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ON HODGE THEORY OF SINGULAR PLANE CURVES

NANCY ABDALLAH

Abstract. The dimensions of the graded quotients of the cohomology of a plane
curve complement U = P2 \ C with respect to the Hodge filtration are described in
terms of simple geometrical invariants. The case of curves with ordinary singularities
is discussed in detail. We also give a precise numerical estimate for the difference
between the Hodge filtration and the pole order filtration on H2(U,C).

1. Introduction

The Hodge theory of the complement of projective hypersurfaces have received a lot
of attention, see for instance Griffiths [10] in the smooth case, Dimca-Saito [5] and
Sernesi [12] in the singular case. In this paper we consider the case of plane curves and
continue the study initiated by Dimca-Sticlaru [7] in the nodal case and the author [1]
in the case of plane curves with ordinary singularities of multiplicity up to 3.

In the second section we compute the Hodge-Deligne polynomial of a plane curve C,
the irreducible case in Proposition 2.1 and the reducible case in Proposition 2.2. Using
this we determine the Hodge-Deligne polynomial of U = P2 \ C and then we deduce
in Theorem 2.7 the dimensions of the graded quotients of H2(U) with respect to the
Hodge filtration.

In section three we consider the case of arrangements of curves having ordinary
singularities and intersecting transversely at smooth points and obtain a formula in
Theorem 3.1 generalizing the formulas obtained in [7] and in [1] (for this type of curves).
In fact, the results in [1] show that this formula holds in the more general case of plane
curves with ordinary singularities of multiplicity up to 3 (without assuming transverse
intersection).

In the forth section we show that the case of plane curves with ordinary singularities
of multiplicity up to 4 (without assuming transverse intersection) is definitely more
complicated and the formula in Theorem 3.1 has to be replaced by the formula in
Theorem 4.1 containing a correction term coming from triple points on one component
through which another component of C passes.

In the final section we give some applications, we hope of general interest, expressing
the difference between the Hodge filtration and the pole order filtration on H2(U,C) in
terms of numerical invariants easy to compute in given situations, see Theorem 5.1 and
its corollaries. One example involving a free divisor concludes this note.
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2 NANCY ABDALLAH

2. Hodge Theory of plane curve complements

For the general theory of mixed Hodge structures we refer to [2] and [14]. Recall the
definition of the Hodge-Deligne polynomial of a quasi-projective complex variety X

P (X)(u, v) =
∑
p,q

Ep,q(X)upvq

where Ep,q(X) =
∑

s(−1)shp,q(Hs
c (X)), with hp,q(Hs

c (X)) = dimGrpFGr
W
p+qH

s
c (X,C),

the mixed Hodge numbers of Hs
c (X).

This polynomial is additive with respect to constructible partitions, i.e. P (X) =
P (X \ Y ) + P (Y ) for a closed subvariety Y of X. In this section we determine P (C)
for a (reduced) plane curve C.

Suppose first that the curve C is irreducible, of degree N . Denote by ak, k = 1, ..., p
the singular points of C, and let r(C, ak) be the number of irreducible branches of the
germ (C, ak). Let ν : C̃ → C be the normalization mapping. Using the normalization
map ν and the additivity of the Hodge-Deligne polynomial, it follows that,

P (C) = P (C\(C)sing) + P ((C)sing) = P (C̃\(∪kν−1(ak)) + p =

= P (C̃)−
∑
k

P (ν−1(ak)) + p = uv − gu− gv + 1−
∑
k

(r(C, ak)− 1).

Indeed, it is known that for the smooth curve C̃, the genus g = g(C̃) is exactly the
Hodge number h1,0(C̃) = h0,1(C̃). Moreover, it is known that one has the formula

(2.1) g =
(N − 1)(N − 2)

2
−
∑
k

δ(C, ak),

relating the genus, the degree and the local singularities of C, and the δ-invariants can
be computed using the formula

(2.2) 2δ(C, ak) = µ(C, ak) + r(C, ak)− 1,

where µ(C, ak) is the Milnor number of the singularity (C, ak). For both formulas above,
see Milnor, p. 85. This proves the following result.

Proposition 2.1. With the above notation and assumptions, we have the following for
an irreducible plane curve C ⊂ P2.

(i) The Hodge-Deligne polynomial of C is given by

P (C)(u, v) = uv − gu− gv + 1−
∑
k

(r(C, ak)− 1),

with g given by the formula (2.1).
(ii) H0(C) = C is pure of type (0, 0).

