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a  b  s  t  r  a  c t

Two  transgenic  lines  of ‘Cantaloupe’  melon derived  from the  same  wild type genotype  were  previously

generated  using  ACC oxidase  antisense  constructs  from  melon  (pMEL1AS)  and apple  (pAP4AS).  Both  lines

yielded  fruit  with  reduced  ethylene  production  and  low  ACC oxidase  (ACCO)  expression.  ACCO antisense

fruit  also  exhibited  lower  expression  of  ACC synthase  genes,  ACCS1  and  ACCS3,  indicating  that these  genes

are  positively  regulated  by  ethylene  and  participate  in the  autocatalytic  ethylene  production  process.  In

contrast,  a higher  expression  of  ACCS5  was observed  in  antisense  lines  when compared  to the  wild type

indicating  a  negative  feedback  regulation  of  ACCS5  by  ethylene.  Fruit  of  both  transformed  lines  exhibited

delayed  ripening  and  reduction  in ester  volatile production  but differed  in  their response  to exogenous

ethylene  supply. While  postharvest  ethylene  application  fully restored  the  ripening  process  in  pMEL1AS

melon,  it  only  restored  flesh  softening  of  pAP4AS  melon  but not rind  color  change  or  aroma volatile  pro-

duction.  Up-regulation  of  lipoxygenase  pathway  associated  genes (hydroxyperoxide  lyase,  lipoxygenase,

and alcohol  acyl  transferases  1, 3 and 4) occurred  in ethylene-treated  pMEL1AS  fruit  but  not in  pAP4AS

melons.  Polygalacturonase1  gene  transcript  accumulation  increased  in  pMEL1AS  and  pAP4AS  fruit  upon

ethylene  supply.  Zeatin  and  zeatin  riboside  content of  roots  and  fruit  (rind  and flesh)  of  pAP4AS plants

were  5-fold  higher  than  the wild  type  and  pMEL1AS  counterparts.  Higher relative  transcript  accumula-

tion of  a gene  involved  in the  cytokinin  synthesis  and a gene  involved  in cytokinin  response  were  also

found  in  the  roots and  fruit  of  pAP4AS.  In  addition,  polyamines,  which  are  known  to reduce  sensitiv-

ity  to  ethylene,  remained  unchanged  in  all  fruit.  Collectively  the  results  suggest  a  putative  role for the

increased  endogenous  cytokinin  content  in  counteracting  ethylene  action  in  some  aspects  of  the  fruit

ripening  process.

1. Introduction

Melon (Cucumis melo L.) var. cantalupensis Naud cv. Vedran-
tais is  a typical climacteric fruit with a  negative relationship
between ethylene production and shelf life, and a positive relation-
ship between ethylene and aroma production. Such physiological
behavior has  been confirmed by  transformation of  melon using
1-aminocyclopropane-1-carboxylic acid  oxidase (ACCO) antisense
genes (Ayub et al., 1996; Silva et al.,  2004); Ayub et  al. (1996) uti-
lized an  ACCO antisense gene from melon (pMEL1AS), previously
isolated and characterized by  Balagué et  al. (1993), and Silva et  al.
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(2004) utilized an ACCO antisense gene from ‘Royal Gala’ apple
(pAPAS). In both cases, the wild type genotype was the same and
the transformation resulted in ACCO transcription suppression and
low ethylene production.

Among pAPAS transgenic events (Silva et  al., 2004), pAP4AS
exhibited phenotypic changes characterized by high axillary bud
growth, greenish color, and reduced leaf senescence. These features
are commonly observed in plants expressing high cytokinin con-
tent; for example, HOC Arabidopsis mutant (Catterou et  al., 2002)
and transgenic plants over expressing IPT gene (Merewitz et al.,
2011; Zhang et  al.,  2010), or plants submitted to moderate drought
stress (Cogo  et  al., 2011). Because of  these characteristics, it was
hypothesized that cytokinin content could have been affected in
pAP4AS melon.

Yellowing of  fruit rind, flesh firmness reduction, formation of  a
peduncular abscission zone, and reestablishment of  ester produc-
tion, resulting from postharvest ethylene application to pMEL1AS
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melon, indicate that these are ethylene-dependent or partially
ethylene-dependent events (Flores et  al.,  2002; Nishiyama et al.,
2007). On  the other hand, flesh color and sugar content are not
affected by ethylene (Bauchot et  al., 1998; Bower et  al., 2002;
Guis et al.,  1997; Pech et al., 2008). In  the case of pAP4AS melon,
ripening was not completely recovered with ethylene application
(0.1–400 mL L−1). Although the cause for such behavior is  not  clear,
it is  known that high cytokinin (Akhtar et al.,  1999; Chen et  al., 2001;
Cogo et al., 2011; Martineau et  al., 1995) or polyamine-containing
organs (Neily et al., 2011) are less sensitive to  ethylene.

Transgenic melon (pMEL1AS) (Ayub et  al., 1996) and trans-
genic apples (pAE12AS) expressing an  ACCO antisense (Dandekar
et al., 2004), with suppressed ethylene and ester volatile produc-
tion (Bauchot et al., 1998; Silva et  al., 2004; Yahyaoui et  al., 2002),
were able  to  restore volatile production when ethylene was exoge-
nously supplied. Ester volatile synthesis is dependent on fatty acid
metabolism involving lipoxygenase (LOX), a- and b-oxidations, fol-
lowed by reduction into aldehydes and alcohols assisted by alcohol
dehydrogenase (ADH), and alcohol acyltransferase (AAT) that cat-
alyzes the last  esterification step (Beekwilder et  al.,  2004). Flores
et al. (2002) and Yahyaoui et  al. (2002) noticed that ester volatile
synthesis is  promoted by  AAT  activation. In melon, four AAT (AAT1,
AAT2, AAT3 and AAT4) clones were isolated and characterized; with
AAT1 and AAT4 being up-regulated during ripening under ethylene
control (El-Sharkawy et  al., 2005; Yahyaoui et  al., 2002).

