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MINIMUM-TIME STRONG OPTIMALITY OF A SINGULAR ARC: THE

MULTI-INPUT NON INVOLUTIVE CASE

FRANCESCA CHITTARO AND GIANNA STEFANI

Abstract. We consider the minimum-time problem for a multi-input control-affine system,
where we assume that the controlled vector fields generate a non-involutive distribution of
constant dimension, and where we do not assume a-priori bounds for the controls. We use
Hamiltonian methods to prove that the coercivity of a suitable second variation associated
to a Pontryagin singular arc is sufficient to prove its strong-local optimality. We provide an
application of the result to a generalization of Dubins problem.

1. Introduction

In this paper we are concerned with the minimum-time problem associated with a control-affine
system with several controls:

(1.1) min T

subject to

(1.2)





ξ̇ = (f0 +
∑m

i=1 uifi) ◦ ξ(t)
ξ(0) ∈ N0, ξ(T ) ∈ Nf

u = (u1, . . . , um) ∈ U ⊂ R
m

.

The state q belongs to a smooth n-dimensional manifoldM , f0, f1, . . . , fm, are smooth vector fields
onM , N0 andNf are smooth submanifolds ofM and the control functions belong to L∞([0, T ], U).
We remark that for smooth we mean C∞.

We are interested in sufficient conditions for the strong-local optimality of singular Pontryagin
extremals of problem (1.1)-(1.2), were strong means with respect to the C0-norm of the trajectories
ξ(·), and singular means that u ∈ intU . More precisely, we assume that there exists a candidate

Pontryagin extremal λ̂ : [0, T̂ ] → T ∗M with associated control function û(·) ∈ L∞([0, T̂ ], intU)

that satisfies πλ̂(0) ∈ N0 and πλ̂(T̂ ) ∈ Nf , and we look for sufficient conditions that guarantee

the strong-local optimality of the trajectory ξ̂ = πλ̂, according to the following definition:

Definition 1.1. The trajectory ξ̂ is a strong–local minimizer of the above considered problem, if

there exist a neighborhood V of its graph in R×M and ǫ > 0 such that ξ̂ is a minimizer among the

admissible trajectories whose graph is contained in V and whose final time is greater than T̂ − ǫ,
independently on the values of the associated controls.

This notion has been called time-state–local optimality in [24], where also a stronger version of
optimality is considered.

The only assumption we do on the control set U is that it has non-empty interior; although
by Filippov’s Theorem ([2]) we know that the existence of the minimum is guaranteed when U is
compact and convex, here the existence of a candidate minimizer is taken as assumption.

A classical approach to sufficient optimality conditions is to consider the second variation (see
for instance [1, 2, 3, 14, 16, 28] and references therein). In particular, in [1] and [2] the authors
propose the definitions of an intrinsically defined second variation, which is invariant for coordinate
changes, and therefore suitable to study optimal control problems defined on smooth manifolds.

This work was supported by Digiteo grant Congeo; by the ANR project GCM, program “Blanche”, project
number NT09 504490; by the European Research Council, ERC StG 2009 “GeCoMethods”, contract number
239748; by PRIN 200894484E 002 ; and by the research fund CARTT, IUT Toulon–La Garde.
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A peculiarity of control-affine minimum-time problems is that the second variation does not
contain the Legendre term (that is, the term which is quadratic in the variations of the control),
thus turning out to be singular. A tool widely used to overcome this problem is the so-called
Goh transformation [17]. Thanks to this transformation, performed in a coordinate–free way, we
are able to convert the second variation proposed in [1] into another functional which is no more
singular, and thus it can be asked to be coercive with respect to the L2-norm of the new control
variable. This approach, both for classical and intrinsically-defined second variations, has been
widely used in the analysis of sufficient optimality conditions (see for instance [3, 15, 24, 27], and
references therein).

In optimal-control problems, a classical method to prove the optimality of a Pontryagin extremal
is to cover a neighborhood of the reference trajectory with other admissible trajectories, to lift
them to the cotangent bundle, and compare the costs evaluated along each trajectory. In the
standard theory, the trajectories to be lifted are obtained by projecting suitable solutions of the
Hamiltonian system associated with the maximized Hamiltonian Fmax, see for example [1, 2]. This
Hamiltonian method is particularly effective, since it allows us to compare trajectories that belong
to a C0-neighborhood of the reference trajectory, independently on the value of the control.

When the extremal is singular Fmax cannot be used (see [24]), then to construct the lifted
trajectories we consider the solutions of a system governed by a Hamiltonian greater than or equal
to Fmax, as suggested by the approach used in [24, 27].

Ultimately, the paradigm to get sufficient optimality condition for singular extremals combines
an approach based on the coercivity of the second variation with the Hamiltonian approach. It
relies on the following facts.

• Under some regularity conditions, it is possible to define a smooth super-Hamiltonian
whose flow is tangent to all singular extremals.

• The derivative of the super-Hamiltonian flow is, up to an isomorphism, the Hamiltonian
flow associated to the linear-quadratic problem given by the second variation.

• If the second variation is coercive, it is possible to transform the linear-quadratic problem
associated with the original one into a problem with free initial point, whose second
variation is still coercive. In particular, this implies that the space of initial constraints
for the linear-quadratic problem remains horizontal (that is, it projects bijectively on M)
under the action of the associated Hamiltonian flow.

• The previous points imply that the projection on M of the super-Hamiltonian flow em-
anating from the Lagrangian manifold associated with the initial conditions of the new
problem is locally invertible. As a result we get that it is possible to lift the trajectories
to the cotangent bundle, in order to apply the Hamiltonian method.

In the single-input case, problem (1.1)-(1.2) has already been studied in [24], where it has
been shown that the coercivity of the second variation is a sufficient condition for the strong-local
optimality of singular Pontryagin extremals. In [11] the authors studied the multi-input problem
under the assumptions that the controlled vector fields generate an involutive distribution. In
this paper we relax this condition, that is we allow the controlled vector field to generate a non-
involutive distribution.

We remark that our result remains true even if U = R
m, then we need stronger assumptions

than the usual ones. In particular, we have to consider High Order Goh condition (Assumption 3),
which we prove to be indeed a necessary optimality condition when U = R

m. This phenomenon
is not pointed out when the Lie algebra generated by the controlled vector fields is involutive, in
particular when the system is single-input. Indeed, in these cases High Order Goh condition is
automatically satisfied under Goh condition.

We believe that this result, applied to the case where U is an unbounded set, could be of help
in the study of the infimum-time problem where the “optimal” trajectories may contain jumps,
as in [9, 10, 25], where integral costs are considered.

The structure of the paper is the following: we state the regularity assumptions in Section 2;
in Section 3 we define the second variation and investigate the implications of its coercivity; the
Hamiltonian method is exposed in Sections 4 and 5, where we state and prove the main result; in
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Section 6 we provide an example, based on a high dimensional version of Dubins’ problem. In the
Appendices there are technical details on some results stated in the paper.

2. Notations and regularity assumptions

In this section we clarify the notation we will use throughout the paper, and we state the
regularity assumptions on the system.

Let f be a vector field on the manifold M and ϕ : M → R be a smooth function. The action
of f on ϕ (directional derivative or Lie derivative) evaluated on a point q is denoted with the two
expressions

Lfϕ(q) = 〈dϕ(q), f(q)〉.

The Lie brackets of two vector fields f, g are denoted as commonly with [f, g]. When dealing
with vector fields labeled by indexes, we will use the following notations to denote their Lie
brackets:

fij(q) = [fi, fj](q), fijk(q) = [fi, [fj , fk]](q).

We call f the set of the controlled vector fields of the control system (1.2), that is f =
{f1, . . . , fm}, and Lie(f) the Lie algebra generated by the set f. We denote Lieq(f) = span{f(q) :
f ∈ Lie(f)}. In the following, for every q ∈M , we call Iq the integral manifold of the distribution
Lie(f) passing through q. The first assumption of this paper concerns the regularity of Lie(f).

Assumption 1. The controlled vector field f1, . . . , fm are linearly independent and the Lie algebra
Lie(f) has constant dimension R.

Let us consider the cotangent bundle T ∗M of M , and let π denote the canonical projection on
M . It is well known that T ∗M possesses a canonically defined symplectic structure, given by the
symplectic form σℓ = dς(ℓ), where ℓ denotes an element of T ∗M and ς is the Liouville canonic
1-form ς(ℓ) = ℓ ◦ π∗.

We denote with the corresponding capital letter the Hamiltonian function associated with every
vector field on M , that is F (ℓ) = 〈ℓ, f(πℓ)〉.

Remark 2.1. Let us recall that the following relation between the Lie brackets of two vector fields
f, g and the Poisson brackets of their associated Hamiltonian functions holds:

〈ℓ, [f, g](πℓ)〉 = {F,G}(ℓ).

As above, we denote

Fij(ℓ) = {Fi, Fj}(ℓ) Fijk(ℓ) = {Fi, {Fj, Fk}}(ℓ).

We recall that the symplectic structure allows us to associate, with each Hamiltonian function

F , the Hamiltonian vector field ~F on T ∗M defined by the action

〈dF (ℓ), ·〉 = σℓ(·, ~F (ℓ)).

In the following, we consider some special Hamiltonian functions associated with the optimal
control problem (1.1)-(1.2): the (time-dependent) reference Hamiltonian

(2.1) F̂t(ℓ) = F0(ℓ) +

m∑

i=1

ûi(t)Fi(ℓ),

where û(·) is the reference control, and the maximized Hamiltonian

Fmax(ℓ) = sup
u∈U

(
F0(ℓ) +

m∑

i=1

uiFi(ℓ)
)
.