(iii) H2(C) = C is pure of type (1, 1).
(iv) The mixed Hodge numbers of the MHS on H1(C) are given by

h0,0(H1(C)) =
∑
k

(r(C, ak)− 1), h1,0(H1(C)) = h0,1(H1(C)) = g.
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In particular, one has the following formulas for the first Betti number of C.

b1(C) =
∑
k

(r(C, ak)− 1) + 2g = (N − 1)(N − 2)−
∑
k

µ(C, ak).

Now we consider the case of a curve C having several irreducible components. More
precisely, let C =

⋃
j=1,r Cj be the decomposition of C as a union of irreducible compo-

nents Cj, let νj : C̃j → Cj be the normalization mappings and set gj = g(C̃j). Suppose

that the curve Cj has degree Nj, denote by ajk for k = 1, ..., pj be the singular points of

Cj and let r(Cj, a
j
k) be the number of branches of the germ (Cj, a

j
k). Then the formulas

(2.1) and (2.2) can be applied to each irreducible curve Cj, as well as Proposition 2.1.
Let A be the union of the singular sets of the curves Cj. Let B be the set of points

in C sitting on at least two distinct components Ci and Cj. For b ∈ B, let n(b) be
the number of irreducible components Cj passing through b. By definition, n(b) ≥ 2.
Moreover, note that the sets A and B are not disjoint in general, and their union is
precisely the singular set of C.

Using the additivity of Hodge-Deligne polynomials we get

P (C) = P (C1 ∪ · · · ∪ Cr) =
r∑

j=1

P (Cj) + (−1)l−1
∑

0≤i1<···<il≤r

P (Ci1 ∩ · · · ∩ Cil).

The first sum is easy to determine using Proposition 2.1.

r∑
j=1

P (Cj) = ruv −

(
r∑

j=1

gj

)
u−

(
r∑

j=1

gj

)
v + r −

∑
j,k

((r(Cj, a
j
k)− 1).

Consider now the alternated sum, where l ≥ 2. The only points of C that give a
contribution to this sum are the points in B. Now, for a point b ∈ B, its contribution
to the alternated sum is clearly given by

c(b) = −
(
n(b)

2

)
+

(
n(b)

3

)
− ...+ (−1)n(b)−1

(
n(b)

n(b)

)
= −n(b) + 1.

Proposition 2.2. With the above notation and assumptions, we have the following for
a reducible plane curve C =

⋃
j=1,r Cj.

(i) The Hodge-Deligne polynomial of C is given by

P (C)(u, v) = ruv −

(
r∑

j=1

gj

)
u−

(
r∑

j=1

gj

)
v + r−

∑
j,k

((r(Cj, a
j
k)− 1)−

∑
b∈B

(n(b)− 1).

with gj given by the formula (2.1).
(ii) H0(C) = C is pure of type (0, 0).

(iii) H2(C) = Cr is pure of type (1, 1).
(iv) The mixed Hodge numbers of the MHS on H1(C) are given by

h0,0(H1(C)) =
∑
j,k

((r(Cj, a
j
k)− 1) +

∑
b∈B

(n(b)− 1)− r + 1,
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h1,0(H1(C)) = h0,1(H1(C)) =
∑
j

gj.

In particular, one has the following formula for the first Betti number of C.

b1(C) =
∑
j,k

((r(Cj, a
j
k)− 1) +

∑
b∈B

(n(b)− 1)− r + 1 + 2
∑
j

gj.

Note that a point in the intersection A ∩ B will give a contribution to the last two
sums in the above formula for P (C).

Example 2.3. Suppose C is a nodal curve. Then for each singularity ajk ∈ A one has

ajk /∈ B (otherwise we get worse singularities than nodes) and r(ajk) = 2. Moreover,
each point b ∈ B satisfies n(b) = 2. It follows that in this case we get

P (C)(u, v) = ruv −

(
r∑

j=1

gj

)
u−

(
r∑

j=1

gj

)
v + r − n2,

with n2 the number of nodes of C. More precisely, in this case we have n2 = n′2 + n′′2,
where n′2 (resp. n′′2) is the number of nodes of C in A (resp. in B) and one clearly has

n′2 = S1 :=
∑
j,k

((r(Cj, a
j
k)− 1), n′′2 = S2 :=

∑
b∈B

(n(b)− 1).

Example 2.4. Suppose C has only nodes and ordinary triple points as singularities.
Then let n3 be the number of triple points and note that we can write as above n3 =
n′3 + n′′3, where n′3 (resp. n′′3) is the number of triple points of C in A0 = A \ B (resp.
in B). For a point a ∈ A0, the contribution to the sum S1 is 2, while the contribution
to the sum S2 is 0.

