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Abstract

This work deals with the computation of Hopf bifurcation points in the frame-

work of two-dimensional fluid flows. These bifurcation points are determined

by using a Hybrid method[1] which associates an indicator curve and a New-

ton method. The indicator provides initial values for the Newton method.

As the calculus of this indicator is time consuming, we suggest using an algo-

rithm to save computational time. This algorithm alternates reduced order

and full size step resolution which are all carried out by using a pertubation

method. Hence, the computed vectors on the full size problem are used to

define the reduced order model. As the low-dimensional model has a finite

validity range, we propose a simple criterion which makes it possible to know
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when the basis has to be updated. The latter phase is carried out by going

through a new full step which permits to build a new basis and, thus, com-

pute a supplementary part of the indicator curve. Some numerical tests, such

as the classical lid-driven cavity or the flow in a channel, permit to fix the

optimum values of the parameters for the proposed method. The objective of

this study is to save computational time without modifying the performance

of the Hybrid method initially introduced in Ref.[1]. These numerical meth-

ods are applied to 2D fluid flows (flow in a channel and the 2D lid-driven

cavity). Our conclusions, therefore, hold only for these kinds of problem.

Key words: Hopf bifurcation points, reduced order model, asymptotic

numerical method, fluid mechanics,

1. INTRODUCTION

A Hopf’s bifurcation is an instability of the fluid flow which is charac-

terized by the transition from a stationary state towards an instationary

one. From a mathematical point of view, a Hopf’s bifurcation appears when

a complex conjugate pair of eigenvalues of the linearized Jacobian matrix

crosses the imaginary axis of the complex plane.

Usually, such instabilities are numerically computed by means of the so-

called direct methods and the indirect ones with the monitoring of an indi-

cator.

The principle of the direct method consists in iteratively computing the

solution of a nonlinear algebraic system which corresponds to a Hopf bifur-
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cation point [4, 5]. Unfortunately, the convergence of the algorithm depends

on the choice of the initial value.

The indirect method is based on the track of an indicator which has the

property of being null at a bifurcation point. The latter consists, for example,

in computing the eigenvalues of the Jacobian matrix, and in determining

when a pair of complex conjugated values crosses the imaginary axis, see

references [2, 3]. In [7], Cadou et al. use an indirect method to determine the

Hopf bifurcation for the 2D academic problems of the flow around a cylinder

and the flow in a lid-driven cavity. In fact, they introduce a bifurcation

indicator which has the property of being null at the singular points. To

avoid large computing times, the computation of this bifurcation indicator

is done with a perturbation method. Whereas it gives accurate values of

bifurcation points, this method requires a lot of calculi, and is not automatic.

To circumvent this drawback, Brezillon et al.[1] propose to couple two

methods (direct and indirect ones) resulting in a hybrid algorithm. The idea

of this hybrid method is that the initial guesses of the Newton algorithm are

determined by an indicator calculation. The numerical results show that the

indicator calculation provides several initial values but some candidates do

not lead to the convergence of the Newton’s algorithm, resulting in a large

amount of CPU time without ensuring the convergence of the hybrid method.

Recently, Girault et al.[8] propose to improve the robustness of the hybrid

method by automatically determining the minima of the indicator curve,

and using them as initial values for the Newton algorithm. In the case
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of the 2D lid driven cavity, the results show that the method is efficient.

Nevertheless, this algorithm still requires long CPU times mainly dedicated

to the calculation of the indicator because of the size of the manipulated

Jacobian matrix. Previous studies, [1, 8], have shown that the calculation

of the indicator is the step that consumes the most CPU time in the hybrid

method. The idea of the present sudy is to propose an efficient numerical

method allowing for a faster calculation of the indicator.

A means of decreasing these CPU times is either the use of a specific

linear solver[9, 10] or that of reduced order models. The main objective

of such methods is to replace a large fully dicretized model with a reduced

model describing correctly the dynamic behavior and preserving fundamental

properties of the full model. Hence, the choice of the reduction technique

is important. Today, the POD is one of the most widely used techniques of

model order reduction. Introduced for the first time by Lumley[11] for the

study of turbulent flows, the POD consists in a linear decomposition yielding

a physical and orthogonal spatial basis in which dimensions are lower than

the initial model. The reduced order models are then obtained by projecting

the full model onto this POD basis. The main drawback of the POD is

that it requires computations of the unkown fields, in the full size problem,

to build the snapshots needed for determination of the reduced basis. This

approach was used by Cazemier et al. [12] to compute Hopf bifurcations

in 2D lid-driven cavities. They carry out a first time-dependent simulation

of the Navier-Stokes equations for a large Reynolds number. Next, they
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use these results to build, with the POD, a reduced eigenvalues problem in

order to determine precise Hopf bifurcation points. In the case of the hybrid

method, this reduction technique is not the best way to proceed. Indeed,

as shown in Ref. [8], a single computation of the indicator can provide the

Newton method with a lot of initial guesses, which can lead sometimes to 4

or 5 Hopf bifurcation points. A POD analysis can then be performed using

this first computation although results will probably be the same as the ones

obtained with the initial calculi. So, the benefit of using a reduced model is

nullified by the fact that it requires a first computation which can be time

consuming and not useful for the determination of bifurcation points.

A reduced technique has been recently proposed in [13] and applied to

define a linear solver[10] or to study nonlinear vibrations of plates[14]. In

this technique, the vectors computed in the first steps of the perturbation

method are used to build a basis which permits to determine the other part

of the nonlinear solution. In the case of the linear solver, a preconditioning

technique is added to the reduction method with a view to avoiding a lot of

basis modifications. It means that the basis is the same for almost all the

computations. In the framework of nonlinear vibrations of plates[14], as the

nonlinear curves do not evolve a lot all through the computations, a single

basis computation is necessary to compute almost all the nonlinear solution

curves. For the hybrid method, as shown in references [1, 8], the indicator

curves which depend on the angular frequency are very nonlinear. A single

basis evaluation is therefore not sufficient to determine the entire response
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indicator curve. So the basis has to be upgraded all along the indicator

computation. We propose to alternate between full size problem resolution

and reduced order models steps. A full size computation is performed when

the reduced order solutions do not verify a simple residual criterion. With

this full size computation, a new basis is defined and permits then to carry

out additional calculi of the indicator on the reduced order problem. As the

computation on the full size model is very time consuming, mainly due to the

fine spatial discretization, the point is to limit these full size computational

steps.