Thus, the aforementioned transgenic lines pMEL1AS and
pAP4AS serve as  model for studying the interaction between eth-
ylene and cytokinin in climacteric melon ripening. It is  possible
that hormone accumulation such as  cytokinin (Cogo et  al., 2011;
Merewitz et al.,  2011; Zhang et al., 2010)  and/or polyamines (Neily
et al., 2011) impact postharvest metabolism. In order to test this
hypothesis, melons with normal ripening on the vine and after har-
vest (NT), were compared to others that either develop (pMEL1AS)
or lack (pAP4AS) the classical responses to ethylene treatment.
Ripening associated chemical and physiological variables as well
as transcript accumulation of  ethylene biosynthesis, cell wall dis-
assembling, chlorophyll breakdown and ester biosynthesis genes
were monitored.

2. Materials and methods

2.1. Plant material and experiments

Non-transformed Cantaloupe melon (C. melo var.  Cantalupen-
sis, Naud cv. Vedrantais) (NT) and melon transformed with ACCO

antisense pMEL1AS (Ayub et al.,  1996) and pAP4AS (Silva  et al.,
2004)  clones were cultivated according to standard practices, leav-
ing no more than four fruit per plant, following CTNBio (Brazilian
regulatory council) biosafety regulation for greenhouse cultivation.

2.1.1. Ripening on  the vine

In  order to follow ripening evolution, ethylene, flesh firmness,
rind color, rind chlorophyll content, rind and flesh carotene con-
tent, and soluble solids content, were evaluated during ripening on
the vine at  every two days starting 34  d after anthesis (DAA) until
44 DAA  for NT melon, and 52 DAA for pMEL1AS and pAP4AS. Six
fruit were evaluated in each analysis, totaling 48  NT  fruit and 60
pMEL1AS and pAP4AS fruit each per treatment. Transcript accu-
mulation of ethylene biosynthesis genes (ACCO and ACCS) was
quantified starting at 30 DAA until 48  DAA for NT, pMEL1AS, and
pAP4AS fruit.

2.1.2. Ripening after harvest

Postharvest physiological and molecular changes were also
evaluated. NT  fruit were harvested at 36 DAA, when abscission

zone started to form and were kept at 23  ± 2 ◦C and 80 ± 5% rel-
ative humidity. pMEL1AS and pAP4AS were harvested at 44 DAA
since they had a  longer maturation cycle.  Thirty-six fruit per
treatment were kept at 23 ± 2 ◦C and 36 more were exposed to
ethylene (100 mL  L−1)  for 120  h,  in 7.2 L flasks containing a  KOH
solution (150 mL, 1 N). At every 12  h the flasks were opened to
replace the KOH solution and ethylene concentration was adjusted
to 100 mL L−1.  Postharvest ethylene production, rind color, rind
chlorophyll and carotene content, and soluble solids analyses were
performed after 1,  24, 48, 72,  96 and 120 h of  harvest in  fruit kept
at room temperature (NT, pMEL1AS and pAP4AS) and fruit kept
under ethylene (pMEL1AS and pAP4AS). Volatile compounds were
evaluated immediately after harvest and for transformed fruit the
measurement was repeated 120  h after ethylene treatment. Indi-
vidual fruit were considered biological replicates and each analysis
was performed in duplicate.

2.1.3. Cytokinin (root and fruit) and polyamine (fruit)

accumulation

Cytokinin content and relative accumulation of  genes associated
to cytokinin synthesis and response were quantified in  root tips
(sampled after the harvest of  the second fruit), in addition to fruit
rind and flesh of NT, pMEL1AS and pAP4AS plants. Upon collection
samples were washed with water containing diethylpyrocarbonate
(DEPC), frozen in liquid nitrogen and stored at −80 ◦C. Sample col-
lection for polyamine analysis followed the same protocol except
at this time only rind and flesh were collected.

2.2. Analyses

2.2.1. Ethylene

Ethylene concentration of  individual fruit was monitored on the
vine as  described by  Ayub et  al. (1996), and results expressed as
mL  L−1.  After harvest, melons were enclosed in 7.2 L flasks at room
temperature (23 ± 2 ◦C). After 30 min, 1 mL of  the headspace was
sampled and injected into a  GC (Varian 3300), as  described by  Silva
et al. (2004). Ethylene production after harvest was expressed in
nmol kg−1 s−1.

2.2.2. Firmness

Flesh firmness was determined using a  texturometer (TA.XT
plus) with a 2  mm probe, with 50% penetration at 1 mm s−1 in cut
opened fruit. Results were expressed in Newtons (N)  (Silva  et al.,
2004).

2.2.3. Soluble solids

Soluble solids content was determined using an Abbe refrac-
tometer (ATAGO-N1) and data was expressed as  percentage (Silva
et  al.,  2004).