The Hamiltonian flow from time 0 to time t associated with the reference Hamiltonian, that is

the solution of the equation ℓ̇ =
~̂
F t(ℓ), is denoted with F̂t.

Let us consider an admissible triple (ξ̂, û, T̂ ) for the problem (1.2), that is a solution of the

control system; let us assume that û ∈ intU , and let us set q̂0 = ξ̂(0) and q̂f = ξ̂(T̂ ). We study

the strong-local optimality of the triple (ξ̂, û, T̂ ), that in the following we call reference triple,
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among all solutions of (1.2) with N0 ⊂ Iq̂0 and Nf ⊂ Iq̂f . In particular, Assumption 1 can be
asked to hold only in a neighborhood of the reference trajectory.

A classical necessary condition for the optimality of the reference triple (ξ̂, û, T̂ ) is the Pontrya-
gin Maximum Principle (PMP), that we recall here stated in its Hamiltonian form (see [2]). PMP

states that if a reference trajectory (ξ̂, û, T̂ ) satisfying û ∈ intU is time-optimal, then there exist

a Lipschitzian curve λ̂ : [0, T̂ ] → T ∗M and p0 ∈ {0, 1} that satisfy the following equations:

λ̂(t) 6= 0 ∀ t ∈ [0, T̂ ](2.2)

πλ̂(t) = ξ̂(t) ∀ t ∈ [0, T̂ ](2.3)

d

dt
λ̂(t) =

~̂
Ft(λ̂(t)) ∀ t ∈ [0, T̂ ](2.4)

Fi(λ̂(t)) = 0 ∀ i = 1, . . . ,m ∀ t ∈ [0, T̂ ](2.5)

F̂t(λ̂(t)) = F0(λ̂(t)) = p0 ∀ t ∈ [0, T̂ ](2.6)

λ̂(0)|Tq̂0
N0

= 0 λ̂(T̂ )|Tq̂f
Nf

= 0.(2.7)

The Lipschitzian curves that satisfy equations (2.2)–(2.7) are called extremals. If p0 = 1 we say

the the extremal λ̂ is normal, while in the other case we say that it is abnormal.

Assumption 2. We assume that the reference triple satisfies the PMP in the normal form, and

we call the extremal λ̂ reference extremal.

By differentiating with respect to time, we obtain the following condition:

(2.8) F0i(λ̂(t)) +

m∑

j=1

ûj(t)Fji(λ̂(t)) = 0 i = 1, . . . ,m, a.e. t ∈ [0, T̂ ].

In literature additional necessary conditions for the optimality of a singular extremal are known
(see [2]). Namely, if the reference triple is optimal, then there exists an extremal λ associated with
the reference triple that satisfies the following conditions:

(Goh condition)

Fij(λ(t)) = 0 ∀ i, j = 1, . . . ,m, t ∈ [0, T̂ ].

(Generalized Legendre Condition) the quadratic form

(2.9) Lλ(t) : v 7→

m∑

i,j=1

vivjFij0(λ(t)) +

m∑

i,j,k=1

vivj ûk(t)Fijk(λ(t))

is non-positive for any v = (v1, . . . , vm) ∈ R
m and for a.e. t ∈ [0, T̂ ].

Remark 2.2. Notice that the matrix Lλ(t) is symmetric by (2.8) and Jacobi identity.

We strengthen the two necessary conditions above defined.

Assumption 3. (High Order Goh Condition) We assume that the reference extremal λ̂
satisfies the following equations

〈λ̂(t), f(ξ̂(t))〉 = 0 ∀ f ∈ Lie(f), t ∈ [0, T̂ ].

HOGC is a stronger condition than the usual one, but in our case the optimality of the singular
extremal is proved also when U = R

m; in Appendix A we show that, for U = R
m, HOGC is a

necessary optimality condition. As a matter of fact, if the Lie algebra generated by the controlled
vector fields is 2-step bracket generating, then HOGC coincides with Goh condition.

Remark moreover that, under Assumption 3, the quadratic form Lλ̂(t) is given by

(2.10) Lλ̂(t) : v 7→
m∑

i,j=1

vivjFij0(λ̂(t)),

so that it is continuous as a function of time.
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Assumption 4. (Strengthened Generalized Legendre Condition) There exists a constant
c > 0 such that

(2.11) Lλ̂(t)[v]
2 ≤ −c|v|2

for any v = (v1, . . . , vm) ∈ R
m and for every t ∈ [0, T̂ ].

As a consequence of Assumptions 1–3 and equation (2.8), we get that

〈λ̂(t), [f0, f ](ξ̂(t))〉 = 0 ∀ f ∈ Lie(f), ∀ t ∈ [0, T̂ ](2.12)
m∑

j=1

(Lλ̂(t))ij ûj(t) = F00i(λ̂(t)) i = 1, . . . ,m a.e. t ∈ [0, T̂ ].(2.13)

From (2.13) and Assumption 4 we can recover the reference control as feedback on the cotangent
bundle and, by induction, we can prove that it is smooth.

From now on we restrict to a (full-measure) neighborhood U of λ̂([0, T̂ ]) in T ∗M where SGLC
is satisfied, that is, where the quadratic form Lℓ is negative-definite. We define two submanifolds
of U which are crucial for our construction:

Σ = {ℓ ∈ U : 〈ℓ, f(πℓ)〉 = 0 ∀ f ∈ Lie(f)}(2.14)

S = {ℓ ∈ Σ : 〈ℓ, [f0, f ](πℓ)〉 = 0 ∀ f ∈ Lie(f)}.(2.15)

By Assumption 1, possibly restricting U, Σ is an embedded manifold of codimension R. More-
over every singular extremal that satisfies HOGC is contained in S. We set the following regularity
assumption on S, which requires that it is a submanifold of maximal dimension (see the arguments
below).

Assumption 5 (Regularity of S). The manifold S has constant codimension m in Σ.

Thanks to regularity assumptions, the manifolds Σ and S have the following properties. The
proofs can be obtained adapting those in [11].

(P1) It is easy to see that the Lie algebra Lieℓ(~F1, . . . , ~Fm) has dimension R for every ℓ ∈ Σ.

Moreover, every vector field X ∈ Lieℓ(~F1, . . . , ~Fm) is tangent to Σ.
(P2) It is not difficult to prove that SGLC implies that the vector fields f01, . . . , f0m are linearly

independent, and their span is transversal to Lie(f). Therefore S has codimension at least
m in Σ, and Assumption 5 states then that S has the maximal dimension. The arguments
above prove also that S it can be characterized by

S = {ℓ ∈ Σ : F0i(ℓ) = 0 ∀ i = 1, . . . ,m}.

Notice that the existence of a normal singular extremal satisfying HOGC implies thatR+m ≤
n− 1 and that f0 is transversal to Lie(f), in a neighborhood of the corresponding trajectory
on M . Moreover, Assumption 5 is equivalent to the following one:

[f0, f ] ∈ Lie(f) + span({f01, . . . , f0m}) ∀ f ∈ Lie(f).

(P3) Similar arguments show that ~F01, . . . , ~F0m are transversal to Σ, and ~F1, . . . , ~Fm are transver-
sal to S.

(P4) ~F0 is tangent to Σ in S.
(P5) Our assumptions guarantee the existence of a Hamiltonian vector field tangent to all singular

extremals. Indeed, setting for every ℓ ∈ U

(2.16) ν(ℓ) = L
−1
ℓ



F001(ℓ)

...
F00m(ℓ)


 ,

we get that the vector field ~FS = ~F0 +
∑m

i=1 νi
~Fi is tangent to S, and the reference extremal

λ̂(·) is an integral curve of ~FS . Indeed every singular extremal associated with our dynamics

is an integral curve of ~FS .
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3. Second variation

In this section we define the second variation for the problem under study, and we investigate
the consequences of the coercivity of the second variation. The computations can be recovered by
adapting those present in [24, 27].

3.1. Construction of the second variation. We consider the second variation associated with
the sub-problem of (1.1)-(1.2) with fixed final point, that is we add the constraint ξ(T ) = q̂f . To
compute this second variation, we transform such minimum-time problem into a Mayer problem on

the fixed time interval [0, T̂ ] and on the state space R×M . Namely, putting u0 as a new constant
control with positive values, we reparametrize the time as u0t, and we set q = (q0, q) ∈ R ×M ,
f0(q) = f0(q) +

∂
∂q0 and f i(q) = fi(q), i = 1, . . . ,m. Then the minimum-time problem between

N0 and q̂f is equivalent to the Mayer problem on R×M described below.

(3.1) min ξ0(T̂ )

subject to

(3.2)





ξ̇(t) = u0f0(ξ(t)) +
∑m

i=1 u0ui(t)f i(ξ(t)) t ∈ [0, T̂ ]

ξ(0) ∈ {0} ×N0, ξ(T̂ ) ∈ R× {q̂f}

(u0,u) ∈ (0,+∞)× L∞([0, T̂ ], U)

where ξ = (ξ0, ξ). It is not difficult to see that the trajectory ξ̂(t) = (t, ξ̂(t)), associated with the

controls u0 = 1 and u = û, is an extremal with associated adjoint covector λ̂ : s 7→ ((−1, t), λ̂(t)) ∈
R

∗ × T ∗M .
For t ∈ [0, T̂ ], we define the evolution map Ŝt : M → M by its action Ŝt : x0 7→ ξ(t), where

ξ is the solution of the equation ξ̇ = f0(ξ) +
∑m

i=1 ûifi(ξ) with initial condition ξ(0) = q0. In

particular, Ŝt(q̂0) = ξ̂(t). We locally define around q̂0 the pull-back vector fields

git = Ŝ−1
t∗ fi ◦ Ŝt, i = 0, . . . ,m.

