 0.026 3.765 + 0.098 0.486 + 0.011 2,666 + 0.075 0.449 + 0.009
8 9.089 + 0.186 11.206 + 0.233 1.749 £ 0.036 7.984 + 0.176 1.578 + 0.043 0.453 + 0.010 2738 + 0.071 0485 £ 0.011 3.917 = 0.097 1.094 £ 0.021 3.758 + 0.094 0.479 + 0.010 2,676 * 0.053 0.444 £ 0.009
8 8935 + 0217 11.080 + 0.254 1731 £ 0.042 7.912 + 0193 1562 + 0.049 0.455 + 0.013 2.767 + 0.080 0.489 + 0.012 3878 + 0097 1.098 + 0.026 3.745 + 0.088 0.488 + 0.013 2693 + 0.074 0.446 + 0.010
8 8.856 + 0.174 11.012 + 0.228 1.709 + 0.035 7.748 + 0170 1559 £ 0.039 0.458 + 0.013 2.749 + 0.072 0.483 + 0.010 3893 + 0091 1106 + 0.023 3.755 + 0.091 0.490 + 0.013 2.714 + 0.065 0.449 + 0.012
17 7.958 + 0.080 9.402 + 0.150 1506 + 0.055 6.714 + 0.208 1.367 £ 0.031 0376 0.031 2520 + 0.071 0.465 + 0.016 3652 + 0450 0991 + 0.015 3.388 + 0.203 0.439 + 0.015 2,607 + 0.088 0.424 + 0.003
17 8.102 + 0.457 9.808 * 0.347 1.503 + 0.054 6.799 * 0.528 1.354 + 0.158 0.390  0.037 2520 + 0.134 0454 £ 0.020 3.679 + 0.300 1.022 £ 0.100 3.461 £ 0.104 0.446 * 0.025 2.668 * 0.091 0420 * 0.028
17 8.295 + 0.355 9.911 + 0.299 1591 + 0.004 6.775 + 0.159 1.355 + 0.031 0.376  0.014 2473 + 0.057 0.440 + 0.014 3676 + 0097  1.012 + 0033 3.505 + 0.301 0.447 + 0.010 2595 + 0.115 0.417 + 0.017
average 9.0 1.4 17 7.8 15 05 28 0.5 4.0 14 38 05 28 0.5
208D 17 27 0.4 1.8 0.3 0.1 0.6 0.1 0.7 0.3 0.7 0.1 0.6 0.1
relative 20 SD 19.1 24.0 217 234 214 311 203 26.7 17.1 262 18.0 26.6 19.6 18.9

For details on methods, see Tables 1b and 6.
Average values are calculated from the mean values for all three laboratories.
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all other laboratories (Table 1b). A similarly good result is how-
ever obtained by Laboratory 10, for the deep water samples
where results agree within 3% RSD with the average values.
Laboratories 1, 5, and 16 show deviations from the average
within 6% to 8% for both water depths, and Laboratory 8 is
just outside this margin with agreements within 10% to 13%
(RSDs cited include all REE but Ce).

How good is the observed agreement? Taking into account
that most individual laboratories quote external errors for
their methodologies well below 10%, it might be expected
that an agreement within 10% should be possible. The
observed agreement is not far from this number, and data
returns on an unknown REE standard solution sent to the
individual laboratories did not yield an improved agreement
over natural samples (Table 7; Fig. 6). The last statement is
based on comparison of results from Laboratories 1 and 8§,
which show an agreement within 10% for most REE, and 16%
for all REE (relative 20 SD).

REE concentrations reported by Lab 17 (not shown in Fig.
5) are significantly lower than results obtained by other labo-
ratories (~30% to 70%). Looking into the detail of the method-
ology applied by this laboratory (Table 1b), a number of fac-
tors could be responsible for this offset. First, the laboratory
did not spike their concentration samples, which means that
imperfect yields and fractionation of REE during preconcen-
tration and ion chromatography cannot be corrected for. Sec-
ond, the laboratory used the REE cut from their Nd isotope
chemistry to determine REE concentrations, which again
stresses that sample recovery up to this point had to be
assumed (i.e., 100% yield). Finally, calculations of REE con-
tents were based on the assumption that the starting sample
volume was 10 L, without, however, determining the exact
weight before Fe coprecipitation. Shipboard sampling easily
introduces an error of 10% on this assumption, as no efforts
were undertaken to collect exact sample volumes. The most
likely explanation for the deviation of Laboratory 17 from the
average result is therefore a combination of unaccounted sam-
ple loss, and an erroneous assumption on sample volume. It is
notable that the laboratory significantly improved their
methodology for the analysis of the unknown standard. How-
ever, the deviation from the average of the two other labora-
tories is still 11% to 22%. Further improvement can probably
be achieved through close exchange with one of the other lab-
oratories and improved spike calibration.