2.2.4. Color

Color was determined using a  colorimeter (Minolta Chromome-
ter CR  300, D65, Osaka, Japan), with 8 mm aperture and standard
CIE-L*a*b*. a* and b* values were utilized. Measurements were per-
formed on opposite sides of  the fruit at the equatorial region (Silva
et  al.,  2004).

2.2.5. Titratable acidity

Determined by titration using NaOH 0.1 N. Results were
expressed in  %  of citric acid (Silva  et  al., 2004).

2.2.6. Chlorophyll content

1  g of fruit rind was ground in  5 mL acetone (80% v/v) and
left stirring for 15 min. The mixture was centrifuged (10,000 ×  g;
10 min; 4 ◦C)  and the supernatant transferred to a  25 mL volumetric
flask (this step was repeated three times), and the final volume was



             

adjusted to 25 mL with acetone (80%  v/v). Absorbance was mea-
sured at 645 nm  (chlorophyll b –  Chl a)  and 662 nm (chlorophyll a

– Chl b) and concentrations were calculated according to the formu-
las described by  Lichtenthaler (1987) (Chl a  =  12.25A662− 2.79A645;
Chl b = 21.50A645− 5.10A662), and results were expressed as chloro-
phyll per fresh weight mass, mg kg−1.

2.2.7. Carotenoid content

Total carotenoid content was determined using 10  g of  rind
or  flesh ground up in  liquid nitrogen, following the same
procedure described for the chlorophyll content evaluation.
Absorbance was  measured at 470  nm. Results were calcu-
lated using the equation described by Lichtenthaler (1987)
(C = 1000A470−  1.82Ca −  85.02Cb/198) and expressed on a fresh
weight basis as mg kg−1.

2.2.8. Ester volatiles

Ester volatile analysis followed protocol described by
Bauchot et  al.  (1998) except that here SPME carboxen-PDMS
(0.75 mm  × 1  cm,  Supelco, USA) was used as the adsorbent matrix.
All analyses were performed on a Varian 3800 gas chromato-
graph interfaced with a Shimadzu QP-50000 mass spectrometer.
Volatiles were identified by comparison to spectra of  standards and
to reference collections (NIST 98/EPA/NIH Mass Spectral database).

2.2.9. Cytokinin content

Zeatin (Z) and zeatin riboside (ZR) were separated using HPLC
and detected using an  immunoenzymatic assay according to  Zieslin
and Algom (2004) with some modifications. Rind, flesh, and root
tissues from NT, pMEL1AS, and pAP4AS melon were ground in  liq-
uid nitrogen and cytokinins were extracted with ethanol during
30 min incubation. Nine volumes of  ammonium acetate solution
(40 mM, pH 6.5) were added to the extract, which was then fil-
tered through a  0.22 mm filter membrane and purified through
a polyvynilpolypyrrolidone column. Eluted cytokinins were sepa-
rated by  HPLC (Shimadzu HPLC system) using an EC 250/4 Nucleosil
100-5 C18 column and monitored by  a UV  detector set at 254 nm.
Cytokinin containing fractions were submitted to immunochem-
ical detection using monoclonal antibodies for zeatin and zeatin
riboside. Cytokinin content was expressed as  mass of  zeatin and
zeating riboside per fresh weight mass of  fruit, mg kg−1.  Commer-
cial standards were used for calibration and the recovery obtained
was 89.87%.

2.2.10. Polyamine content

Extraction of  free polyamines was performed as  described by
Hao et al. (2005) with minor changes: 1  g of rind or flesh was
homogenized in perchloric acid  (5%,  5  mL) and extracted on ice
for 30 min. After centrifugation at 12,000 × g, 4 ◦C for 15 min, the
supernatant was transferred to another tube and kept on ice.
The pellet was extracted again with perchloric acid (5%, 1 mL)
on ice for 30 min and then centrifuged at 12,000 ×  g  and 4 ◦C for
15 min. The supernatants were combined and adjusted to  pH 7.0
with saturated Na2CO3.  Separation was performed in a �Bondapak
C18 column, 300 mm × 3.9  mm i.d., 10  mm (Waters, Milford, Mas-
sachusetts, EUA), and putrescine and spermidine were derivatized
post-column with o-phthalaldehyde and monitored using a fluo-
rescence detector (Ex: 340  nm; Em: 445  nm). Refer to  Vieira et  al.
(2007) for a  more detailed description of the analytical method.
Results were expressed on a fresh weight basis as mg kg−1.

2.2.11. Transcript accumulation

Transcript accumulation was evaluated by  quantitative PCR
(q-PCR). RNA was extracted from 0.1 g of melon flesh according
to manufacture instructions using PureLinKTM reagent (Plant RNA