The paper is organized as follows. Section 2 is devoted to theoretical

aspects recalling the governing equations for an incompressible viscous flow,

and the stability analysis. Section 3 presents the model reduction technique.

Some numerical results related to the academic problems of the lid-driven

cavity and the flow in a channel are given in section 4, and show the relevancy

of the proposed method.

2. Elements of theory

2.1. Governing equations

In this study, we consider the movement of a viscous incompressible flow

described by the following Navier Stokes equations:

∂u

∂t
− ν∇2u+ u · ∇u+

∇ · p

ρ
= 0 in (Ω) (1)

∇ · u = 0 in (Ω) (2)
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u = λud on (∂uΩ) (3)

In these equations, Ω and ∂uΩ are the fluid domain and the boundary

surface where velocity is imposed. The symbols u, p, ρ, ν stand, respectively,

for the velocity field, the pressure, the density and the kinematic viscosity

of the fluid. The boundary condition imposes a velocity field of intensity λ

which is linked to the Reynolds Number defined by Re = λ |ud|L/ν with

L being a geometrical reference length. For each numerical example, this

Reynolds number will be precisely defined and is the bifurcation parameter

used in this study.

The weak formulation associated to equations [17] is written:

M(U̇) + L(U) +Q(U,U)− λF = 0 (4)

where M is the mass matrix,L and Q are linear and quadratic operators:

L contains the pressure and the diffusion terms while the convective terms

are contained in Q. The vector U is a concatenated vector composed of the

velocity u and the pressure p. The term λF can be considered as an external

load vector created by the boundary condition on ∂uΩ. One can refer to [17]

for a complete presentation of all these operators.

2.2. Stability analysis

The stability of the flow is studied by introducing a perturbation ∆U(x, t)

of the stationary term US. This perturbation can be considered as a product

of the spatial term V (x) by the temporal term eiωt:
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∆U(x, t) = V (x)eiωt (5)

In expression (5), ω designates the pulsation of the periodic flow, and

V (x) stands for the complex mode of perturbation.

Introducing expression (5) into equations (4), and neglecting quadratic

and higher order terms in V , it becomes the following linear system:































































L(US) +Q(US, US)− λF S = 0 in Ω

L(V ) +Q(V, US) +Q(US, V ) + iωM(V ) = 0 in Ω

Vu = 0 on ∂uΩ

(6)

A Hopf’s bifurcation corresponds to a vector Λ =
{

US, V, λ, ω
}

which

is the solution to equations (6). In the latter equations, Vu stands for the

velocity part of the concatenated vector V on the boundary ∂uΩ where a

velocity ud is imposed. Finally, the previous system is written under the

following form:

R(Λ) = 0 in Ω (7)

2.3. Bifurcation indicator

This section is devoted to the presentation of the bifurcation indicator

and of the asymptotic numerical method applied to the search of Hopf’s
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bifurcation points. All the elements have already been presented in [7, 8]

and the main ideas are outlined in this paper.

Firstly, the stationary solution US is determined by using an asymptotic

numerical method according to the algorithm introduced by [18] and ap-

plied in a framework of fluid mechanics[17]. This method, denoted by ANM,

consists in the association of a perturbation method and a discretization

technique, the finite element method in our case. Let us note that when a

singular point occurs in the nonlinear solution branch, for example a steady

bifurcation point, then a specific ANM has to be used (see Ref. [21]). Nev-

ertheless, for the most part of the computations, a standard ANM is used,

such as the one presented in Ref. [18]. ANM can be coupled with correction

steps (see for example [19]) when the obtained accuracy is not satisfactory.

Secondly, equations (6) are rewritten assuming that a perturbation is cre-

ated by a random force vector f of intensity φ, and introducing the tangent

operator Lt = L(•) +Q(•, US) +Q(US, •):

Lt(V ) + iωM(V ) = φf (8)

Vu = 0 on ∂uΩ (9)

In the previous equations, the scalar φ is our bifurcation indicator. A Hopf

bifurcation corresponds to a null value of φ. The same kind of indicator is

introduced to compute stationary bifurcation[7, 21]. The bifurcation indica-

tor, φ, is computed for a fixed and known stationary solution (US,λ) (the

9
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tangent operator explicitly depending on US).

Then, V R and V I are introduced as the real and imaginary parts of the

complex vector V . The equations are discretized according to the classical

finite element method, using the velocity formulation and a penalty method

on the discrete continuity equation (see Ref. [17]). Thus, the operator Kt is

the discrete form of Lt, and the following discrete algebraic equations have

to be solved:







Kt −ωM

ωM Kt

















V R

V I











=











φf

0











in Ω (10)

With the boundary condition:

Vu = 0 on ∂uΩ (11)

In order to have a well-posed problem and avoid numerical instabilities

[7], the following quadratic condition is considered:

‖V ‖2 = ‖W0‖
2 (12)

where ‖•‖ is the Euclidian norm of the vector •. The vector W0 stands for

the solution of equation (10) with φ = 1 and ω = 0.

Equation (10) is solved using the asymptotic numerical method. From a

known and singular solution {V0, ω0, φ0}, the pulsation ω is defined as the

sum of an initial value ω0 and a path parameter ω̃. The unknowns φ, V R
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and V I are then sought as polynomial expansions of the path parameter:























φ

V R

V I























=























φ0

V R
0

V I
0























+ ω̃























φ1

V R
1

V I
1























+ . . .+ ω̃p























φp

V R
p

V I
p























(13)

The previous expressions (13) are inserted into equations (10), (11) and(12).

Equating like powers of ω̃, the following set of linear equations is obtained:

Order 0 in ω̃:























































































Kt −ω0M

ω0M Kt























V R
0

V I
0















=















φ0f

0















in Ω

V R
0 = V I

0 = 0 on ∂uΩ

‖V0‖
2 = ‖W0‖

2 in Ω

(14)
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Order p in ω̃:























































































Kt −ω0M

ω0M Kt























V R
p

V I
p















=















φpf +M(V I
p−1)

−M(V R
p−1)















in Ω

V R
p = V I

p = 0 on ∂uΩ

2 〈Vp, V0〉+
p−1
∑

r=1

〈Vp−r, Vr〉 = 0 in Ω

(15)

where the symbol 〈•, •〉 stands for the inner product.