Analogously, for the Mayer problem we define the evolution Ŝt : R×M → R×M as Ŝt : (q
0, q) 7→

(q0 + t, Ŝt(q)), and the pull-back system of (3.2) corresponding to the reference control û as

η(t) = Ŝ−1
t ◦ ξ(t).

The Mayer problem (3.1)-(3.2) is then equivalent to the following one:

min η0(T̂ )

subject to the control system

(3.3)





η̇0(t) = u0 − 1

η̇(t) = (u0 − 1)g0t (η(t)) +
∑m

i=1(u0ui(t)− ûi(t))g
i
t(η(t))

η(0) ∈ {0} ×N0 η(T̂ ) ∈ R× {q̂0}.

Let us now consider variations (δu0, δx, δu) ∈ R×Tq̂0N0 ×L∞([0, T̂ ],Rm) around the reference
trajectory, and let us evaluate the coordinate-free second variation of the Mayer problem, following
[1]. We choose any two smooth functions α,β : R×M → R that satisfy the following constraints:

α(q0, q) = α(q)− q0, α|N0
≡ 0, dα(q̂0) = λ̂(0),(3.4)

β(q0, q) = q0 + β(q), dβ(q̂0) = −λ̂(0),(3.5)

for two suitable smooth functions α, β : M → R. Thanks to High Order Goh Conditions, we can
choose the function α in such a way that it satisfies the constraint α|Iq̂0 ≡ 0, where Iq̂0 is the

integral manifold of the distribution Lie(f) passing through q̂0. Moreover, we can choose β = −α,
since the second variation does not depend on the particular choice of α and β with the properties
(3.4) and (3.5) (see [1]).
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The second variation is given by

J ′′[(δx, δu0, δu)]
2 =

∫ T̂

0

δu0Lδη(t)Lg0

t
β̂(T̂ , q̂0) +

m∑

i=1

(δu0ûi(t) + δui(t))Lδη(t)Lgi
t
β̂(T̂ , q̂0) dt,

(3.6)

where δη(t) ∈ R× Tq̂0M is the linearization of η(t) and satisfies the following system:

(3.7)





˙δη0(t) = δu0

δ̇η(t) = δu0g
0
t (q̂0) +

∑m
i=1(δu0ûi(t) + δui(t))g

i
t(q̂0)

δη(0) = (0, δx) ∈ {0} × Tq̂0N0, δη(T̂ ) ∈ R× {0}.

Remark 3.1. If δη satisfies the system (3.7), then the value of the second variation does not
depend on the particular choice of α and β, provided that they satisfy properties (3.4)-(3.5) (see
[1]). Then J ′′ is well defined and coordinate free.

Since we are interested only in the so-called time-state local optimality, we restrict us to the
subproblem with δu0 = 0, and, proceeding as in [24], we define w(·) and ǫ by

wi(t) =

∫ T̂

t

δui(s) ds(3.8)

ǫi = wi(0),(3.9)

for i = 1, . . . ,m. In this way, the control variation δu is embedded as the pair (ǫ,w(·)) in the

space Rm ×L2([0, T̂ ],Rm). We remark that this embedding is continuous and it has dense image.
Then the second variation defined by (3.6)-(3.7) writes as

J ′′[(δx, ǫ,w(·))]2 =
1

2

m∑

i,j=1

(
LǫifiLǫjfjβ(q̂0) +

∫ T̂

0

wi(t)wj(t)L[ġi
t,g

j
t ]
β(q̂0) dt

)

+

m∑

i=1

(
LδxLǫifiβ(q̂0) +

∫ T̂

0

wi(t)Lζ(t)Lġi
t
β(q̂0) dt

)
.(3.10)

where the function ζ : [0, T̂ ] → Tq̂0M is the solution of the equation

(3.11) ζ̇(t) =

m∑

i=1

wi(t)ġ
i
t(q̂0),

with boundary conditions

(3.12) ζ(0) = δx+

m∑

i=1

ǫifi(q̂0), ζ(T̂ ) = 0.

Let us observe that the second variation is realized as a linear-quadratic control problem in the
state-variable ζ, with control w (see [1, 27, 28]). Notice moreover that

ġit(q̂0) = Ŝ−1
t∗ [f0, fi] ◦ ξ̂(t) and L[ġi

t,g
j
t ]
β(q̂0) = −Fij0(λ̂(t)).

Finally, thanks to the choice of β, the finite-dimensional term in (3.10) is null.
It is clear that, if Tq̂0N0 ∩ span({f1(q̂0), . . . , fm(q̂0)}) 6= 0, then the above defined quadratic

form cannot be coercive. On the other hand, the paradigm exposed in the introduction requires
that the flow of the super-Hamiltonian emanating from Σ remains contained in Σ, as Theorem 5.1
in Section 5 describes (see also [24, 27]); in particular, the horizontal Lagrangian sub-manifold of
the initial constraints must be contained in Σ. These arguments suggest to require coercivity of
(3.10) allowing all vectors in Lieq̂0(f) to be initial conditions for the state ζ; see Section 3.2 and
the proof of Theorem 5.2 in Section 5. In particular, this means to consider the second variation
for the minimum time problem from Iq̂0 to q̂f .

This is not surprising, since our result holds true also for unbounded controls; indeed, if U = R
m,

for every two points q1, q2 ∈ Iq̂0 , there exist a sequence of times tk → 0 and a sequence of controls
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uk such that the sequence tk 7→ {ξk(q1,uk, tk)}k of the solutions at time tk of the system (1.2)
starting from the point q1 and relative to the control uk tends to q2 (see [4, Lemma 4.1, Corollary
4.1, Remark 4.1]). As a consequence, if the controls are not bounded, the infimum of the time for
moving inside Iq̂0 is zero, therefore we can think that, in some sense, if T is the minimum time for
joining q̂0 with q̂f , then it is also the infimum of the time for reaching q̂f from Iq̂0 .

This digression suggests us the suitable coercivity assumption for this problem.

Assumption 6. For (ǫ,w(·)) ∈ R
R ×L2([0, T̂ ],Rm), let ζ(·) be the solution of the control system

(3.13)

{
ζ̇(t) =

∑m
i=1 wi(t)ġ

i
t(q̂0)

ζ(0) =
∑R

i=1 ǫifi(q̂0),

where fm+1, . . . , fR are some locally defined vector fields chosen to complete the basis for Lie(f) in
a neighborhood of q̂0. The quadratic form

(3.14) J ′′[(ǫ,w(·))]2 =
1

2

m∑

i=1



∫ T̂

0

2wi(t)Lζ(t)Lġi
t
β(q̂0) +

m∑

j=1

wi(t)wj(t)L[ġi
t,g

j
t ]
β(q̂0) dt




is coercive on the subspace W of RR × L2([0, T̂ ],Rm) defined by the constraint ζ(T̂ ) = 0.

3.2. Consequences of the coercivity assumption. Let us now introduce a special coordinate
frame in a neighborhood of q̂0, completing the set {f1, . . . , fm} with n−m locally defined vector
fields fm+1, . . . , fn such that {f1, . . . , fn} is a basis for TqM , and {f1, . . . , fR} is a basis for Lie(f),
in a neighborhood of q̂0. The coordinate frame is the inverse of the map Υ : Rn →M defined as

(3.15) Υ(x1, . . . , xn) = exp(x1f1) ◦ exp(x2f2) ◦ · · · ◦ exp(xnfn)(q̂0).

In particular, Υ−1(q̂0) = (0, . . . , 0), for j = 1, . . . , n we have

∂

∂xj

∣∣∣
(0,...,0)

= fj(q̂0)

and

(3.16) Lfxi ≡ 0 , ∀f ∈ Lie(f) , i = R+ 1, . . . , n.

If we denote with (p̂1, . . . , p̂n) the coefficients of ℓ̂0 in this coordinate frame, then it is easy to

see that ℓ̂0 =
∑n

i=R+1 p̂idxi.
Define the symmetric 2-form

Ω =
1

2

n∑

i=R+1

dxi ⊗ dxi,

and extend it on the whole Tq̂0M × L2([0, T̂ ],Rm) putting Ω[(δx,w(·))]2 = 1
2

∑n
i=R+1(δxi)

2.
Then, if Assumption 6 holds, we can apply [18, Theorem 13.2] to conclude that there exists a

ρ > 0 such that the form

(3.17) J ′′

ρ = J ′′ + ρΩ

is coercive on the subspace W̃ ∈ Tq̂0M × L2([0, T̂ ],Rm) of the variations such that the solutions
of the system (3.11) satisfy

(3.18) ζ(0) ∈ Tq̂0M, ζ(T̂ ) = 0.

Namely, J ′′

ρ represents the second variation of the linear-quadratic problem associated with the
variable ζ, with free initial condition and fixed final condition.

The Hamiltonian H ′′
t : T ∗

q̂0
M × Tq̂0M → R associated with this linear-quadratic problem is

given by

(3.19) H ′′
t (ω, δx) =

1

2
L
−1

λ̂(t)







〈ω, ġ1t 〉+ LδxLġ1

t
β(q̂0)

...
〈ω, ġmt 〉+ LδxLġm

t
β(q̂0)







2

,
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where and L
−1

λ̂(t)
has to be thought of as a quadratic form on R

m, for every t (see [1, 11]).

Set

(3.20) L′′ = {(−2ρΩ(δx, ·), δx) : δx ∈ Tq̂0M}.