Reagent –  InvitrogenTM). Total RNA was treated with DNAse I

(InvitrogenTM), and RNA quality was confirmed in  agarose gel
(2%, w/v), by  PCR, and spectroscopically quantified. cDNAs were
obtained from 2  mg of  RNA using SuperScript First-Strand System
(InvitrogenTM). Specific primers were designed for GenBank
deposited sequences using Vector NTI Advance 10 (InvitrogenTM).
Criteria for primer selection were: size  of  amplified fragment
between 100 and 230 bp; % CG bases between 40 and 60%; not
more than two C or G bases among the last  five nucleotides at
the 3′ end; annealing temperature 60–65 ◦C; according to  Applied
Biosystems guidelines. Amplicons were evaluated in agarose gel
(2%, w/v) and sequenced prior to RT-qPCR. Dissociation curves
were evaluated and only primers yielding one peak, indicating
specific amplification of the respective target gene, were utilized.
A standard curve was prepared for each gene using six cDNA
dilutions and only genes with amplification efficiency close to
100% were used. For each cDNA, ˇ-actin and 18S transcripts
were used as normalizer for each cDNA, given their consistent
transcription level in  fruit samples in  which the Ct  varied less
than 1.4. q-PCR was performed in a  7500 Real-Time PCR System
(Applied Biosystems) using fluorescent SYBR Green. Amplifica-
tion reaction was performed in 25 mL total volume containing
2 mM of  each primer, 12.5 mL of the PCR Master Mix SYBR Green,
4  ng of cDNA (1 mL), and water to make up  the total volume.
PCR conditions were: denaturing at 50 ◦C  for 2  min  and 95 ◦C
for  10 min, followed by  40 cycles of  three steps (95 ◦C for 30  s,
57 ◦C for 1  min and 72 ◦C  for 1 min), and final extension at 72 ◦C
for  5 min. Since reaction efficiency was high (close to 100%),
relative transcript accumulation was calculated using the formula
2−11Ct (Livak and Schmittgen, 2001). For relative quantification
of  ACCO and ACCS transcripts, the expression level of NT fruit at
34  DAA (on the vine) was selected as the baseline. For all the
other genes studied after harvest, NT fruit expression immedi-
ately after harvest served as baseline expression. The following
genes were selected based on specificity and efficiency: ethylene
synthesis (ACCO – F: 5′-AATCCGCACAAACCAAATCTTGTAC-3′/R:
5′AAGGATCCTAAGCTGAAAGTGAATA-3′; ACCS1 –  F: 5′-GAAAGCG
TAC GATAACGATCCG-3′/R: 5′-CGGTATAAATAGAGGCTTTCGGAA-
3′; ACCS2 –  F: 5′-GATGTCTCTC TAAATATTAA ACAG-3′/R: 5′-CATTAT
CGTTGCTAGGAAACAAGTC-3′;  ACCS3 –  F: 5′-GGTCTGGCAGA
GAATCAGCTATCA-3′/R: 5′-GTAGCGCCAGCTGTAAGGACTAT-3′;
ACCS4 – F: 5′-TATGACATAATTAAGG TCACTAAT-3′/R: 5′-TGATTAGT
GGAATATATAGGTTTTAT-3′;  ACCS5 – F: 5′-GACGCCTTTCTT
CTGCCCACCCCCTAC3′/R: 5′CAATGTGAACTTGTTTACGGATTACGA-
3′); cytokinin synthesis and response (CYP735A2 – F: 5′-CTTCAACGT
CTTTGTGTCCAAG-3′/R: 5′-CTACTCCGACCGATCTCTACAC-3′; ARR1

– F: 5′-TTCATATGCCTGACATGGACGG-3′/R: 5′-AACCGCACCGTGCG
TTACTCCC-3); flesh firmness (PG1 –  F: 5′-CACGCCTTGACT
GCTGCTGCTG-3′/R:  5′-CGGCTTGGCTCCAAGATTGACG-3′);  ester
synthesis (LOX – F: 5′-AGAAGG CACTCCTGAGTATGAG3′/R: 5′-
CTTCCAGCTTCTTTCTAAAATCCT-3′;  HPL –  F: 5′-GCATGGCGCCGCCG
CGAGCCAACT-3′/R: 5′-CAGCGCGCGCCGCCGCTTGACACT-3′; AAT1

– F: 5′-CCACAGGGGCCAGAATTACA-3′/R: 5′-TGGAGGAGGCAAGCA
TAGACTT-3′; AAT2 –  F: 5′-CTATAATTGGAGGGTGTGGAATTATC-
3′/R: 5′-AACATTTGCCCTAAATCTTTCCAT-3′; AAT3 – F: 5′-CG
CTTGATGACATGGCACAT-3′/R:  5′-GGCCTTACGGATAGCAGAGATC-
3′; AAT4 –  F: 5′-CAGTTGTACCCCCGTCGAGTA-3′/R: 5′-AATAT
CGCTTCTGATCGGAACAC-3′); and constitutive expression (ˇ-

actin –  F: 5′-GTGATGGTGTGAGTCACACTGTTC-3′/R: 5′-ACGACC
AGCAAGGTCCAAAC-3′; 18S – F: 5′-AAAACGACTCTCGGCAACGG
ATA-3′/R: 5′-ATGGTTCACGGGATTCTGCAATT-3′).

2.2.12. Experimental design and statistical analysis

All treatments had six biological replicates and two analyti-
cal duplicates, and were distributed in a completely randomized
design. qPCR analysis were also  carried out following a  block design



Table 1

Cytokinin (zeatin and zeatin riboside) content (mg  kg−1) in root, rind and flesh of

non-transformed (NT) and transformed Cantaloupe melon (Cucumis melo var. Can-

talupensis, Naud cv. Vedrantais), using ACCO pMEL1AS and pAP4AS antisense genes.

Melon Plant part Zeatin Zeatin riboside

NT

Root 4.87 ± 2.01a 5.01 ± 1.25

Rind  5.02 ± 1.25  6.23 ± 1.58

Flesh  2.52 ± 1.07 5.25 ± 2.01

pMEL1AS

Root 5.68 ± 1.89  6.69 ± 0.87

Rind  9.14 ± 2.31  8.75 ± 1.11

Flesh  4.02 ± 1.24 7.98 ± 2.01

pAP4AS

Root 7.87 ± 2.34  9.78 ± 2.12

Rind  21.01 ± 3.25  36.84 ± 3.69

Flesh  8.25 ± 2.05 30.63 ± 4.25

a Mean of six biological replicates ± standard error.