Finally, the initial nonlinear problem defined by expressions (10), (11)

and(12) is transformed into a sequence of linear systems (14) and (15) hav-

ing all the same discrete tangent operator with different right hand sides.

For all the previous linear problems, a single matrix triangulation and p

backward/forward substitutions allow for the computation of the unknown
{

V R
p , V I

p , φp

}

. Due to a lower validity range, the polynomial expansions are

replaced with rational ones, using Padé Approximants[22]. These Padé Ap-

proximants are defined by:























φ

V R

V I























=























φ0

V R
0

V I
0























+

p−1
∑

i=1

fi(ω̃)ω̃
i























φi

V R
i

V I
i























(16)
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where fi(ω̃) are rational functions of the path parameter with the same

denominator. The validity range of the approximants is evaluated using the

following expression according to a small user parameter δ:

δ =
‖Vp(ω̃MaxPadé)− Vp−1(ω̃MaxPadé)‖

‖Vp(ω̃MaxPadé)− V0‖
(17)

Once the maximum value ω̃ of the path parameter is computed, it is

introduced in the rational expressions (16) thereby defining a new starting

point
(

ω0, V
R
0 , V I

0 , φ0

)

. This defines the so-called continuation method [23]

and permits the computation, in a step-by-step manner, of the indicator for

a chosen range of the path parameter ω.

Finally, for each chosen stationary solution, US, the indicator curve φ(ω)

is explicitely known by using the previous equations. Finding a Hopf bifur-

cation then consists in determining the solution US where the indicator is

null. This implies a lot of indicator calculi, and is not very efficient compared

to other classical methods of determining Hopf bifurcation. Nevertheless, as

these indicator curves are computed by using a perturbation method (ANM),

this leads to a total computational time which is lower than the one obtained

by using, for example, a classical incremental-iterative method. As already

mentioned, Brezillon et al.[1] and Girault et al.[8], in order to propose an effi-

cient algorithm to detect Hopf bifurcation, have introduced a Hybrid method

which consists in the association of the previous indicator with a Newton it-

erative scheme.

13

https://www.researchgate.net/publication/236015632_A_numerical_algorithm_coupling_a_bifurcating_indicator_and_a_direct_method_for_the_computation_of_Hopf_bifurcation_points_in_fluid_mechanics?el=1_x_8&enrichId=rgreq-ade03bec376d404388804a2bd381dede-XXX&enrichSource=Y292ZXJQYWdlOzIzNjAxNTY4MztBUzoxMDM2ODEyODIyODE0NzJAMTQwMTczMDk1MjQ3NA==
https://www.researchgate.net/publication/229882103_An_algorithm_for_the_computation_of_multiple_Hopf_bifurcation_points_based_on_Pade_approximants?el=1_x_8&enrichId=rgreq-ade03bec376d404388804a2bd381dede-XXX&enrichSource=Y292ZXJQYWdlOzIzNjAxNTY4MztBUzoxMDM2ODEyODIyODE0NzJAMTQwMTczMDk1MjQ3NA==
https://www.researchgate.net/publication/222276444_Numerical_continuation_method_based_on_Pade_approximants?el=1_x_8&enrichId=rgreq-ade03bec376d404388804a2bd381dede-XXX&enrichSource=Y292ZXJQYWdlOzIzNjAxNTY4MztBUzoxMDM2ODEyODIyODE0NzJAMTQwMTczMDk1MjQ3NA==


2.4. Hybrid method

The hybrid method, first introduced in [1], allows the computation of

multiple Hopf bifurcations[8] by coupling the Newton method for the iterative

resolution of the nonlinear problem with a calculation of the indicator φ(ω̃).

The robustness of the hybrid algorithm is based on the choice of the

initial guesses for the Newton algorithm. Thus, numerical results show that

choosing the vector
{

ω, V R, V I
}

evaluated for all the minima of the indicator

gives multiple initial vectors for which convergence of the Newton algorithm

is ensured even for Reynolds Number and Strouhal numbers far from their

critical values.

The minimina of the indicator are determined classically by computing

the roots of the first derivative functions dφ/dω̃, and by checking the sign of

the second derivative d2φ/dω̃2 with respect to the path parameter ω̃. These

roots are then introduced as initial guesses of the Newton iterative scheme.

The hybrid method can thus be summarized by the followings two steps.

Step 1: Indicator computations for a fixed Reynolds number (US
0 ,λ0 fixed).

- For ω ∈ [0,ωmax] with ωmax chosen by the user

- ω = ω0 + ω̃

- Indicator calculus, φ, with expressions (14), (15) and (16)

- Determination of the minimum of the function φ(ω̃) for ω̃ = ω̃m
mini

- Compute φm

0 , V
R,m
0 and V I,m

0 by replacing ω̃ = ω̃m
mini

in Eq. (16)
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- Save Λm
0 =

{

US
0 , V

m
0 , λ0, ω

m
mini

= ω0 + ω̃m
mini

}

- Continuation method up to ω0 ≥ ωmax with ω0 = ω0 + ω̃MaxPadé (Eq. 17).

Step 2: Newton method

- For m=1,M do

- Initial value Λm
0 =

{

US
0 , V

m
0 , λ0, ω

m
mini

}

- Newton iterations

Λm
i = Λm

i−1 +∆Λm

- With the increment ∆Λm solution

∂R
∂Λ

∣

∣

Λm

i−1

∆Λm = −Rm(Λi)

With ∂R
∂Λ

∣

∣

Λi−1

is the Jacobian matrix

Convergence if ‖R(Λm
i )‖ ≤ η (η being an user tolerance)

Finally, the two previous steps define the hybrid method, and a Hopf bi-

furcation point is found when ‖R(Λm
i )‖ ≤ η. According to previous studies

[8], it is the first step which takes the most time. It is this step for which we

propose to use a reduction technique

3. Model Reduction Technique

This section is devoted to the presentation of the model reduction tech-

niques used in this study. It is noticed that such technique allows to reduce
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the size of the problem by projecting the equations on a reduced basis. More-

over, the reduction must preserve the properties of the initial model. In this

study, the reduction is applied after the linearization by the ANM and the

FEM discretization especially on the linear systems (14) and (15). The pro-

posed reduction technique is based on the ANM for the generation of the

basis vectors. As mentioned above, the proposed reduction technique has

already been used in nonlinear thin shell analysis (Ref. [13]) or nonlinear

vibrations framework (Ref. [14]), or to define linear solvers (Ref. [10]). As

this reduction order gave very interesting results in previous works, it has

been adapted and applied to the computation of the bifurcation indicator.