A point b ∈ B can be of two types. The first type, corresponding to the partition
3 = 1 + 1 + 1, is when b is the intersection of three components Cj, all smooth at b.
The contribution of such a point b is 0 to the sum S1 and 2 to the sum S2.

The second type, corresponding to the partition 3 = 2+1, is when b is the intersection
of two components, say Ci and Cj, such that Ci has a node at b, and Cj is smooth at
b. The contribution of such a point b is 1 to the sum S1 and 1 to the sum S2.

It follows that the contribution of any triple point to the sum S1 + S2 is equal to 2.
Since the double points in C can be treated exactly as in Example 2.3, this yields the
following.

P (C)(u, v) = ruv −

(
r∑

j=1

gj

)
u−

(
r∑

j=1

gj

)
v + r − n2 − 2n3.

When there are only triple points in B of the first type, then we obviously have the
following additional relations

S1 = n′2 + 2n′3, S2 = n′′2 + 2n′′3.

Example 2.5. Suppose C has only ordinary points of multiplicity 2, 3 and 4 as sin-
gularities. Then let n4 be the number of points of multiplicity 4 and note that we can
write as above n4 = n′4 +n′′4, where n′4 (resp. n′′4) is the number of points of multiplicity
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4 of C in A0 = A\B (resp. in B). For a point a ∈ A0 of multiplicity 4, the contribution
to the sum S1 is 3, while the contribution to the sum S2 is 0.

A point b ∈ B can be of 4 types. The first type, corresponding to the partition
4 = 1 + 1 + 1 + 1, is when b is the intersection of 4 components Cj, all smooth at b.
The contribution of such a point b is 0 to the sum S1 and 3 to the sum S2.

The second type, corresponding to the partition 4 = 2 + 1 + 1, is when b is the
intersection of 3 components, say Ci, Cj and Ck, such that Ci has a node at b, and Cj

and Ck are smooth at b. The contribution of such a point b is 1 to the sum S1 and 2 to
the sum S2.

The third type, corresponding to the partition 4 = 2 + 2, is when b is the intersection
of 2 components, say Ci and Ck, such that Ci and Ck have a node at b. The contribution
of such a point b is 2 to the sum S1 and 1 to the sum S2.

The fourth type, corresponding to the partition 4 = 3+1, is when b is the intersection
of 2 components, say Ci and Ck, such that Ci has a triple point at b, and Ck is smooth
at b. The contribution of such a point b is 2 to the sum S1 and 1 to the sum S2.

It follows that the contribution of any point of multiplicity 4 to the sum S1 + S2 is
equal to 3. Since the double and triple points in C can be treated exactly as in Example
2.4, this yields the following.

P (C)(u, v) = ruv −

(
r∑

j=1

gj

)
u−

(
r∑

j=1

gj

)
v + r − n2 − 2n3 − 3n4.

When there are only points of multiplicity 4 in B of the first type, then we obviously
have the following additional relations

S1 = n′2 + 2n′3 + 3n′′4, S2 = n′′2 + 2n′′3 + 3n′′4.

Let’s look now at the cohomology of the smooth surface U = P2\C. By the additivity
we get P (U) = P (P2)− P (C) where P (P2) = u2v2 + uv + 1. This yields the following
consequence.

Corollary 2.6.

P (U)(u, v) = u2v2 − (r − 1)uv +

(
r∑

j=1

gj

)
u+

(
r∑

j=1

gj

)
v − (r − 1)+

+
∑
j,k

((r(Cj, a
j
k)− 1) +

∑
b∈B

(n(b)− 1).

The contribution of H4
c (U,C) to P (U) is the term u2v2, and that of H3

c (U,C) is
the term −(r − 1)uv. Moreover, the dimension dimGr1FH

2(U,C) is the number of
independent classes of type (1,2), which correspond to classes of type (1, 0) in H2

c (U),
and hence to the terms in u in P (U). For both statements see the proof of Theorem
2.1 in [1]. This proves the following result.

Theorem 2.7.

dimGr1FH
2(U,C) =

r∑
j=1

gj
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and

dimGr2FH
2(U,C) =

r∑
j=1

gj +
∑
j,k

((r(Cj, a
j
k)− 1) +

∑
b∈B

(n(b)− 1)− r + 1.

In particular, all the components Cj of the curve C are rational if and only if H2(U) is
pure of type (2, 2).