(each plate as  a  block), with six biological replicates and three ana-
lytical duplicates. Data was subjected to  an ANOVA, performed
using the F test at the 5% significance level and means of treat-
ment were compared using Tukey’s test at the 5% significance level
(p ≤  0.05), using SAS version 9.2 for Windows (SAS Institute, Cary,
NC).

3. Results

3.1. Physicochemical and physiological changes in  melon fruit during ripening on

the  vine

In order to  establish an association between physiological responses to ethylene

and  hormones levels, cytokinins zeatin (Z) and zeatin riboside (ZR) were measured in

roots,  fruit flesh  and rind (Table 1),  and polyamines spermidine and putrescine were

determined in  the  rind and flesh of  fruit (Table 2). pAP4AS fruit that stayed green

had  higher Z  and ZR content in the roots, fruit flesh and rind (Table 1). Spermidine

and  putrescine, although higher in the rind when compared to fruit flesh, showed

no  difference among genotypes (Table 2).  Theses results indicate that genetic trans-

formation of  pAP4AS that suppressed ethylene production also affected cytokinin

synthesis with no effect on  polyamine content. pAP4AS (low ethylene production

and  high cytokinin content) was then compared to pMEL1AS (low ethylene produc-

tion  and normal cytokinin content) and NT melons (high ethylene production and

normal cytokinin content) in order to  study the interaction between ethylene and

cytokinins on  the  physiological and molecular changes during ripening and under

ethylene treatment.

NT melons showed a  typical climacteric behavior, with a rise  in ethylene pro-

duction after 34 DAA and a peak at  42  DAA accompanied by  significant flesh firmness

reduction (Fig. 1B) Fig. 1.  In contrast, transgenic melon did  not present a peak of  eth-

ylene production (Fig. 1A) and showed smaller changes in flesh firmness. NT flesh

firmness reduced drastically during ripening, varying from 57  N at 34 DAA to  5 N

at 46 DAA (Fig. 1B). At 48  DAA NT fruit were completely soft. Although pMEL1AS

and  pAP4AS fruit also showed a reduction in flesh firmness, it occurred to a  lesser

extent going from 65 N at  34 DAA to  40 N at 52 DAA (Fig. 1B).  pMEL1AS and pAP4AS

stayed greener and less yellow than NT during ripening on  the vine (Fig.  1C  and

D).  NT fruit color variation during 34  DAA through 42 DAA (Fig. 1D)  was associated

with changes in the major compounds responsible for rind color: chlorophyll con-

tent  declined (Fig. 1E) and total carotene content increased (Fig. 1F). In pMEL1AS

and  pAP4AS fruit,  these compounds did  not vary as much. Flesh  carotenoid content

was  not affected by treatments (data not shown), reaching 453.5 mg kg−1 of  total

carotenoid at  harvest.

Table 2

Polyamine content (spermidine and putrescine mg kg−1), at harvest, of  the rind

and  flesh of  non-transformed (NT) and transformed Cantaloupe melon (Cucumis

melo  var. Cantalupensis, Naud cv. Vedrantais), using ACCO pMEL1AS and pAP4AS

antisense  genes.

Melon Plant part Spermidine Putrescine

UNT
Rind 2.35 ±  0.31a 7.53 ± 0.72

Flesh 1.25 ±  0.29 4.56 ± 0.29

pMEL1AS
Rind 2.06 ±  0.45 8.01 ± 0.94

Flesh 1.15 ±  0.45 4.98 ± 0.45

pAP4AS
Rind 2.23 ±  0.36 7.85 ± 0.89

Flesh 0.96 ±  0.37 5.01 ± 0.67

a Mean of six biological replicates ± standard error.

3.2. Physicochemical and physiological changes in melon fruit during ripening

after  harvest

NT melons were harvested at  36  DAA (beginning of  climacteric) and pMEL1AS

and pAP4AS at  44 DAA (when an abscission zone was observed and soluble

solids content was  approximately 16%). After harvest, ethylene production of NT

melon  increased and reached a  maximum (7.65 nmol kg−1 s−1)  at 72 h  after harvest

(Fig. 2A). pMEL1AS and pAP4AS fruit did not show a peak in ethylene production

(Fig. 2A),  and levels were 0.04 nmol kg−1 s−1 , 99.5% lower than NT fruit.

pMEL1AS and pAP4AS kept at room temperature without ethylene treatment

had a reduction in flesh firmness from 50 N to 32  N,  while fruit treated with ethylene

showed a variation going from 50  N to  9 N (Fig. 2B).  NT fruit without ethylene appli-

cation showed a reduction in flesh firmness going from 47 N to  5 N. Thus, confirming

that melon flesh softening is a physiological change accelerated by  ethylene.