The quadratic form (3.17) is coercive on the space W̃ if and only if

(3.21) kerπH′′
t |L′′ = {0}

for every t ∈ [0, T̂ ] (see [28]).

4. Geometry near the reference extremal

In this section we state the geometric properties of the vector fields and the Hamiltonians linked
to our system and we define the super-Hamiltonian, stating its properties.

In a neighborhood of the reference extremal, Σ can be described as S × [−ǫ, ǫ]m, for some

ǫ > 0. Indeed, for t = (t1, . . . , tm) ∈ R
m, let us denote with t ~F the vector field

∑m
i=1 ti

~Fi, and

let us consider the map ℓ 7→ exp(t ~F )(ℓ) (that is, the solution at time t = 1 of the equation

ℓ̇ =
∑m

i=1 ti
~Fi(ℓ)). For a sufficiently small ǫ > 0, the map

ψ : (ℓ, t) ∈ U× [−ǫ, ǫ]m 7→ exp(t ~F )(ℓ) ∈ T ∗M

is well defined and it is easy to prove the following:

Proposition 4.1. Possibly restricting U, there exists an ǫ > 0 such that ψ : S × [−ǫ, ǫ]m → Σ is
a diffeomorphism.

Proof. Since the whole Lie algebra generated by the ~Fi is tangent to Σ, then the range of the map
ψ restricted to S × [−ǫ, ǫ] is contained in Σ. The thesis follows by compactness of the interval

[0, T̂ ], since Dψ(ℓ,0) = id× (~F1(ℓ), . . . , ~Fm(ℓ)) has maximal rank (see property (P3) at the end of
Section 2). �

Remark 4.1. It is easy to see that

(4.1) ∂tiψ(ℓ,0) = ~Fi(ℓ), i = 1, . . . ,m.

and that for each function F defined on U

(4.2) ∂2titj (F ◦ ψ)(ℓ,0) =
1

2

(
L~Fi

L~Fj
+ L~Fj

L~Fi

)
F (ℓ), i, j = 1, . . . ,m.

We remark also that ψ maps Σ× [−ǫ, ǫ]m into Σ.

For singular extremals, the maximized Hamiltonian is well-defined and coincides with F0, but
its associated Hamiltonian vector field is multi-valued: indeed, all the Hamiltonians of the form
F0 +

∑m
i=1 uiFi, u ∈ U , coincide and realize the maximum along any extremal contained in Σ.

Moreover, no selection of such multi-valued Hamiltonian vector fields is suitable to construct the
field of non-intersecting state-extremals that we will use to compare the costs associated with the
candidate trajectories. For an insight in the single-input case, see [24, Section 4] . Then, as already
done in [11, 24, 26], we substitute the maximized Hamiltonian Fmax with a the time-dependent
super-Hamiltonian Ht = H0 +

∑m
i=1 ûi(t)Fi, where H0 is defined as described below.

The first step is to define a suitable map which turns out to project Σ onto S.

Lemma 4.1. Possibly restricting U, there exist m smooth functions ϑi : U → R, i = 1, . . . ,m,

such that, denoting with ϑ~F (ℓ) the vector field
∑m

i=1 ϑi
~Fi, the map

φ : ℓ ∈ U 7→ exp(ϑ~F )(ℓ) ∈ U

satisfies

(4.3) φ(Σ) ⊂ S.



Francesca Chittaro and Gianna Stefani

Moreover, for every ℓ ∈ S, δℓ ∈ TℓT
∗M , it holds

(4.4)




〈dϑ1(ℓ), δℓ〉
...

〈dϑm(ℓ), δℓ〉


 = L

−1
ℓ




〈dF01(ℓ), δℓ〉
...

〈dF0m(ℓ), δℓ〉


 .

Proof. Let us consider the function Φ : U× R
m → R

m defined by

Φ(ℓ, t) =



F01 ◦ ψ(ℓ, t)

...
F0m ◦ ψ(ℓ, t)


 .

Notice that for every ℓ ∈ S we have ψ(ℓ,0) = ℓ and then Φ(ℓ,0) = 0. Moreover, using (4.1), it is
easy to show that ∂tΦ(ℓ,0) = −Lℓ, for all ℓ ∈ S, and then it has rank m. The implicit function

theorem and the compactness of the interval [0, T̂ ] ensure the existence of m smooth functions
ϑ1, . . . , ϑm, defined in a neighborhood of the reference extremal, such that

(4.5) F0i ◦ φ(ℓ) ≡ 0 , i = 1, . . . ,m .

Without loss of generality, we can assume that this neighborhood is U. Since exp(ϑ~F )(ℓ) ∈ Σ for
every ℓ ∈ Σ, then (4.5) implies (4.3).

Fix ℓ ∈ S; recalling that ϑ(ℓ) = 0, thanks to (4.5) and (4.1), we get for every δℓ ∈ TℓT
∗M and

i = 1, . . . ,m

0 = 〈dF0i(φ(ℓ)), ∂ℓψ(ℓ, t)|t=ϑ(ℓ)δℓ〉+

m∑

j=1

〈dF0i(φ(ℓ)), ∂tjψ(ℓ, t)|t=ϑ(ℓ)〉〈dϑj(ℓ), δℓ〉

= 〈dF0i(ℓ), δℓ〉+
m∑

j=1

Fj0i(ℓ)〈dϑj(ℓ), δℓ〉

and then (4.4). �

Remark 4.2. It is easy to see that, as a particular case of (4.4), we get

(4.6) 〈dϑi(ℓ), ~Fj(ℓ)〉 = −δij ∀ ℓ ∈ S, i, j = 1, . . . ,m.

The Hamiltonian H0 is defined by means of the map φ, as follows.

Definition 4.1. We define the Hamiltonian function H0 : U → R as

H0(ℓ) = F0 ◦ φ(ℓ)

and we set

χ = H0 − F0.

In order to prove the properties of H0, we start by computing the first and second derivatives
of χ on S.

Proposition 4.2. For every ℓ ∈ S and δℓ ∈ TℓT
∗M , it holds 〈dχ(ℓ), δℓ〉 = 0 and

(4.7) d2χ(ℓ)[δℓ]2 = −

m∑

r,s=1

(L−1
ℓ )rs〈dF0r(ℓ), δℓ〉〈dF0s(ℓ), δℓ〉.

Proof. By definition we get

(4.8) dχ(ℓ) = dF0(φ(ℓ))


∂ℓψ(ℓ, t)|t=ϑ(ℓ) +

m∑

j=1

∂tjψ(ℓ, t)|t=ϑ(ℓ)dϑj(ℓ)


 − dF0(ℓ) .

For ℓ ∈ S, by (4.1), we obtain dχ(ℓ) = dF0(ℓ)
(
id+

∑m
i=1

~Fi(ℓ)dϑi(ℓ)
)
− dF0(ℓ) = 0. Therefore

D2χ(ℓ) is a well defined quadratic form for every ℓ ∈ S. To prove (4.7), we perform the compu-
tations in any chart. Fix ℓ ∈ S and δℓ ∈ TℓT

∗M and recall (4.1), (4.2) and (4.4); from (4.8) it
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follows

D2χ(ℓ)[δℓ]2 = D2F0(ℓ)[δℓ+

m∑

i=1

~Fi(ℓ)〈dϑi(ℓ), δℓ〉]
2 −D2F0(ℓ)[δℓ]

2+

+ dF0(ℓ)

(
∂2ℓ ℓψ(ℓ,0) +

m∑

i=1

~Fi(ℓ)D
2ϑi(ℓ)

)
[δℓ]2+

+ dF0(ℓ)


2

m∑

i=1

∂2ℓ tiψ(ℓ,0)δℓ〈dϑi(ℓ), δℓ〉+
m∑

i,j=1

∂2tj tiψ(ℓ,0)〈dϑj(ℓ), δℓ〉〈dϑi(ℓ), δℓ〉




= 2
m∑

i=1

(
D2F0(ℓ)(δℓ, ~Fi(ℓ)) + 〈D~Fi(ℓ), δℓ〉

)
〈dϑi(ℓ), δℓ〉+

+

m∑

i,j=1

(
D2F0(ℓ)(~Fi(ℓ), ~Fj(ℓ)) + 〈dF0(ℓ), ∂

2
tj tiψ(ℓ,0)〉

)
〈dϑj(ℓ), δℓ〉〈dϑi(ℓ), δℓ〉

= 2

m∑

i=1

LδℓL~Fi
F0(ℓ)〈dϑi(ℓ), δℓ〉+

m∑

i,j=1

∂2tj ti(F0 ◦ ψ)(ℓ,0)〈dϑj(ℓ), δℓ〉〈dϑi(ℓ), δℓ〉

= −2

m∑

i=1

〈dF0i(ℓ), δℓ〉〈dϑi(ℓ), δℓ〉+

m∑

i,j=1

Fji0(ℓ)〈dϑj(ℓ), δℓ〉〈dϑi(ℓ), δℓ〉

= −

m∑

i,j=1

Fji0(ℓ)〈dϑj(ℓ), δℓ〉〈dϑi(ℓ), δℓ〉 = −

m∑

r.s=1

(L−1
ℓ )rs〈dF0r(ℓ), δℓ〉〈dF0s(ℓ), δℓ〉.

�

Thanks to its definition, H0 satisfies the following properties.

Theorem 4.1. The Hamiltonian H0 has the following properties.

(1) F0 = H0 and ~F0 = ~H0 on S.

(2) The vector field ~H0 is tangent to Σ.
(3) F0 ≤ H0 on Σ.