3.1. General overview of the projection technique

The principle of the model reduction is based on the projection of the

unknowns onto a vector space of reduced dimensions as follows:

V = Ψ · v (18)

where v and V stand, respectively, for the reduced and the complete

unkonwn vector of size nred and NT , with nred � NT . In this numerical

study, NT is the number of d.o.f. of considered meshes. The operator Ψ

stands for the projection matrix of dimension NT× nred .

Whatever the method considered, one has to solve an algebraic system of

great size which can be formulated as follow:
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K ·V = F (19)

In this study, the matrix K, the right-hand side F and the unknown vector V

are the ones defined at each order p of the indicator computation (eq. (15)).

Using definition (18) in equation (19), it becomes:

K ·Ψ · v = F (20)

Multiplying both sides of equation (20) by the transpose of Ψ, noted tΨ,

it results in:

tΨ ·K ·Ψ · v =t Ψ · F (21)

Then, one has to solve the following problem of reduced dimensions nred

× nred:

K · v = F (22)

where K and F stand for the reduced forms of K and F.

3.2. Application to the indicator computation

The key point of the reduced order methods is the choice of the projection

operator Ψ. In this work, this operator is build by the vectors computed on

the full size problem at the ANM step j. These vectors are solutions to

problem (15) at step j of the computation of the indicator.
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The method that is proposed in order to define the projection operator

consists in not differentiating between the real and the imaginary part of the

reduced unknown vector v. Hence, the operator Ψ is defined as follows:

Ψ =











V R,⊥
1 , . . . , V R,⊥

nred

V I,⊥
1 , . . . , V I,⊥

nred











(23)

where nred stands for the number of vectors of the reduced basis and ⊥ for

the vectors which have been orthonormalized. The latter step is a necessary

towards building the Padé approximants [24] used in the indicator compu-

tation. Applying this methodology to the equations issued from ANM (eq.

(15)), one has to solve p + 1 linear problems of reduced dimensions, defined

by, for example at order p:















































{

Kt

}{

vp

}

=t Ψ















φpF +M(VI
p−1)

−M(VR
p−1)















2 〈vp,v0〉+
p−1
∑

r=1

〈vp−r,vr〉 = 0

(24)

where the reduced matrix Kt is defined by the following expression:

{

Kt

}

=t Ψ







Kt −ω0M

ω0 Kt






Ψ (25)
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Finally, with this reduction technique, only one reduced matrix has to be

built and has the size nred × nred.

During the computations, one has to be sure that the reduced solutions

provide the same minima for the indicator as the ones obtained in the case of

the full size resolution.Indeed, the computations carried out with the reduced

order model can yield solutions which are not satisfactory. To make sure

that the solutions given by the reduced and the full size models are close, we

propose an accuracy criterion which is based on the following full discrete

residual vector:











RR

RI











=











Kt.V
R − ωM.V I − φf

ωM.V R +Kt.V
I











(26)

The indicator computations are therefore performed using the reduced model

as long as the following criterion is satisfied:

‖RR‖

‖φf‖
< ε and

‖RI‖

‖φf‖
< ε (27)

where ‖ • ‖ represents the Euclidian norm and ε is a chosen tolerance para-

mater.

Once the criterion (27) is reached, the following step is taken by solving

the full size problem (Eq. 14 and 15). In this way, the basis (relation (23))

is then automatically upgraded by the new vectors computed on the full

size problem. The following part of the indicator curve is then computed
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by the reduced technique until the criterion (Eq. 27) is reached one more

time.Ultimately, the proposed algorithm consists in alternating between full

size steps and reduced steps, with a view to minimizing the number of full

steps.

3.3. Algorithm

The proposed numerical method for the computation of the indicator bi-

furcation can be summarized by the following algorithm:

1. Computation of the steady solution US (Re fixed)

2. Bifurcation indicator, ω0 = 0, Ordre P fixed, ωmax chosen.

2.1 Full size problem

2.2 Solve Eq. (14) and (15)

2.3 Validity range of the Padé approximants, ω̃MaxPadé (Eq. 17)

2.4 ω0 = ω0 + ω̃MaxPadé

2.5 If (ω0 > ωmax) go to 3

2.5 Save the vectors V R,⊥
p and V I,⊥

p

2.6 Reduction phase

2.7 Solve Eq. (24) from p=1 to P

2.8 Validity range of the Padé approximants, ω̃MaxPadé (Eq. 17)

2.9 ω0 = ω0 + ω̃MaxPadé

2.10 If (ω0 > ωmax) go to 3
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2.11 If criterion (27) is satisfied goto 2.6 else goto 2.1

3. Hybrid method (see section 2.4).

This algorithm is numerically evaluated in the following section.

4. Numerical results

4.1. Numerical tests

Two numerical tests are considered in this section. Spatial discretiza-

tion for both examples are performed by using the classical finite element

method. The chosen finite element is a quadrilateral element, with 9 nodes

for the velocity (bi-quadratic interpolation) and 3 for the pressure (linear

interpolation) [20]. The continuity equation is solved by using a penalty

method [20]. For both examples, the stationary solutions are computed us-

ing the Asymptotic Numerical Method defined for the Navier-Stokes equation

in Ref. [17].

The first example is the classical lid-driven cavity with a length and a

width equal to 1.Parameter A, which defines the aspect ratio, is then equal

to 1 (see Fig. 1).The number of nodes of the mesh is equal to 6561 (i.e.

13.122 unknowns) and is the same as the ones used in Ref. [1]. A lot of

critical Reynolds numbers are available in the literature for this example.

Table 1 presents some of those critical Reynolds numbers and Strouhal num-

bers computed by several authors. For this example the Strouhal number is
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determined by the following expression:

St =
D.ω

2πu

(28)

where D is the width of the cavity (equal to 1.0) and u designates the im-

posed velocity in the upper side of the cavity. For this example the first Hopf

bifurcation appears for a Reynolds number close to 8000 and a Strouhal

number near 0.45. This first example allows us to assess the proposed reduc-

tion technique and to give a validity range of the two algorithm parameters

which are the number of reduced vectors, nred, and the value of the accuracy

parameter, ε, of the criterion in Eq. (27).