Following similar ripening behavior observed on the vine (Fig. 1C), NT melon

showed degreening (color parameter “a” changing from −33 to  −19) after har-

vest (Fig. 2C). pMEL1AS and pAP4AS fruit showed significantly less rind degreening

(“a” from −38 to −33). Responses were varied upon ethylene application; pMEL1AS

showed  degreening similar to  NT fruit,  while pAP4AS fruit had only a slight change

in green color with “a” values (green/red scale) close to  −30 (Fig.  2C). In addition,

fruit  that had a  higher decrease in green color after harvest (NT and pMEL1AS +  C2H4)

also  showed higher yellowing (Fig. 2D). Rind color variation was similar between

pMEL1AS and pAP4AS during ripening on the vine  (Fig. 1C  and D), but differed

from  fruit exposed to ethylene after harvest (Fig.  2C  and D). Harvested pMEL1AS

fruit  treated with ethylene showed degreening (Fig. 2C) and yellowing (Fig. 2D),

associated with higher reduction of  chlorophyll content (Fig. 2E)  and increase in

rind carotenoid content (Fig. 2F). In  pAP4AS these changes occurred only partially,

indicating a  lower sensitivity to ethylene. Flesh  carotenoid content did not change

significantly after harvest (data not shown), staying at approximately 449 mg  kg−1 ,

despite ethylene supply. Inhibition of  ethylene production in pMEL1AS and pAP4AS

fruit resulted in 93% reduction of  ester volatile production from pMEL1AS and 87%

from  pAP4AS (Fig. 3). Reduction of  volatile production occurred for all compounds

evaluated, including compounds with  low odor values (for example, methyl propyl

acetate) and potent odorants (methyl propanoate) (Fig. 3). Five days after ethyl-

ene treatment pMEL1AS fruit restored normal ester  production. However, pAP4AS

fruit only partially restored ester volatile production reaching about 26% of the

production observed from NT fruit.

3.3. Gene transcript accumulation during ripening on the  vine

During NT fruit ripening on  the vine ACCO transcripts accumulated beyond 32

DAA, with maximum accumulation at 38  DAA (Fig. 4A), followed by subsequent

increase in ethylene production (Fig. 1A). Transformed fruit had little to no ACCO

transcripts detected, in agreement with a reduction of  more than 99.5% in ethylene

production from these fruit.

ACCS transcript accumulation varied among ACCS1 (Fig. 4B),  ACCS2 (Fig. 4C),

ACCS3 (Fig. 4D)  and ACCS5 (Fig. 4E).  ACCS4 transcripts were not  detected. ACCS1

(Fig. 4B) and ACCS3 (Fig. 4D)  had higher transcript accumulation in NT than in

pMEL1AS and pAP4AS fruit, and the  observed variations had high positive correla-

tion  with  ACCO transcript accumulation (Fig. 4A) and ethylene production (Fig. 1A).

These results indicate that these genes have strong association with ripening evo-

lution. On the other hand, high ACCS5 transcript accumulation in pMEL1AS and

pAP4AS fruit (Fig. 4E), demonstrated that this gene is  negatively regulated by eth-

ylene. ACCS2 mRNA accumulation seems to be independent of  ethylene since there

was  an  up-regulation of  ACCS2 in all three genotypes (Fig.  4C).

3.4.  Gene transcript accumulation during ripening after harvest

ACCO mRNA accumulation decreased over time when NT fruit harvested 36 DAA

were kept at  room temperature to  complete ripening (Fig. 5). This is  in agreement

with the maximum transcript accumulation observed at  36 and 38  DAA (Fig. 4A).

pMEL1AS  and pAP4AS melon even after ethylene application did not show increase

in ACCO transcript levels. As expected, PG1 transcripts of  NT fruit accumulated during

ripening and were up-regulated by ethylene in pMEL1AS earlier and more intensely

when compared to pAP4AS.

LOX, HPL, AAT1, AAT3 and AAT4, all ester biosynthesis associated genes, had ele-

vated transcript accumulation between 24 and 72  h  in NT fruit (Fig. 5). pMEL1AS

and pAP4AS fruit, however, showed considerably low transcript accumulation of

the same genes. Only AAT2 had an increased mRNA content in transformed fruit

when compared to  NT. pMEL1AS treated with  ethylene showed a general induction

of  transcript accumulation. In general, these results indicate that those fruit produc-

ing more ester volatiles (NT and pMEL1AS + C2H4) (Fig. 3) also had in common an

increased  mRNA content of  HPL, LOX, AAT1, AAT3 and AAT4.

CYP735A2, a  cytokinin hydroxylase gene, showed higher transcript accumula-

tion  in the root, and fruit of pAP4AS when compared to pMEL1AS and NT (Fig. 6).  The

highest relative expression of this gene was observed in the roots of  pAP4AS. Sim-

ilarly, ARR1 known to be a  transcription factor induced by  cytokinins, also  showed

higher transcript accumulation in the pAP4AS genotype, specially in the fruit (Fig. 6).



Fig. 1. Physicochemical and physiological changes in non-transformed (NT) and transformed Cantaloupe melon (Cucumis melo var.  Cantalupensis, Naud cv. Vedrantais) using

ACCO  pMEL1AS and pAP4AS antisense, during ripening on the vine. (A) Ethylene concentration (mL L−1); (B) flesh firmness (N); (C) rind color (-a); (D) rind color (b); (E) rind

chlorophyll content (mg kg−1); (F) rind carotenoid content (mg kg−1).  Vertical bars represent standard error of  the mean (n =  6). DAA (days after anthesis).

Fig. 2.  Physicochemical and physiological changes in non-transformed (NT) and transformed Cantaloupe melon (Cucumis melo var. Cantalupensis, Naud cv. Vedrantais)

using  ACCO pMEL1AS and pAP4AS antisense, during postharvest. Ethylene production (nmol kg−1 s−1) (A), Flesh  firmness (N) (B), Rind color (-a) (C); Rind color (b) (D); Rind

chlorophyll content (mg kg−1)(E); Rind carotenoid content (mg kg−1)  (F);  Vertical bars represent standard error of the mean (n = 6).