Proof. Since φ|S is the identity, then H0 = F0 on S. Moreover

dH0(ℓ) = dF0 ◦

(
∂ℓψ(ℓ, t)|t=ϑ(ℓ) +

m∑

i=1

∂tiψ(ℓ, t)|t=ϑ(ℓ)dϑi(ℓ)

)
(4.9)

= dF0 ◦

(
id +

m∑

i=1

~Fi(ℓ)dϑi(ℓ)

)
= dF0(ℓ),

since ϑ(ℓ) = 0 and F0i(ℓ) = 0 on S. This ends the proof of (1).
To prove (2), fix ℓ ∈ Σ and observe that ∂tiψ(ℓ, t) ∈ Lie(f)(ψ(ℓ, t)), i = 1, . . . ,m, so that by

Assumption 5 we have

〈dF0(φ(ℓ)), ∂tiψ(ℓ, t)|t=ϑ(ℓ)〉 = 0.

Therefore (4.9) leads to

dH0(ℓ) = dF0(φ(ℓ)) ◦ ∂ℓψ(ℓ, t)|t=ϑ(ℓ), ℓ ∈ Σ,

and then we get easily
~H0(ℓ) =

[
∂ℓψ(ℓ, t)|t=ϑ(ℓ)

]−1 ~F0(φ(ℓ)).

Since φ(ℓ) ∈ S, ~F0(φ(ℓ)) ∈ Tφ(ℓ)Σ and
[
∂ℓψ(ℓ, t)|t=ϑ(ℓ)

]−1
maps Tφ(ℓ)Σ onto TℓΣ, then (2) is

proved.
Statement (3) is a straight consequence of Proposition 4.2, since for all ℓ ∈ S, δℓ ∈ TℓS and

i, j = 1, . . . ,m, one gets D2χ(ℓ)[δℓ]2 = D2χ(ℓ)[δℓ, ~Fi] = 0 and D2χ(ℓ)[~Fj , ~Fi] = −Fij0. �
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We finally define the super-maximized Hamiltonian Ht as follows.

Definition 4.2. We denote with Ht the following time-dependent Hamiltonian:

(4.10) Ht(ℓ) = H0(ℓ) +

m∑

i=1

ûi(t)Fi(ℓ),

and with Ht the Hamiltonian flow generated by Ht.

Notice that ~Ht is tangent to Σ and to the reference extremal λ̂(·).

5. The result

In this section we state and prove our main result. It relies on the following Hamiltonian
sufficient conditions, that we state and prove here below.

Theorem 5.1 (Geometric sufficient condition). Let (ξ̂, û, T̂ ) be the an admissible triple for

the minimum-time problem (1.1)-(1.2) with associate adjoint vector λ̂, and let Assumptions 1–5
be satisfied. Suppose that there exist a neighborhood V of q̂0 and a smooth function a : V → R

with the following properties:

(i) da(q̂0) = λ̂(0)
(ii) the Lagrangian submanifold Λ = {da(q) : q ∈ V } is contained in Σ and satisfies

(5.1) kerπ∗Ht∗ ∩ Tλ̂(0)Λ = {0} ∀ t ∈ [0, T̂ ].

Then (ξ̂, û, T̂ ) is a strict strong-local minimizer for the minimum-time problem (1.2) between
Iq̂0 and q̂f (or between q̂0 and Iq̂f ) and a strong-local minimizer for the minimum-time problem
(1.2) between Iq̂0 and Iq̂f .

Proof. Consider the map

id× π ◦H : (t, ℓ) ∈ [0, T̂ ]× Λ 7→ (t, π ◦Ht(ℓ)) ∈ [0, T̂ ]×M.

Hypothesis (ii) and the compactness of the reference trajectory imply that (possibly restricting

V ) there exist a neighborhood O of the graph of ξ̂(·) in [0, T̂ ] × Λ such that id × π ◦ H is a

diffeomorphism between [0, T̂ ]× Λ and O.
Let (ξ,v, T ) be an admissible triple for the control system (1.2) such that its graph is contained

in O, ξ(0) ∈ Iq̂0 , ξ(T ) ∈ Iq̂f , and T ≤ T̂ , and denote its lift on Λ with ℓ(t), namely

ℓ(t) = (π ◦Ht)
−1(ξ(t)).

Let us choose a curve µ0 : [0, 1] → Λ joining ℓ̂0 with ℓ(0) satisfying πµ0(t) ∈ Iq̂0 , ∀ t ∈ [0, 1], and

a curve µf : [T, T̂ ] → Λ joining ℓ̂0 with ℓ(T ) satisfying π ◦Ht(µf (t)) ∈ Iq̂f , ∀ t ∈ [T, T̂ ]. Let us

now define the following paths in [0, T̂ ]× Λ:

γ1 = (t, ℓ̂0) t ∈ [0, T̂ ]

γ2 = (0, µ0(t)) t ∈ [0, 1]

γ3 = (t, ℓ(t)) t ∈ [0, T ]

γ4 = (t, µf (t)) t ∈ [T, T̂ ],

and let γ = (−γ1) ∪ γ2 ∪ γ3 ∪ γ4.

Consider the following 1-form on [0, T̂ ]× T ∗M

(5.2) ω(t, ℓ) = H∗
t ς −Ht ◦Ht(ℓ)dt,

where ς is the canonical Liouville form on T ∗M . It is easy to prove (see [2, Proposition 17.1])

that ω is exact on [0, T̂ ]× Λ. In particular, since γ is a closed path contained in [0, T̂ ]× Λ, then∫
γ
ω = 0. Let us now evaluate the single components of this integral. It is easy to see that

∫

γ1

ω =

∫

γ2

ω = 0.



13 Minimum-time strong optimality of a singular arc: the multi-input non involutive case

Moreover
∫

γ3

ω =

∫ T

0

〈Ht(ℓ(t)), ξ̇(t)〉 −Ht ◦Ht(ℓ(t)) dt

=

m∑

i=1

∫ T

0

〈Ht(ℓ(t)), (vi(t)− ûi(t))fi(ξ(t))〉 dt−

∫ T

0

χ ◦Ht(ℓ(t)) dt ≤ 0.

Therefore

0 ≤

∫

γ4

ω =

∫ T̂

T

〈Ht(ℓ(t)), π∗ ◦Ht∗µ̇f (t)〉 dt−

∫ T̂

T

Ht (Ht(µf (t))) dt.

The first term is zero, since π∗ ◦Ht∗µ̇f (t) is tangent to Iπ◦Ht(µf (t)), by construction, and Ht(ℓ(t))
is contained in Σ. Then

0 ≤

∫ T

T̂

Ht (Ht(µf (t))) dt =

∫ T

T̂

1 + O(t) dt ≤ (T − T̂ ) + o(T − T̂ ),

which is a contradiction, therefore T ≥ T̂ .
If the final point q̂f is fixed, we claim that the reference extremal is strictly optimal. To prove

the claim, we consider an admissible triple (ξ,v, T ) as above, such that T = T̂ and ξ(T ) = q̂f .
In particular, since in this case

∫
γ4

ω = 0, we obtain that

0 =

∫

γ3

ω = −

∫ T

0

χ ◦Ht(ℓ(t)) dt,

which implies that λ(t) = Ht(ℓ(t)) ∈ S for every t ∈ [0, T ], then, in particular, that λ̇(t) ∈ Tλ(t)S,

that is 〈dF0j(λ(t)), λ̇(t)〉 = 0 for j = 1, . . . ,m. By computations it is possible to show that

λ̇(t) =
−→
F̂ t(λ(t)) +

m∑

i=1

(vi(t)− ûi(t))Ht∗(π ◦Ht)
−1
∗ fi(ξ(t)).

Thanks to (5.1), possibly restricting V , we can find a family of smooth functions at : V t → R,

where V t is a neighborhood of ξ̂(t) and a0 = a, such that Ht(Λ) = {dat(q) : q ∈ V t} for every
t ∈ [0, T ]. In particular, for every t ∈ [0, T ] we have that

λ(t) = dat(ξ(t))

Ht∗(π ◦Ht)
−1
∗ fi(ξ(t)) = dat∗fi(ξ(t)), i = 1, . . . ,m.

Then

〈dF0j(λ(t)),Ht∗(π ◦Ht)
−1
∗ fi(ξ(t))〉 = σ(dat∗fi(ξ(t)), ~F0j(λ(t))) = LfiLf0ja

t(ξ(t))

= Lf0jLfia
t(ξ(t)) + Lfi0ja

t(ξ(t))

= 〈λ(t), fi0j(ξ(t))〉,

since Lfia
t(ξ(t)) is identically null, being Ht(Λ) = dat(V t) contained in Σ. This implies that, for

every j = 1, . . . ,m, it holds

0 = 〈dF0j(λ(t)), λ̇(t)〉 = F00j(λ(t)) +

m∑

i=1

vi(t)Fi0j(λ(t)),

that is, in particular, that v is a solution of equation (2.16), and therefore λ̇(t) = ~FS(λ(t)). Since

λ̂(t) is solution of the same equation, and both λ and λ̂ pass through q̂f , then they coincide.
The same argument shows that the reference triple is a strict strong-local minimizer for the

minimum-time problem (1.2) between q̂0 and Iq̂f . �

Now we state and prove the main result.
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Theorem 5.2. Let (ξ̂, û, T̂ ) be an admissible triple of the minimum-time problem (1.1)-(1.2) with

associate adjoint vector λ̂, and let λ̂ be a normal singular extremal. If Assumptions 1–6 are

satisfied, then ξ̂(·) is a minimum-time trajectory between Iq̂0 and Iq̂f , and hence between N0 and
Nf . Moreover, the reference trajectory is strictly optimal among all admissible trajectories between
q̂0 and Iq̂f and among all admissible trajectories between Iq̂0 and q̂f .