The second example deals with the flow in a channel with a suddenly

expanded part (see Fig. 2), initially studied by Mizushima et al. in Ref.

[25] and is quite interesting for stability studies. In fact this example exhibits

two stationary bifurcations before a third instability which corresponds to a

Hopf bifurcation. These two stationary bifurcation points are shown in Fig.

3 where the velocity at point P1 (defined in Fig. 2) is plotted versus the

Reynolds number of the flow between 0 and 70. This Reynolds number is

defined by:

Re =
umaxh

2ν
(29)

where h (here h=2) is the height of the entrance channel and umax is the

maximum velocity of the parabolic profile imposed on the entrance. The
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first stationary bifurcation point (where the flow becomes asymmetric) is

equal to 48.74. The second bifurcation point (where the flow becomes sym-

metric again) is 65.1. These critical points are also obtained by using a

bifurcation indicator which has been first introduced in Ref. [7], and used

to study the Coanda effect[34]. This stationary indicator has been improved

in Ref. [21] where a numerical method is introduced to follow the station-

ary bifurcating solutions emanating from the singular points. The method

has been used in this study to compute all the stationary solutions plotted

in Fig. 3, and notably the symmetric solution after the second bifurcation

point where the Hopf bifurcation point is searched. For a comparison of the

computational times, 4 meshes are used in this second example, from 32.322

d.o.f. to nearly 350.000 d.o.f..The results for these meshes are summarized

in Table 2. The same table also gives the basic computational times for the

numerical methods evaluated in this study. For example, the CPU times

needed for a single eigenvalue computation (for a fixed Reynolds) are given

for each studied mesh. The critical numbers for the Hopf bifurcation points

are given in Table 3. The critical numbers obtained with ARPACK (Ref.

[33]) and those given in Ref. [25] are also indicated in this table.

The Strouhal number for this example is determined by using the follow-

ing expression:

St =
h.ω

4πumax

(30)

The critical numbers found in this study are close to 1000 and 0.075 respec-
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tively for the Reynolds and for the Strouhal numbers (for the first bifurca-

tion). Concerning the Strouhal number, which is close to 0.074 (see Table 3),

our results agree well with the values given in Ref. [25]. The critical Reynolds

number is greater than the one given in Ref. [25] (Rec ≈ 843). Nevertheless,

our critical values are confirmed by several eigenvalue computations. These

eigenvalues are plotted on the complex plane in Figures (4) for several values

of the Reynolds number. These figures show that two conjugated complex

eigenvalues cross the imaginary axis for a Reynolds value between 965 and

1023, and two cross the imaginary axis for a Reynolds value included in the

range [1559,1602]. The angular frequency is approximately 47 for the first

bifurcation point (see Figures 5-a and 5-b) and 100 for the second one (see

Figures 5-c and 5-d). To explain the difference between the results that are

presented and those given in Ref. [25], the evolution of the first critical

Reynolds number versus the number of unknowns has been plotted in Fig.

(5). This curve shows that, for approximately the same number of unknowns

(close to 10.000), the Hybrid method gives nearly the same critical Reynolds

number as the one found by Mizushima et al. in Ref. [25]. We have plotted in

Figures (6) the streamlines of the solutions (steady solution, real and imag-

inary parts of the eigenmode) at the first bifurcation point (Rec1=856 and

ωc1=40.29) carried out with a number of unknowns equal to 13000. These

figures agree well with the results presented in Ref. [25]. Moreover, as shown

in Fig. (5), the number of unknowns required to obtain the convergence to

an acceptable critical Reynolds number must be greater than 50000. This
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means that the mesh used in Ref. [25] is too coarse to obtain an accurate

value of the critical Reynolds number.

4.2. Results with the Hybrid method

For this paper to be self-contained, it could be useful to recall the results

obtained with the Hybrid method put forward in Ref. [1] and [8]. To this

end, we propose to study the first example: the lid-driven cavity. As the

first critical Reynolds number is close to 8000, the indicator φ is then plotted

against the angular frequency for a Reynolds number equal to 8089 (see Fig.

7).Let us note that, in Ref. [8], the first bifurcation point is found with an

indicator curve computed for a Reynolds number close to 2000. Nevertheless,

from the curve plotted in Fig. 7, one can determine several initial values for

the Newton method detailed in section (2.4).

These initial values are given in Table 4. From the indicator curve, we

have determined 9 initial values that are introduced in the Newton iterative

scheme. From these 9 initial guesses, 6 values converge to a Hopf bifurcation

point. All these singular points are different. Some of them are far from

the Reynolds number for which the indicator curve is computed. The single

indicator curve of Fig. 7 then permits to automatically compute 6 critical

Reynolds and Strouhal numbers. From the results presented in Ref. [8], this

curve is obtained with 66 steps of the continuation method defined in section

(2.3) with an order of truncature of the asymptotic expansions equal to 30,

and a parameter δ = 10−6 (Eq. 17). The indicator curve is computed for an
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angular frequency in the range [0, 4100]. Let us recall that each step in this

continuation technique requires a matrix triangulation, and ’p’ backward and

forward substitutions. According to the analysis proposed in Ref. [8], the

more consuming times, for the hybrid method, concern this matrix triangu-

lation. The aim of the proposed numerical method is then to decrease these

computational times by using reduced order models without modifying the

results of the Hybrid method. For example, the number of initial values to

be introduced in the Newton scheme must be the same with or without the

reduction technique.

4.3. Results with the proposed reduction technique

For the first results concerning the reduction technique, we study the lid-

driven cavity. The indicator curve is computed for the same initial Reynolds

number as previously (Re=8089). The proposed reduced model contains two

parameters: the number of vectors, nred, to define the projection operator

Ψ, and the accuracy ε which permits to check the validity of the reduced

solutions. Table 5 shows the results obtained with the reduced technique. In

this table, the number of vectors of the reduced technique vary between 10

and 60, and the accuracy parameter is included in [10−2, 102]. The results

of the full model when the order of truncature varies between 20 and 30

are also given. So is the number of steps needed for each numerical method

to compute the indicator curve up to a maximum value of the angular fre-

quency equal to 4100. This number is denoted by N1 in Table 5. For all the
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computations, the parameter δ, which governs the validity range of the Padé

approximants (Eq. 17), is fixed and is equal to 10−6.