A better statistical database for evaluating reproducibility of
individual REE concentrations can be achieved when consid-
ering Nd concentrations only. Besides the seven laboratories
that reported full REE pattern for seawater at BATS, three addi-
tional laboratories spiked their large volume isotope samples
to determine Nd concentrations (Laboratories 2, 6, 12), and
two other laboratory (9 and 11) obtained separate 0.25 to 0.5
L aliquots for Nd concentration measurements (Table 6).
Results for Nd concentrations from all 11 laboratories (omit-
ting Laboratory 17) are shown in Fig. 7 for the two intercali-
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Fig. 6. REE concentrations for an unknown standard solution. Results
reported by three laboratories on a pure REE standard solution that was
mixed to roughly match seawater concentrations. The standard was sent
around with the information that concentrations for Ce are approximately
10 ppm, and that dilutions for analyses should be carried out accordingly.
Laboratories 1 and 8 show good agreement, whereas laboratory 17 (not
shown in Fig. 5) deviates significantly from the average value.
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Fig. 7. Dissolved neodymium concentrations at BATS. Neodymium con-
centrations were not only analyzed by the laboratories interested in REE
concentration analyses, but also by some laboratories that are primarily
interested in Nd isotopic compositions. Eleven laboratories (omitting lab-
oratory 17) show an agreement of Nd concentrations for two different
water samples within 9%, reflecting the precision currently possible on
REE concentration measurements. Error bars reflect external errors (not
reported by every laboratory; see Table 6). The average value and its two
sigma standard deviation have been calculated from the mean values for
each laboratory in order to not weigh the average toward results from
laboratories that report larger amounts of individual analyses. For com-
parison, Table 6 shows the statistics when calculating the average from all
individual data points reported.

bration water depths at BATS. Shallow waters yield a Nd con-
centration of 2.0 + 0.2 ng/kg, and deep waters are slightly
more concentrated at 2.5 + 0.2 ng/kg. Errors are absolute two
sigma standard deviations from the mean of all data, which
translate to 9% and 7% RSD, respectively. This result confirms
that a 10% envelope is probably the best agreement currently
possible for REE analyses between different laboratories.
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Summary and recommendations

Below, we summarize the most important observations
from this intercalibration exercise and provide some recom-
mendations for future analyses of Nd isotopes and REE con-
centrations in seawater and marine particles.

Dissolved Nd isotopes

Return of results from 15 laboratories that participated in
the dissolved Nd isotope intercalibration at three locations
shows agreement within 0.5 to 0.6 epsilon units for
143Nd/*Nd ratios (20 standard deviation of the mean).

Return of results from 13 laboratories on an unknown Nd
isotope standard solution yields a very similar agreement (0.6
epsilon units), suggesting that mass spectrometry is the single
most important factor governing interlaboratory precision on
Nd isotope analyses.

Recommendation: Considering the global range of Nd iso-
topes in seawater (i.e., more than 20 epsilon units), the result
of this intercalibration is very satisfying and no further action
is required. A slight improvement can probably be achieved
through taking extra care about the blank of the Fe solution
used for coprecipitation. Otherwise improvement will depend
on the availability of sensitive mass spectrometers and
detailed comparison of data reduction protocols during mass
spectrometry. To allow rigorous evaluation of the accuracy
and precision of seawater Nd isotope analyses reported by
individual laboratories, it is crucial that all laboratories con-
sider for the future to report their external reproducibility
based on standard and/or sample analyses of similar concen-
tration to targeted seawater samples.

Dissolved REE concentrations

Results have been returned from seven laboratories for REE
concentrations in seawater. One laboratory has obvious ana-
lytical issues, which can be identified and have been discussed
with and addressed by the laboratory. All other laboratories
show good agreement, with all REE (except Ce) reproducing
within 15% of the average value.

Cerium reproducibility is significantly worse with devia-
tions of 22% and 44% from the average value, most likely due
to blank contributions. Where analyzed, blanks show a shale-
like REE pattern, and hence will have a larger impact on LREE
compared with HREE.

Neodymium concentrations determined by 12 laboratories
agree within 9% (with one exception) and probably mark the
best reproducibility currently possible for individual REE con-
centrations.

Recommendation: It would be good if all laboratories would
analyze and report the results on a pure standard solution to
verify the main source of uncertainty in the reproducibility of
REE patterns. Spike calibration seems to be the most likely can-
didate for variability together with the exact methodology used
to calculate concentrations for unspiked elements. The shapes
of the REE pattern seem quite robust, but absolute values
should not be interpreted to a level better than 10%.
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Particles (Nd isotopes and REE concentrations)

Partial or complete results on Nd isotopes have been
obtained from six laboratories for marine particles. Whereas
0.6 M leaches on particles from the open ocean setting at BATS
agree very well, the more particle-rich station on the conti-
nental slope shows discrepancies in results, even when the
same digestion method is used. Neodymium isotope signa-
tures obtained for particles from deep waters agree fairly well
although different leaching/digestion methods have been
applied (omitting one outlier). It is unclear at this point
whether the described inconsistencies result from sample het-
erogeneity or analytical artifacts.

Results on Nd concentrations show a large spread and seem
to confirm the overall difficulties (at present) with precise
analysis of REE concentrations and Nd isotopic composition
in marine particles.

Recommendation: The particle intercalibration should be
revisited taking into account results presented in the specific
papers (Bishop et al. 2012; Maiti et al. 2012). For the time
being, one has to be careful to only compare data obtained by
the same leaching/digestion method and probably even from
the same laboratory (see also Pahnke et al. 2012).
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