Proof. The thesis comes straightaway once proved that the coercivity assumption (Assumption
6) allows us to define a smooth function αρ that satisfies the hypotheses of Theorem 5.1. In
particular, we define αρ in the adapted coordinates (3.15) of Section 3.2 as follows:

αρ(x) =

n∑

i=R+1

p̂ixi +
ρ

2

n∑

i=R+1

x2i .

It is easy to see that αρ satisfies property (i) and that (3.16) implies that Λ is a Lagrangian
submanifold contained in Σ. To prove (5.1) we need to exploit the links between the flow of the
Hamiltonian H ′′

t defined in equation (3.19) and Ht∗, as done in [11, 24, 27].

It is known that the pull-back flow Gt = F̂
−1
t ◦ Ht is the Hamiltonian flow relative to the

Hamiltonian Gt : T
∗M → R defined by

Gt =
(
Ht − F̂t

)
◦ F̂t = χ ◦ F̂t

(see [22]). Since DGt(ℓ̂0) = 0, then G′′
t = 1

2D
2Gt|ℓ̂0 is a well defined quadratic form and its

associated Hamiltonian flow is Gt∗ : Tℓ̂0(T
∗M) → Tℓ̂0(T

∗M).

Let β = −
∑n

i=R+1 p̂ixi; then the linear map ι : T ∗
q̂0
M × Tq̂0M → Tℓ̂0(T

∗M) as follows

ι(ω, δx) = −ω + d(−β)∗δx

establishes an anti-symplectic isomorphism between T ∗
q̂0
M × Tq̂0M and Tℓ̂0(T

∗M). In particular,

it determines an equivalence between the Hamiltonian functions G′′
t and H ′′

t , i.e. the following
identities hold:

H ′′
t = −G′′

t ◦ ι(5.3)
−→
H ′′

t = ι−1 ◦
−→
G′′

t ◦ ι

H′′
t = ι−1 ◦ Gt∗ ◦ ι.(5.4)

We need to prove only (5.3), since the other two equations are a direct consequence (see [11] and
references therein for details).

Consider ℓ ∈ S, δℓ ∈ Tℓ(T
∗M), and set ℓt = F̂t(ℓ). Then, thanks to (4.7), we have that

D2Gt(ℓ)[δℓ]
2 = D2χ(ℓt) ◦ F̂t∗ ⊗ F̂t∗

= −
m∑

r.s=1

(L−1
ℓt

)rs〈dF0r(ℓt), F̂t∗δℓ〉〈dF0s(ℓt), F̂t∗δℓ〉

= −(〈dF01(ℓt), F̂t∗δℓ〉, . . . , 〈dF0m(ℓt), F̂t∗δℓ〉)(L
−1
ℓt

)




〈dF01(ℓt), F̂t∗δℓ〉
...

〈dF0m(ℓt), F̂t∗δℓ〉




= −2H ′′
t ◦ ι−1δℓ.

By computations, it is easy to see that the space L′′ defined in equation (3.20) satisfies the equality
ιL′′ = {dαρ∗δx : δx ∈ Tq̂0M} = L, therefore equations (3.21) and (5.4) imply

kerπ∗Gt∗|L = {0} ∀ t ∈ [0, T̂ ].

To end the proof it is sufficient to notice that F̂t∗ is an isomorphism on the vertical fibers, since
it comes from a lifted Hamiltonian. �
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6. Examples

The classical Dubins and dodgem car problems concern the motion of a car on the plane R2 with
constant speed and controlled (bounded) angular velocity (see for instance [2, 13]). In particular,
Dubins problem looks for minimum-time trajectories between fixed initial and final positions and
orientations, while in the dodgem car problem the final orientation is free.

As shown in [20] (see also [12]), this problem can be reformulated on the manifold R
2 × SO(2),

where SO(2) is the group of positively oriented rotations on R
2. A great advantage of this for-

mulation is that the extension to higher dimensions is straightforward: we denote with (q, R) the
elements of RN× SO(N), where SO(N) is the group of positively oriented rotations on R

N , and
we consider the control system

(6.1)

{
q̇(t) = R(t)e1

Ṙ(t) =
∑N−1

j=1 uj(t)R(t)Aj , |u| ≤ 1,

where e1 is the first element of the canonical basis of RN , and, for every j = 1, . . . , N − 1, Aj is
the anti-symmetric matrix defined by

(Aj)lm =





−1 if l = 1,m = j + 1

1 if l = j + 1,m = 1

0 otherwise.

This system models the motion of a point in the N -dimensional space with constant speed equal
to 1, where we control the orientation velocity. For both Dubins and dodgem car problems, the
initial condition consists in fixing the initial point q0 and the initial (unit length) velocity v0 of
the trajectory on R

N . Namely, N0 = {q0} × Iv0
, where Iv = {S ∈ SO(N) : Se1 = v}. Dubins

problem looks for minimum-time trajectories joining N0 with Nf = {qf} × Ivf
, for some fixed

qf ∈ R
N , vf ∈ R

N with |vf | = 1, while dodgem car problem searches minimum-time trajectories
from N0 to Nf = {qf}× SO(N), for some fixed qf ∈ R

N .
The system (6.1) can be embedded in the matrix group GL(N + 1) (non singular (N + 1)-

dimensional matrices), via the map

(q, R) ∈ R
N × SO(N) 7→ g =

(
1 0
q R

)
∈ GL(N + 1).

This formulation is suitable also to consider the Dubins problem on other homogeneous spaces
different from R

N , that is the N -dimensional sphere SN and the N -dimensional hyperbolic space

H
N , defined as HN = {x ∈ R

N+1 : −x20+
∑N

i=1 x
2
i = 1, x0 > 0}. Briefly, a pair (point,orientation)

in SN× SO(N) can be represented in the group G = SO(N + 1) in the following way: the first
column of the matrix g ∈ SO(N + 1) gives the coordinate representation (in R

N+1) of the point,
the other N columns determine an orthonormal frame in the tangent space to the sphere at the
point. Analogously, a pair (point,orientation) in H

N× SO(N) can be represented in the group
G = SO(1, n), as above: the first column of the matrix g gives the coordinate representation (in
R

N+1) of the point, while the other N columns determine an orthonormal frame in the tangent
space. More details on these representations can be found in Appendix B and in [19, 20], where
the authors study the geodetic problem for curves with bounded curvature.

We can then write Dubins problem on M ∈ {Rn, SN ,HN} in the following unified way:

(6.2) min T

subject to

(6.3)





ġ(t) = g(t)

(
0 −εeT1
e1 0

)
+
∑N−1

i=1 ui(t)g(t)

(
0 0

0 Ai

)
, |u| ≤ 1

g ∈ G

g(0) ∈ N0, g(T ) ∈ Nf ,

where G, ε and the manifolds of the constraints depend on the manifold M as shown below:
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M ε G N0 Nf

R
N ε = 0 R

N
⋊ SO(N)

{
g : ge1 =

(
1
q̂0

)
, ge2 =

(
0
v0

)} {
g : ge1 =

(
1
q̂f

)
, ge2 =

(
0
vf

)}

SN ε = 1 SO(N + 1) {g : ge1 = q̂0, ge2 = v0} {g : ge1 = q̂f , ge2 = vf}
H

N ε = −1 SO(1, N) {g : ge1 = q̂0, ge2 = v0} {g : ge1 = q̂f , ge2 = vf}

where ei denotes the i-th element of the canonical basis of RN+1.
The control system (6.3) is a control-affine system of the form (1.2) with m = N − 1 and

dimM = N(N + 1)/2, and the corresponding left-invariant vector fields are defined as fi(g) =
gAi, i = 0, . . . , N − 1. We recall that left invariant vector fields satisfy the following relation:
g[Ai, Aj ] = [fi, fj](g), where [·, ·] denotes also the usual matrix commutator. Thanks to this
equation, the commutation properties of the matrices Ai extend also to their associated left-
invariant vector fields. In particular, the following properties are easily verified:

(i) Lie({Ai : i = 1, . . . , N−1) is 2-step bracket-generating and isomorphic to so(N) (Lie algebra
of antisymmetric N -dimensional matrices); so(N) has dimension R = N(N − 1)/2.

(ii) the matrices {[Ai, Aj ] : i, j = 1, . . . , N − 1} generate the derived sub-algebra [so(N), so(N)],

which is isomorphic to so(N − 1) and has dimension (N−1)(N−2)
2

(iii) the matrices {A0, [A0, Ai], Ai, [Ai, Aj ] : i < j = 1, . . . , N − 1} are linearly independent and
form a basis for the Lie algebra of G.

(iv) for i, j = 1, . . . , N − 1 the matrix commutators of the kind [Ai, [Aj , A0]] satisfy the following
relations:

[Ai, [Ai, A0]] = −A0

[Ai, [Aj , A0]] = 0 if i 6= j.

(v) the matrices {A0, A01, . . . , A0m} mutually commute.
(vi) A0 commutes with every element of {[Ai, Aj ] : i, j = 1, . . . , N − 1}.

We notice that the submanifolds N0 and Nf are integral manifolds of the derived sub-algebra
{[fi, fj] : i, j = 1, . . . ,m}. Indeed, it is easy to verify that the Lie sub-algebra is contained in the
tangent spaces of N0 and Nf ; a dimensional computation proves the claim.