The first interesting result from this table is that the number of steps

in the reduced technique is almost greater than the one needed in the full

model. The table also shows that approximately the same number of Hopf

bifurcation points (indicated by the symbol ’NH’ in Table 5) can be obtained

with the reduced technique as with the full model. The last column in Table

5 displays the number of singular values (see Table 4) determined with the

full or the reduced technique. In Table 5, the symbol ’All’ means that the

six singular values given in Table 4 have been determined. Hence, out of the

29 indicator calculi presented in Table 5 carried out with RANM, 16 lead

to the same results as those obtained with the full model. 6 calculi give all

the 6 singular values but some of them are computed several times. 3 calculi

are needed to determine the first 5 Hopf bifurcation points. Only 4 indicator

computations give either no bifurcation points or few singular values (less

than 3). These 4 indicator calculi require the smallest number of steps.

Therefore, the results summarized in Table 5 show that the two parameters

of the reduced technique have to be carefully chosen. For example, a great

value of ε (ε = 100 or ε = 101) must be associated with a number of vectors,

nred, greater than 30. Contrariwise, a small value of nred, for example

nred=10, requires a small value of the accuracy parameter ε (ε ≤ 10−1).

For a more precise view of the influence of these parameters on the com-

putation of the indicator curve φ,the curve obtained with the full model
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resolution (denoted by ’Reference’ on these figures) as well as the ones ob-

tained with the reduced order model (denoted by ’RANM’) have been plotted

in Fig. 7 and 8

In Fig. 7, the RANM parameters are nred=60 and ε = 100. For these

values, according to the results shown in Table 5, the RANM and the full

model lead to the same number of Hopf bifurcation points (NH=6 in Table

5) and the same number of Newton iterations. This is confirmed by the

results plotted in Fig. 7, where the curve obtained with RANM exactly

follows the curve obtained with the full model. For Fig. 8, where the RANM

parameters ε and nred are respectively equal to 102 and 60, some parts of the

curve obtained with RANM are totally different from the reference curve.

Moreover, for some values of the angular frequency, the solution obtained

with RANM jumps to another part of the curve without passing through the

minimum of the curve (for an angular pulsation close to 3500 for example).

The last interesting feature of the results presented in Table 5 deals with

the number of full steps during the resolution with the RANM. This number

is given in Table 5, and is denoted by ’NT’. If we only analyze the reduced

calculi which give the same bifurcation points as the full model (’All’ in

the last column), the number of full steps is between 13 and 24. Finally

compared to the full model (66 steps), the number of full steps gained with

the reduction technique is approximately between 60 to 80 %.

This minimum value of full steps (i.e. the number of times where the re-

duced basis is upgraded) is relatively great compared to the results obtained
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in Ref. [14] where the same technique is used in the framework of nonlin-

ear vibration. Indeed, in this latter study, a single full step is necessary to

determine the entire nonlinear solution. Nevertheless, the solution in the

vibration problem does not evolve as much as it does in the present study.

In fact the indicator curves (see Fig. 7) are strongly nonlinear with respect

to the angular frequency. More precisely, the solutions that are sought are

quite different according to the value of the angular frequency. To underline

this point, we have plotted in Fig. 9 the streamlines of the real part of the

vector V for six values of the angular frequency. These figures show that

the unknown vector evolves a lot with the angular frequency.This explains

why more than 10 full steps are necessary to obtain the indicator curve with

the RANM. Nevertheless, this number is relatively small compared to the

number of steps required with the full model. As each step demands one ma-

trix triangulation, which is the most time-consuming phase for the indicator

calculus, one can then expect, with the RANM, a substantial decrease in the

computational times (see Section ). Let us note that the matrix triangulation

is carried out with a LU decomposition.

According to the results presented in Table 5, one can give some tenden-

cies on how the couple (nred,ε) of the proposed reduced technique can be

chosen. Hence, a small or moderate number of vectors (10 ≤ nred ≤ 30)

have to be associated with a small value of ε (10−2 ≤ ε ≤ 10−1). Contrari-

wise, to a great number of vectors (nred ≥ 40), one can link a great value

for parameter ε (ε ≥ 1). Nevertheless, this analysis must be completed with

29

https://www.researchgate.net/publication/226677528_Nonlinear_forced_vibration_of_damped_plates_coupling_asymptotic_numerical_method_and_reduction_models?el=1_x_8&enrichId=rgreq-ade03bec376d404388804a2bd381dede-XXX&enrichSource=Y292ZXJQYWdlOzIzNjAxNTY4MztBUzoxMDM2ODEyODIyODE0NzJAMTQwMTczMDk1MjQ3NA==


a study of computational times.

4.4. Computational times

For this section, which is devoted to the study of the computational times,

we consider the second example: the flow in a channel (Fig. 2). The evolution

of the indicator versus the angular frequency is plotted in Fig. 10 for Mesh

3. In this figure, the indicator curve obtained with RANM is also plotted

with nred=30 and ε = 10−1. The curve is plotted for an angular frequency

varying between 0 and 130. The reference curve, with the full model, is

obtained with nearly 50 steps of the continuation method. To study the

computational times with the RANM, the value of the parameter ε is fixed

and equal to 10−1, and the number of vectors, nred, varies between 20 and

40 (according to the discussion above). With these values, the RANM gives

exactly the same number of Hopf bifurcation points as the full model and

with approximately the same number of iterations of the Newton method.

As for the lid-driven cavity, the number of steps required to get the indicator

curve up to ω = 130 is greater with the RANM than with the full size

model. Nevertheless, the number of full steps with the RANM, and for the

considered number of vectors, is only about 15 (50 with the full model).