4. Discussion

Inhibiting ethylene production by  the transgenic ACCO antisense
approach prolongs ripening and shelf-life in fruit (Ayub et al.,  1996;
Defilippi et al., 2005; Silva et  al.,  2004). ACCO antisense pMEL1AS
and pAP4AS melon studied here also had an extended ripening
period (10 d). pMEL1AS and pAP4AS did not differ regarding mat-
uration, ethylene and ester  production, flesh firmness, rind color,
rind chlorophyll and carotenoid content, and polyamine content
during ripening on the vine. However, after harvest, upon ethyl-
ene application only pMEL1AS recovered ester volatile production
and color changes and developed a  peduncular abscission zone,
confirming previous findings (Bauchot et  al.,  1998; Guis et  al.,  1997).

Exposure of pAP4AS fruit to ethylene for 120 h did not  result
in complete green color reduction or in  rind yellowing, and ester
volatile production was only 26% of  NT. The high  cytokinin content
observed in  these fruit may be responsible for reducing their  sen-
sitivity to ethylene. This explanation is supported by studies using
Arabidopsis mutants with high cytokinin content that have slowed
senescence (Catterou et  al., 2002). In addition, plants express-
ing low levels of pheophorbide oxidase gene or cultivated under
moderate water stress have shown induced cytokinin synthesis
resulting in less sensitivity to ethylene and better preservation of
green color (Buchanan-Wollaston et  al.,  2005; Cogo et  al.,  2011;
Pruzinska et al., 2003).

Although carotenoid synthesis in  melon is thought to be
ethylene-independent (Guis et  al., 1997), in pMEL1AS rind
carotenoid content was affected by  ethylene leading to yellowing
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Fig. 3. Ester volatile production (mg kg−1)  by non-transformed (NT) and trans-

formed (using ACCO pMEL1AS and pAP4AS antisense) Cantaloupe melon (Cucumis

melo  var.  Cantalupensis, Naud cv. Vedrantais), treated with ethylene (with C2H4) and

measured 120 h  after treatment or not treated with ethylene (w/out C2H4) measured

immediately after harvest.
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Fig. 4. Relative transcript accumulation of  genes associated with ethylene biosynthesis during ripening on the vine of  non-transformed (NT) and transformed melon (Cucumis

melo  var. Cantalupensis, Naud cv. Vedrantais), using ACCO pMEL1AS and pAP4AS antisense gene. Relative transcript accumulation calculated according to the formula 2−11ct .

Cm-ACCO (A), Cm-ACCS1 (B), Cm-ACSS2 (C),  Cm-ACCS3 (D)  and Cm-ACCS5 (E) vertical bars represent standard error of  the mean (n = 6). DAA (days after anthesis).



Fig. 5.  Relative transcript accumulation of  1-aminocyclopropane-1-carboxylic oxidase (ACCO), hydroperoxide lyase (HPL), lipoxygenase (LOX), alcohol acyltransferase (AAT1,

AAT2,  AAT3, AAT4), and (PG1) genes of  Cantaloupe melon (Cucumis melo var. Cantalupensis, Naud cv. Vedrantais), non-transformed (NT) and transformed using ACCO pMEL1AS

and  pAP4AS antisense treated or not with  ethylene. Samples were collected at 0, 24, 48, 72, 96 and 120 h.  Transcript level is  described in a  0  to 10  scale. Green color on  the

left  indicates minimal accumulation, black color in the middle represents 5 times the mRNA content compared to  green and red color on the right hand corner represents a

10  fold increase in mRNA content compared to the green end of the scale.

of fruit rind. This finding indicates that carotenoid synthesis and
accumulation may  be regulated differently in  the rind and flesh of
melon fruit. In addition, high cytokinin containing fruit (pAP4AS)
did not show the same behavior, i.e., ethylene did not  stimulate
chlorophyll degradation or carotenoid accumulation in the rind.

Defilippi et al.  (2005) showed that a  reduction in  ethylene pro-
duction negatively affected ester volatile production. In addition,
Pech et al. (2008) indicated that selection of  genotypes for increased
shelf-life either by classical breeding or a  transgenic approach led
to fruit with lower aromatic potential. As previously observed by
Flores et  al. (2002) and Guis et  al. (1997), ethylene application
to pMEL1AS restored volatile production (Fig. 3). In apple, the
same aroma  re-establishment occurred in addition to the restora-
tion of  rind color and the formation of  a peduncular abscission
zone (Defilippi et al.,  2005). However, in pAP4AS fruit not all the
classical maturation events were restored with ethylene applica-
tion. This was not  expected since both pMEL1AS and pAP4AS were
transformed with ACCO antisense clones from melon and apple,
respectively, and had 94.3% homology.

In order to  correlate physiological and molecular responses,
ethylene and ester  biosynthesis and flesh firmness associated
genes were monitored. First, transformation was efficient in
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Fig. 6.  Transcript accumulation in the root, rind and flesh of  genes CYP735A2 (CS)

and ARR1 (CR) of  Cantaloupe melon (Cucumis melo var. Cantalupensis, Naud cv.