Let us now consider singular extremal for the problem (6.2)-(6.3). First of all, we remark that
this problem does not admit abnormal singular extremals, thanks to property (iii). Moreover,
thanks to property (v) and from equation (2.13), we get that the reference control û(·) is identically

zero, and that the matrix Lλ̂(t) = −F0(λ̂(t))In. In particular, singular trajectories are the integral

curves of the drift f0 ; with each of these curves we associate the adjoint vector p(t) that satisfies the
differential equation ṗ(t) = −p∂qf0, with initial condition p(0) ∈ {fi, fij , f0i : i, j = 1, . . . , n−1}⊥

and 〈p(0), f0〉 = 1 (thanks to (iii), these conditions uniquely define p(0)). It is easy to prove that
the pair (p(t), q(t)) is a normal singular extremal for both Dubins and dodgem car problems, and
that it satisfies Assumptions 1–5; in particular Lλ̂(t) = −In.

Remark 6.1. We stress that even if in this problem we consider bounded controls, nevertheless
we do not need to strengthen the natural optimality conditions. Indeed, High Order Goh condition
reduces to Goh condition; moreover, when considering the second variation, the linear quadratic
problem (3.10)-(3.11)-(3.12) coincides with (3.14)-(3.13), since the tangent space to N0 is in direct
sum with the linear span of the controlled vector fields and their sum coincides with the Lie algebra
of the controlled vector fields.

We now compute explicitly the second variation. First of all, we compute the space W of the
admissible variations, that is we shall solve the Cauchy problem for ζ(t), (3.11)-(3.12).



17 Minimum-time strong optimality of a singular arc: the multi-input non involutive case

Since the reference controls are null, the reference flow reduces to Ŝt = exp(tf0). The time
derivatives of the pull-back vector fields give

ġit(q̂0) = exp (−tf0)∗

[
f0, fi

]
◦ exp(tf0)(q̂0) = exp (−tf0)∗ (f0i) ◦ exp(tf0)(q̂0)

g̈it(q̂0) = exp (−tf0)∗

[
f0, f0i

]
◦ exp(tf0)(q̂0) = exp (−tf0)∗ (f00i) ◦ exp(tf0)(q̂0) = 0,

then ġit(q̂0) = ġi0(q̂0) = f0i(q̂0) for every t ∈ [0, T̂ ] and every i = 1, . . . , N − 1, and then

git(q̂0) = fi(q̂0) + tf0i(q̂0).

The solution of (3.11)-(3.12) is then

ζ(t) =

N(N−1)/2∑

i=1

ǫifi(q̂0) +

N−1∑

i=1

∫ t

0

wi(s) ds f0i(q̂0).

From the boundary condition ζ(T̂ ) = 0 and from (v) we get that the admissible variations
(ǫ,w(·)) ∈ W satisfy the constraints

(6.4)

{∫ T̂

0 wi(t) dt = 0 i = 1, . . . , N − 1

ǫj = 0 j = 1, . . . , N(N−1)
2 ,

then ζ(t) =
∑N−1

i=1

(∫ t

0
wi(s) ds

)
f0i(q̂0). Then the quadratic form (3.14) is given by

J ′′[(0,w)]2 =
1

2

N−1∑

i=1

∫ T̂

0

wi(t)
2 dt+

N−1∑

i,j=1

∫ T̂

0

wi(t)

(∫ t

0

wj(s) ds

)
Lf0jLf0iβ(x̂0) dt.

Integrating by parts the second term and thanks to conditions (6.4) we get

J ′′[(0,w)]2 =
1

2
‖w‖2L2 +

1

2

N−1∑

i=1

(∫ T̂

0

wi(t) dt

)2

=
1

2
‖w‖2L2 .

Therefore the second variation is coercive.

Remark 6.2. In this paper we considered the second variation associated with the sub-problem with
fixed final point, and we proved that its coercivity is a sufficient condition for the optimality also
if the final condition is not fixed. In particular, this implies that sufficient optimality conditions
for Dubins’ problem are also sufficient for the optimality of the extremal in dodgem car problem.

We would like to remark that, in the example considered in this section, the extended sec-
ond variation associated with the original boundary conditions is not coercive. Indeed, the final

constraint g(T̂ ) ∈ Nf imposes the constraint ζ(T̂ ) ∈ Ŝ−1

T̂∗
(Tg(T̂ )Nf ). In particular, since Nf is

an integral manifold of the derived sub-algebra {[fi, fj] : i, j = 1, . . . , N − 1}, then Tg(T̂ )Nf =

{[fi, fj](g(T̂ )) : i, j = 1, . . . , N − 1} and, by (vi) and the fact that the reference flow is the flow

associated with the drift, it turns out that Ŝ−1

T̂∗
(Tg(T̂ )Nf ) = {[fi, fj ](g(0)) : i, j = 1, . . . , N − 1}. It

is easy to prove that any non-zero variation of the form (ǫ,w ≡ 0) with ǫi = 0 for i ≤ N − 1 is
admissible for the problem with final constraint Nf , but J

′′[(ǫ,0)]2 = 0.
Therefore, W is the maximal subspace of variations where we can require coercivity of the

extended second variation.

Appendix A. Necessity of HOGC

This section is devoted to prove that HOGC is a necessary optimality condition. To be more
precise we prove the following result.

Theorem A.1. Let U = R
m and let (ξ̂, û, T̂ ) be an optimal triple for the problem (1.1)-(1.2).

Then there exists an adjoint covector λ̂ : [0, T̂ ] → T ∗M , such that

〈λ̂(t), f(ξ̂(t))〉 = 0 ∀ f ∈ Lie(f), t ∈ [0, T̂ ].
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This theorem is already known when the reference control is smooth (see [8]); here we remove
the smoothness hypothesis. The proof follows the outlines of the so called “higher order maximum
principles” based on the “good” needle-like control variations; in particular we use the results
contained in [5, 6, 7], where most of the other conditions are also analyzed.

A necessary condition for the trajectory ξ̂ to be time optimal is that ξ̂(t) belongs to boundary

of the reachable set from q̂0 at each time t ∈ [0, T̂ ] (see for instance [7]). Therefore, it is not
difficult to see that Theorem A.1 follows, if we prove that Lieξ̂(t)(f) is a local regular tangent cone

to the reachable set at ξ̂(t), for every t ∈ [0, T̂ ] (see [5], [7, Proposition 3.3] and the references

therein). Namely, following [5], it is sufficient to prove that, for every Lebesgue point s̄ ∈ [0, T̂ ] of

the reference control û, there exists c > 0 such that cf(ξ̂(s̄)) is a g-variations of (ξ̂, û) at s̄, for all
f ∈ Lie(f).

We start by fixing some notations. We denote with S(t, t0, q0,v) the solution at time t of the
control problem (1.2) associated with the control function v, with initial condition at t0 equal to

q0. Moreover, we use the notation Ŝt,t0(q0) = Ŝ(t, t0, q0) = S(t, t0, q0, û), where û is the reference
control.

Applying the results in [5] and, in particular, putting together Definition 2.1, Definition 2.3 and

Proposition 2.4 therein, it is easy to see that if Lemma A.1 below holds true, then cf(ξ̂(s̄)) is a

right g-variation of order 2 of (ξ̂, û) at s̄. As a consequence, Lemma A.1 proves Theorem A.1.

Lemma A.1. Let s̄ ∈ [0, T̂ ] be a Lebesgue point for û. Then there exist positive numbers c,
N , ǭ such that for every f ∈ Lie(f) there exists a family of control maps {νǫ : ǫ ∈ [0, ǭ]} ⊂

L1
loc([0, T̂ ],R

m) with the following properties:

(1) νǫ(t) = û(t) outside the interval [s̄, s̄+ (Nǫ)2].

(2) There exists a neighborhood V of ξ̂(s̄) such that the map

(q, ǫ) 7→ Ŝs̄,s̄+(Nǫ)2 ◦ S(s̄+ (Nǫ)2, s̄, q,νǫ)

is continuous on V × [0, ǭ].

(3) The map ǫ 7→ Dq Ŝs̄,s̄+(Nǫ)2 ◦ S(s̄+ (Nǫ)2, s̄, q,νǫ)
∣∣
q=ξ̂(s̄)

is continuous.

(4) Ŝs̄,s̄+(Nǫ)2 ◦ S(s̄+ (Nǫ)2, s̄, ξ̂(s̄),νǫ) = ξ̂(s̄) + ǫcf(ξ̂(s̄)) + o(ǫ).

Proof. Let us consider the driftless control system

(A.1) ζ̇ =

m∑

i=1

uifi ◦ ζ,

denoting its solutions at time t, relative to the control u, and with initial condition ζ(t0) = ζ0, as

S̃(t, t0, ζ0,u).

Set a = ξ̂(s̄). We perform the proof in an adapted coordinate frame centered at a, analogous to
the frame (3.15) described in Section 3. In this frame a = 0, TaIa = R

R and Ia is a neighborhood
of 0 in R

R, that we call Ia in what follows.
If t̄ = (t̄1, . . . , t̄R) is sufficiently small, there exist a choice of R vector fields {fi1 , . . . , fiR} ∈

{f1, . . . , fm} such that the map

(A.2) t = (t1, . . . , tR) ∈ R
R 7→ exp (tRfiR) ◦ · · · ◦ exp (t1fi1) (a) ∈ Ia

has maximal rank at t = t̄ (see [21, Theorem 1]). This implies that there exist a δ > 0 and a small
neighborhood of b = exp (tRfiR) ◦ · · · ◦ exp (t1fi1) (a) in Ib such that the map (A.2) is invertible
between the ball of radius δ centered in t̄, denoted as Bδ(t̄), and the neighborhood of b.