With these results, therefore, the computational times needed to obtain the

indicator curve can be estimated for all the methods that are considered. In

Fig. 11, the cost of the RANM and of the full model are plotted according

to the number of unknowns of the numerical example. These curves are
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obtained by considering the CPU times required for the full steps and also

for building the reduced operators. These computational times are relative

to the CPU times required for a single eigenvalues computation obtained

with ARPACK. This computational time is then chosen as the reference

time in this study.Fig. 11, therefore, shows that the indicator curve with

the full model is obtained with a computational time which is about 0.5

times a single calculus with ARPACK for Mesh 1 and 4.5 times greater with

Mesh 4. Let us recall that an indicator curve gives, for all the considered

meshes, 4 or 5 initial guesses for the Newton method leading to 2 accurate

Hopf bifurcation points. By comparison, with ARPACK, at least 4 calculi

are needed to get an idea as to where the bifurcation occurs, even more if

accurate critical values are required. With the Hybrid method (the RANM or

the full model), accurate bifurcation points can be found even if the indicator

curve is computed far from the critical Reynolds number. Hence, the first

bifurcation point (for Mesh 1) is also determined if the indicator curve is

computed at a Reynolds number equal to 160 (far from the critical number

which is 975 in this example, see Table 3). This is a real advantage for the

hybrid method compared to other types of numerical methods usually used

to determine precise instability points. By considering the computational

times obtained with the RANM in Fig. 11, one can see that this method

required approximately 2 or 3 three times less times than the full model. The

lowest computational times is normally obtained with the smaller number of

vectors, nred =20 (see Fig. 11), and is equal to 1.5 times an ARPACK
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calculus. This number of vectors seems to be the optimum value leading to

the lowest computational times with the same number of critical points being

found.

Nevertheless, the computational times obtained with the RANM are still

relatively important. Let us have a look in detail at the times required with

the RANM. Hence in Fig. 12-a, we have plotted the evolution of the CPU

times to construct the reduced matrix defined in Eq. 25 for the 4 considered

meshes and for nred between 20 and 40. Theses times represent the projection

and also the triangulation of the reduced matrix. The results presented in

this figure show that the increase in computational times for the calculation

of the reduced matrix is relatively important when the number of unknowns

increases. Considering Mesh 4, the cost of a full matrix triangulation is nearly

14, 9 and 7 times the computational times of the reduced matrix respectively

for nred=20, 30 and 40. This can explain why the CPU times are lower with

nred = 20, whereas with this value the number of full steps using RANM is

greater than with other values of nred (see Table 5). Finally in Fig. 12-b,

we have plotted the evolution of the computation of the reduced right-hand

side F (see Eq. 25) versus the number of unknowns in the problem. As for

the reduced matrix, several vector numbers in the basis are considered. The

order of truncature of the perturbation method, p, is equal to 30. Firstly,

this plot shows that the computational times for the reduced right-hand side

do not depend on the considered nred. Secondly, as for the full size model

(see results in Table 2), these computational times linearly increase with the
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number of unknowns. Thirdly, these times are relatively low compared to

the times that are needed for the same quantities computed on the full size

problem. In fact 17s are required for Mesh 4 (nred=40) whereas 110s are

needed for the same mesh on the full size model.

5. Conclusion

In this work, we have proposed a reduced order method to compute an

indicator curve. On this curve, minima are automatically computed and

introduced as initial values in a Newton iterative scheme. This permits to

define an automatic method to compute Hopf bifurcation points for 2 dimen-

sional fluid flows. The proposed method is very simple because it couples full

size and reduced order steps. In fact, the indicator is computed by using a

perturbation method whose solutions at each order of truncature, in the full

size problem, are used to build the reduced basis. From this computation,

several reduced steps are carried out to determine a supplementary part of

the indicator curve. The proposed low-dimensional model requires two user

parameters which are the number of vectors of the reduced method, nred, and

an accuracy parameter, ε. The numerical examples presented in this paper

show that the reduced technique leads to the same results as the full model

while requiring lower computional times (less than two ARPACK computa-

tions) if the two parameters ε and nred are respectively close to 10−1 and 20.

Finally, the RANM keeps the advantages of the hybrid method introduced in

Ref. [1] and improved in Ref. [8] it means robust and automatic method to
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detect several Hopf bifurcation points for a knowledge of a single steady so-

lution which can be far from the singular points. Moreover, with the reduced

method presented in this paper, the detection of singular points can be carried

out with low computational times, which is a real improvement of the hybrid

method.

For other problems, for instance 3D problems, numerical tests have to be

performed to find the optimal values in each case. As the proposed reduced

model has been initially successfully evaluated for other kinds of nonlinear

problems (see Ref. [10, 13, 14]), one can expect positive results in the 3D

fluid mechanics framework.

The reduced model leads to computational times which are nearly three

times lower than with the full size problems. A large part of these times are

due to the construction of the reduced size matrices which become large when

the number of unknowns is important. A possible way to reduce these times

is to use an a priori hyperreduction method [15, 16]. On the one hand, such

method permits to decrease the computational times for the reduced method

by selecting the most convenient data. On the other hand, the previous

method is a learning method which enables us to improve the validity range

of the reduced model. Hence, at the end of the reduced step, an updating

basis step is carried out leading to an improvement of the basis. We are still

working on this topic.

Finally with the proposed reduction method, the CPU times for the com-

putation of the first phase of the Hybrid method (calculus of the indicator
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curve) is reduced. However, the second phase (Newton iterative method) also

requires a lot of computation times which can be reduced by using a high-

order iterative corrector [13] or by using convergence acceleration methods

[19] which make it possible to decrease the number of Newton iterations.
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Figure 1: Geometry for the two-dimensional lid-driven cavity flow (case A=1).
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Authors Rec Stc ωc

Brezillon et al.[1] 7890 0.44 2185
Fortin et al.[2] 8000 0.45 2261.9
Boppana and Gajjar[3] 8026.6 0.4497 2268.0

Cazemieret al.[12]
7819 0.61 2996.8
7972 0.45 2254.0

Polishenko and Aidun[26] 7763.4 0.45 2195.0
Bruneau and Saad[27] 8000-8050 - -
Peng et al.[28] 7402 0.59 2744.0
Abouhamza and Pierre[29] 8004.5 - -

Gervais et al.[30]
7960 0.45 2250.6
8040 0.45 2273.3

Tiesinga et al.[31] 8375 0.4399 2314.8
Auteri et al.[32] ≈ 8018 0.4496 2265
Present study (13122 d.o.f.) 7890 0.44 2185

Table 1: Comparison of the critical parameters for the first Hopf bifurcation from the
literature. The considered example is the lid-driven cavity with A=1.