Vedrantais), transformed using ACCO pMEL1AS and pAP4AS antisense Vertical bars

represent standard error of  the mean. RQ  –  relative quantitation.

suppressing mRNAs from ACCO, which also interfered with ACCS

transcript accumulation. mRNA accumulation of ester biosynthesis
genes LOX, AAT1, AAT2, AAT3 and AAT4 was higher in NT melon than
in pMEL1AS and pAP4AS. Ethylene application induced a  rapid
increase of LOX, AAT1, AAT3 and AAT4 transcript accumulation in
pMEL1AS melons but not in  pAP4AS melons. pMEL1AS and NT
showed similar physiological responses to ethylene. It is  a general
consensus that ester volatile biosynthesis in climacteric fruit is  an
ethylene-dependent event and that induction of AAT expression is
necessary and sufficient for volatile production (El-Sharkawy et al.,
2005). For pAP4AS melon however, ethylene supply was unable to
restore ester production for both strong and low odorant intensity
compounds.

It is  known that cytokinins, mostly synthesized in the roots
and translocated to  other plant parts, are affected by ethyl-
ene and retard leaf and flower senescence (Buchanan-Wollaston
et al., 2005; Martineau et  al.,  1995). Broccoli (Chen et  al.,
2001)  and tomato (Martineau et  al.,  1995) overexpressing
cytokinins are less sensitive to ethylene. Exogenous applica-
tion of  6-benzylaminopurine to  broccoli can also  lead to these
same effects (Downs et  al.,  1997). Application of  cytokinins
(6-benzylaminopurine, 6-BAP and N-(2-chloro-pyridin-4-yl)-N′-
phenylurea, CPPU) to vegetative plant parts or  fruit of NT, pMEL1AS,
and pAP4AS did not show differences in ethylene production, firm-
ness, soluble solids, titrable acidity, carotenoids, ester volatiles,
or mRNA content except that NT and pMEL1AS plants had fruit
that were 18% larger than pAP4AS. Although the physiological
mechanism was not described, an association between cytokinin
synthesis and increased shelf-life (Zaicovski et al., 2008) or the
stay-green symptom (Akhtar et al.,  1999) has been observed. In this
study, higher cytokinin content was found in  roots, fruit rind and
flesh of  pAP4AS melon. These results are in agreement with findings
by  Martineau et al. (1995), suggesting that  a  reduction in ethylene
production beyond extending shelf-life, prolonged the vegetative
cycle of tomato promoting root emission and consequently higher
cytokinin synthesis and accumulation, reducing responsiveness to
ethylene. The examination of  transcript accumulation of two genes
involved in the cytokinin synthesis and response (CYP735A2 and
ARR1) support this hypothesis. CYP735A2 involved in cytokinin
synthesis showed high transcript accumulation in pAP4AS roots.
On the other hand, ARR1 mRNA content, a  transcription factor
affected by endogenous cytokinins, was higher in  pAP4AS fruit. The
up-regulation of  CYP735A2 in pAP4AS roots may have led to  the
observed increased hormone level, which may consequently have
affected the expression of  cytokinin ARR1 in  the fruit.



It was possible for pAP4AS transgenic melon to have higher
polyamine content due to a  higher ACC availability, but this hypoth-
esis was  not confirmed. Spermidine and putrescine content, as
expected, were higher in fruit rind than in fruit flesh. Melon trans-
formation with highly homologous clones led to lines with distinct
physiology. pMEL1AS was made to ripen with ethylene application,
allowing for  the characterization of  ethylene-dependent, indepen-
dent and partially dependent events. Unresponsiveness to  ethylene
in pAP4AS melon is likely due to the high cytokinin content, sug-
gesting an involvement of  plant hormones other than ethylene in
ripening control.

In  summary, the high cytokinin content found in pAP4AS melons
(two fold higher than pMEL1AS) affected the fruit responsiveness to
ethylene. The typical molecular and physiological changes known
as ethylene-dependent, including transcript accumulation of genes
involved in the ester synthesis, especially AAT1 and AAT4 (Lucchetta
et al., 2007; Pech et al., 2008), degreening (Golding et  al.,  1998), and
peduncular abscission zone (Guis et  al.,  1997) appear to  be affected
by higher cytokinin content. On the other hand, flesh firmness, a
partially ethylene dependent event (Nishiyama et  al., 2007) was
not affected by high cytokinin content. Based upon these results it
is proposed that fruit responses to  ethylene are partially affected
by cytokinin content.

5. Conclusions

Melons expressing an antisense ACC oxidase (pMEL1AS and
pAP4AS) gene did not develop normal ripening. In addition, the
silencing of ACCO revealed regulation of members of the ACC
synthase gene family by ethylene. ACCS1 and ACCS3 were posi-
tively regulated by  ethylene and participate in  the autocatalytic
ethylene production process, and the ACCS5 gene was negatively
regulated by ethylene. ACCS2 mRNA accumulated continuously
during ripening of NT and ethylene-suppressed fruit suggesting
that this  gene is  ethylene-independent. The pMEL1AS and pAP4AS
melons respond differentially to post-harvest ethylene treatment.
Polygalacturonase1 responded to ethylene in both pMEL1AS and
pAP4AS fruit, while genes of  the LOX pathway were stimulated by
ethylene only in  pMEL1AS fruit. As a  consequence, the pMEL1AS
restored ester volatile production. pAP4AS roots and fruit showed
high accumulation of cytokinin but not polyamines. The elevated
transcript accumulation of  genes involved in  the cytokinin synthe-
sis (CYP735A2) and response (ARR1) supports that this hormone
may be responsible for the differential physiological responses
between pMEL1AS and pAP4AS.
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