For t ∈ R
R, let us rewrite the map (A.2) as S̃(1, 0,a,ut), for the piecewise-constant control

ut ∈ L∞([0, 1],Rm), defined, for j = 1, . . . ,m, by

utj : s ∈
[k − 1

R
,
k

R

]
7→

{
Rtk if j = ik

0 if j 6= ik
k = 1, . . . , R.
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It is clear that ‖ut‖L∞ is uniformly bounded for t ∈ Bδ(t̄). Let u0 ∈ L∞([0, 1],Rm) be the control
map which satisfies

S̃(1, 0, q,u0)) = exp (−t̄1fi1) ◦ · · · ◦ exp (−t̄RfiR) (q),

so that S̃(1, 0, b,u0)) = a and ‖u0‖L∞ = ‖ut̄‖L∞ .
For t ∈ Bδ(t̄), let us consider the control map νt ∈ L∞([0, 2],Rm) defined as

νt : s 7→

{
ut(s) ∀ s ∈ [0, 1]

u0(s− 1) ∀ s ∈ (1, 2].

By definition there exists an M > 0 such that ‖νt‖L1([0,2]) ≤ M for every t ∈ Bδ(t̄); moreover,

possibly restricting δ, the map t ∈ Bδ(t̄) 7→ S̃(2, 0,a,νt) is well defined and covers a compact
neighborhood U of a in Ia contained in the local coordinate chart.

For ǫ > 0, we define the control variation νt,ǫ ∈ L1([0, 2],Rm) as

(A.3) νt,ǫ(s) =

{
ǫ−1νt(sǫ

−2) ∀ s ∈ [0, 2ǫ2]

0 ∀ s ∈ (2ǫ2, 2],

and the control function

(A.4) ν̃t,ǫ(s) =

{
û(s̄+ s) + νt,ǫ(s) ∀ s ∈ [0, 2ǫ2]

û(s̄+ s) ∀ s ∈ [−s̄, 0) ∪ (2ǫ2, T̂ − s̄].

It is easy to see that ‖νt,ǫ‖L1 = ǫ‖νt‖L1 ≤Mǫ and that

(A.5) S̃(2ǫ2, 0,a,νt,ǫ) = ǫS̃(2, 0,a,νt).

It is clear that ν̃t,ǫ satisfies property (1) of Lemma A.1. To prove the other properties, consider

the pull-back system η(s) = Ŝ−1
s̄+s,s̄ ◦ S(s̄+ s, s̄, q, ν̃t,ǫ), which is solution of the following Cauchy

problem

(A.6)

{
η̇(s) =

∑m
i=1 ν

i
t,ǫ(s)

(
Ŝ−1
s̄+s,s̄

)
∗

fi ◦ Ŝs̄+s,s̄(η(s))

η(0) = q,

where νit,ǫ denotes the i-component of νt,ǫ. Since ‖νt,ǫ‖L1 ≤ Mǫ, possibly restricting δ, there

exist ǭ ∈ (0, 1) and a neighborhood V of a such that η(2ǫ2) belongs to U , for all q ∈ V , t ∈ Bδ(t̄)
and ǫ ∈ [0, ǭ].

Fix t ∈ Bδ(t̄). It is not difficult to verify that the map ǫ ∈ [0, ǭ] 7→ νt,ǫ is strongly continuous in
L1([0, 2],Rm); therefore, (2) and (3) of Lemma A.1 are consequences of the properties of system
(A.6), see [23].

Finally, to verify property (4), we consider the system (A.6) with initial condition η(0) = a

and the system (A.1) with the same initial condition and control map u = νt,ǫ. We get

d

ds
|η(s)− ζ(s)| ≤

m∑

i=1

|νit,ǫ(s)|
(
|(Ŝ−1

s̄+s,s̄)∗fi ◦ Ŝ(s̄+ s, s̄, η(s))− fi(ζ(s))|
)

≤

m∑

i=1

|νit,ǫ(s)|
(
|fi(η(s)) − fi(ζ(s))| + |(Ŝ−1

s̄+s,s̄)∗fi ◦ Ŝ(s̄+ s, s̄, η(s)) − fi(η(s))|
)

Possibly restricting ǭ and δ̄, η(s) and ζ(s) belong to the compact neighborhood U , therefore there
exists a constant C > 0 such that

d

ds
|η(s) − ζ(s)| ≤ C

m∑

i=1

|νit,ǫ(s)||η(s) − ζ(s)|+ Cǫ−1s.

By Gronwall inequality we obtain

|η(2ǫ2)− ζ(2ǫ2))| ≤ eCMǫ

∫ 2ǫ2

0

Cǫ−1s ds = 4CeCMǫǫ3.
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so that
η(2ǫ2) = ζ(2ǫ2) + o(ǫ).

Since ζ(2ǫ2) = ǫS̃(2, 0,a,νt) and S̃(2, 0,a,νt) covers a neighborhood of a in R
R, Lemma A.1 is

proved. �

Appendix B. Orthonormal frame bundles on canonical space forms

In this section we give more details about the lifting of Dubins’ and dodgem car problem on
Lie groups. For details, we refer to [19, 20] and references therein.

Let M ∈ {Rn, Sn,Hn}. We recall that the hyperbolic space Hn is defined as Hn = {x ∈ R
n+1 :

−x20 +
∑n

i=1 x
2
i = 1, x0 > 0}. The manifolds Rn and Sn inherit a natural Riemannian structure

from R
n and R

n+1, respectively. As for H
n, its Riemannian metric is given by the Lorentzian

quadratic form 〈x,y〉 = −x0y0 +
∑n

i=2 xiyi.
The Dubins’ problem onM can be lifted to a minimum-time problem on the bundle of positive-

oriented orthonormal frames on M , denoted with F+(M), as we show below.
For M = R

n, let us fix some positively oriented orthonormal frame {e1, . . . , en} attached
at the point q = 0 in R

n. Given a point q̃ ∈ R
n and a positively oriented orthonormal frame

{v1, . . . ,vn} attached at q̃, we can associate to them a pair (x, R) ∈ R
n× SO(Rn), where x denotes

the coordinate representation of q̃ with respect to the basis {e1, . . . , en}, and vi = Rei for every
i = 1, . . . , n. In other words, the bundle of positively oriented orthonormal frames can be identified
with the orbit through (0, {e1, . . . , en}) of the semi-direct product G = R

n
⋊ SO(Rn), that is the

group of pairs (x, R) ∈ R
n× SO(Rn) equipped with the operation (x, R) · (y, S) = (x+Ry, RS).

This construction provides a coordinate system on F+(R
n). Moreover, every element (x, R) ∈ G

can be represented by the following matrix g ∈ GLn+1(R)

g =




1 0 . . . 0
x1
... R
xn


 .

As the manifolds Sn and H
n are embedded in R

n+1, we can repeat the same construction and
find some group G such that all the elements of F+(M) are given by the orbit of G through some
fixed orthonormal frame {e1, . . . , en+1} of Rn+1 centered at some fixed point x0.

Indeed, every point q ∈ Sn can be represented with respect to the canonical basis {e1, . . . , en+1}
by a unit vector x ∈ R

n+1. The tangent space to Sn at q is given by the span of n unit vectors
(v1, . . . ,vn) ∈ R

n+1 orthogonal to x. A choice of these unit vectors determines an orthonormal
frame on the tangent space. Therefore, the bundle F+(S

n) can be regarded as the orbit of SO(n+1)
applied to the standard orthonormal frame {e1, . . . , en+1} of Rn+1, in the following way: to a frame
{v1, . . . ,vn} attached at a point q ∈ Sn there corresponds the matrix g ∈ SO(n + 1) such that
the coordinates of q are given by x = ge1 and vi = gei+1, i = 1, . . . , n, that is

g =




x1 v11 . . . v1n
...

...
xn+1 vn+1

1 . . . vn+1
n




(here xj and vji denote respectively the j-th component of the vectors x and vi).
For what concerns the hyperboloid H

n, we consider the Lorentz group SO(1,n), defined as the
group of transformation that preserve the (n+ 1)-dimensional matrix

I(1, n) =

(
−1 0 . . . 0
0 In

)
,

where In is the n-dimensional identity matrix. It can be proved as above that the bundle F+(H
n)

can be identified with the connected component SO0(1,n) of SO(1,n) that contains the group
identity.

For any M ∈ {Rn, Sn,Hn}, the tangent vector fields in F+(M) are identified with the left-
invariant vector fields on the isometry group of M , which is respectively R

n
⋊ SO(Rn) for R

n,
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SO(n + 1)/SO(n) for Sn and SO(1,n) for H
n. Therefore, we can prove that the tangent vectors

are of the form

(B.1) g




0 −ǫa1 . . . −ǫan
a1
... U
an


 ,

where ǫ = 0 for M = R
n, ǫ = 1 for M = Sn and ǫ = −1 for M = H

n, U is an anti-symmetric
matrix of dimension n, and g is the element of F+(M) where the vector is attached.

Let γ be a curve in M . When lifting γ to a curve of orthonormal frames, that is to a curve
g(t) ∈ G such that its projection on M coincides with γ, it is possible to choose the lifted curve in
such a way that the first element v1(t) of the frame attached at γ(t) is equal to γ̇(t). In particular,
this sets a1 = 1 and aj = 0 for j ≥ 2 in equation (B.1). This kind of lifting is called Darboux
frame.

There is still a freedom of choice of the form of the matrix U in equations (B.1). Systems with
the form (6.3) are called Serret-Frenet curves (see [19, 20] and references therein).
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