CPU times for indicator (s)
Name Number of d.o.f. ARPACK CPU times (s) Kt (Eq. 15) Fp (Eq. 15)
Mesh 1 32.322 575 3.5 4.5
Mesh 2 127.042 2500 58 28
Mesh 3 261.890 5160 313 80
Mesh 4 347.462 6950 560 110

Table 2: Number of degree of freedom used for the example of the flow in a channel
(Fig. 2). The order of truncature for the computation of the right hand side Fp and the
unknown vectors Vp is equal to 30.
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Hopf bifurcation, critical parameters.
Rec1 ωc1 St1 Rec2 ωc2 St2

Present study

Mesh 1 975 46.74 0.076 1578 103.16 0.104
Mesh 2 988 47.03 0.075 1533 99.93 0.103
Mesh 3 993 47.24 0.075 1538 100.18 0.103
Mesh 4 994 47.3 0.075 1539 100.28 0.103

ARPACK Mesh 1 [965,1023] ≈ 47 - [1559,1602] ≈ 103 -
Mizushima et al. [25] - 843 0.074 - - -

Table 3: Hopf bifurcation points for the example of the flow in a channel (Fig. 2), A =7/3.

Initial values Critical values
Rei ωi Φi Rec ωc Stc Number of iterations N◦

8089

754 0.64 - - - -
1085 0.606 - - - -
1360 0.418 - - - -
1759 0.486 11286 2385 0.33 6 6
2236 0.395 7890 2185 0.44 4 1
2691 0.669 8829 2925 0.52 5 2
3105 1.234 8921 3424 0.61 5 3
3614 3.122 9513 4226 0.7 7 4
4100 4.63 11417 5636 0.78 9 5

Table 4: Numerical results from Ref. [8] obtained for the problem of the lid-driven cavity
- case A=1.0 - Critical Reynolds and Strouhal numbers obtained for initial Reynolds num-
bers evaluated as minima of the indicator curve. Symbol ’-’ stands for the non convergence
of the Newton method.
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Order p ε N1 N2 Nr NH N3 NT N◦

Full model
20 - 76 0 10 5 32 76 All
25 - 69 0 12 6 36 69 All
30 - 66 0 9 6 36 66 All

nred=10
30 10−2 83 57 13 8 46 26 1,2,3,3,4,5,6,6
30 10−1 70 53 13 7 43 17 1,2,3,4,5,6,6
30 1 39 33 5 3 20 6 1,2,4

nred=20
30 10−2 78 56 10 6 36 22 All
30 10−1 68 52 10 6 36 16 All
30 1 31 27 3 1 5 4 2

nred=25

30 10−2 77 54 10 6 37 23 All
30 10−1 73 56 10 6 36 17 All
30 1 59 46 10 6 37 13 All
30 10 20 17 2 0 - 3 -

nred=30

30 10−2 75 51 10 6 36 24 All
30 10−1 74 54 10 6 38 20 All
30 1 57 42 7 5 29 15 1,2,3,4,5
30 10 19 16 2 0 0 3 -

nred=40

20 10−2 76 54 9 5 29 22 1,2,3,4,5
30 10−1 73 55 10 6 36 18 All
30 1 67 52 10 6 36 15 All
30 10 70 48 11 5 28 22 1,2,3,4,5
30 102 69 52 12 6 36 17 All

nred=50

25 10−2 75 53 10 6 39 22 All
30 10−1 74 53 10 6 36 21 All
30 1 74 57 11 6 37 17 All
30 10 76 62 12 7 42 14 1,2,3,3,4,5,6
30 102 72 60 14 7 42 12 1,2,3,3,4,5,6

nred=60

30 10−2 75 53 10 6 36 22 All
30 10−1 75 55 12 7 43 20 1,2,3,3,4,5,6
30 1 73 56 10 6 36 17 All
30 10 70 56 10 6 37 14 All
30 102 70 58 11 8 51 12 1,2,3,3,4,5,6,6

Table 5: The indicator curve is computed for a Reynolds number equal to 8089, ωmax = 4100, δ = 10−6.

N1, N2, Nr, NH and N3 stand respectively for the number of steps, the number of reduced steps, the number

of roots found, the number of Hopf bifurcation points determined and the total number of iterations in the

Newton scheme. ε is the accuracy required in the reduced computation (see Eq. 27). NT is the number

of full triangulated matrices. N◦ is the number of Hopf bifurcation point defined in Table 4. ’All’ means

that the six singular values (Table 4) have been found.
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Figure 3: Velocity uy at point P1 (Fig. 2) versus the Reynolds number. Bifurcated
branches and critical Reynols number from Ref. [21]. Flow in a channel[25], case A= 7/3.
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Figure 4: Eigenvalues in the complex plane. Example of the flow in a channel (Fig. 2),
Mesh 1, A=7/3. The critical parameters for this example are Rec1=975 and ωc1=46.47
and Rec2= 1578 and ωc2=103.16 respectively for the first and second Hopf bifurcation
point.
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flow in a channel (Fig. 2), A=7/3.
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(a) Steady solution, US .

(b) Real eigenmode, V R.

(c) Imaginary mode, V I .

Figure 6: Streamlines of the velocity fields at the first critical Reynolds number, Rec1=856
and ωc1=40.29. Example of the flow in a channel (Fig. 2), A=7/3 , 13000 d.o.f.
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Figure 7: Indicator versus angular frequency at Re=8089. Problem of the lid-driven cavity
- case A=1.0. Order 30, nred=60, ε = 100.
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Figure 8: Indicator versus angular frequency at Re=8089. Problem of the lid-driven cavity
- case A=1.0. RANM(2) stands for ε = 102. Order 30 and nred = 60.
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Figure 9: Indicator curve at Re=8089. Representation of the different initial values intro-
duced in the Newton method. Problem of the lid-driven cavity - case A=1.0
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Figure 10: Indicator versus angular frequency for Re=1068. Example of the flow in a
channel (Fig. 2), Mesh 3, A=7/3. nred=30 and ε = 10−1.
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Figure 11: Cost of the reduced order models relative to a single ARPACK calculus. Ex-
ample of the flow in a channel (Fig. 2), for the 4 meshes of Table 2.
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(a) Computation and triangulation
of the reduced matrix K (Eq. 22).
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(b) Computation of the reduced
right hand side F and unknown vec-
tor v (Eq. 22).

Figure 12: Evolution of the CPU times versus the number of unknowns of the problem.
Example of the flow in a channel (Fig. 2). The order of truncature of the asymptotic
expansions is equal to 30.
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