Example 2.8. Suppose C has only ordinary points of multiplicity 2, 3 and 4 as sin-
gularities. Then let nk be the number of points of multiplicity k, for k = 2, 3, 4 Then
using Example 2.5, we get the formula

dimGr2FH
2(U,C) =

r∑
j=1

gj − r + 1 + n2 + 2n3 + 3n4.

3. Arrangements of transversely intersecting curves

Recall that C =
⋃

j=1,r Cj is the decomposition of C as a union of irreducible com-
ponents Cj, and the curve Cj has degree Nj. In this section we assume that any curve
Cj has only ordinary multiple points as singularities and let nk(Cj) denote the number
of ordinary points on Cj of multiplicity k. We also assume that the intersection of any
two distinct components Ci and Cj is transverse, i.e. the points in Ci ∩Cj are nodes of
the curve Ci ∪ Cj. This implies in particular that A ∩ B = ∅. The formulas (2.1) and
(2.2) yield the equality.

(3.1) gj =
(Nj − 1)(Nj − 2)

2
− 1

2

∑
k

(
µ(Cj, a

j
k) + r(C, ajk)− 1

)
,

Using this, Theorem 2.7 gives the formula

dimGr2FH
2(U,C) =

r∑
j=1

(Nj − 1)(Nj − 2)

2
− 1

2

∑
j,k

(
µ(Cj, a

j
k)− r(C, ajk) + 1

)
+

+
∑
b∈B

(n(b)− 1)− r + 1.

If ajk is an ordinary m-multiple point on the curve Cj, one has µ(Cj, a
j
k) = (m−1)2 and

hence
µ(Cj, a

j
k)− r(C, ajk) + 1 = (m− 1)(m− 2).

If we denote by n′m (resp. n′′m) the number of m-multiple points of C coming from just
one component Cj (resp. from the intersection of several components Cj), we see that
we have ∑

j,k

(
µ(Cj, a

j
k)− r(C, ajk) + 1

)
=
∑
m

(m− 1)(m− 2)n′m.

This equality explains the contribution of the points in A. Now let b ∈ B such that
n(b) = m. The number of such points is precisely n′′m. It follows that∑

b∈B

(n(b)− 1) =
∑
m

(m− 1)n′′m.
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Let 1 ≤ i < j ≤ r and consider the intersection Ci ∩ Cj. It contains exactly NiNj

points, since Ci and Cj intersects transversely. The sum S =
∑

1≤i<j≤rNiNj represents
the number of all such intersection points. Note that a point b ∈ B is counted in this
sum exactly

(
n(b)
2

)
times. This yields the following formula

2S =
∑
m

m(m− 1)n′′m.

These formulas give the following result.

Theorem 3.1. With the above assumptions and notation, one has

dimGr2FH
2(U,C) =

(N − 1)(N − 2)

2
−
∑
m

(
m− 1

2

)
nm,

with nm = n′m + n′′m the number of ordinary m-tuple points of C.

The following consequence of Theorem 2.7 and Theorem 3.1 applies in particular to
any projective line arrangement.

Corollary 3.2. Assume that C =
⋃

j=1,r Cj is the decomposition of C as a union of
irreducible components Cj, with any curve Cj having only ordinary multiple points as
singularities and being rational, i.e. gj = 0. If the intersection of any two distinct
components Ci and Cj is transverse, i.e. the points in Ci ∩ Cj are nodes of the curve
Ci ∪ Cj, then one has

dimH2(U,C) =
(N − 1)(N − 2)

2
−
∑
m

(
m− 1

2

)
nm,

with nm the number of ordinary m-tuple points of C.

4. Curves with ordinary singularities of multiplicity ≤ 4

Let C ⊂ P2 be a curve of degree N having only ordinary singular points of multiplicity
at most 4. Set U = P2 \C, and let C = ∪rj=1Cj be the decomposition of C in irreducible
components. Then,

P (C) =
r∑

j=1

P (Cj)−
∑

0≤i<j≤r

P (Ci ∩ Cj) +
∑

0≤i<j<k≤r

P (Ci ∩ Cj ∩ Ck)

−
∑

0≤i<j<k<l≤r

P (Ci ∩ Cj ∩ Ck ∩ Cl).

Let ajm denote the number of singular points of multiplicity m that belong to the com-
ponent Cj (note that a point can be singular on two components, being a node on each
of them).
Denote by bk3 (respectively bk4) the number of triple points (respectively points of multi-
plicity 4) of C that are intersection of exactly k components, for k = 2, 3 (respectively

k = 3, 4). Let b24 (respectively b̃24) be the number of singular points p of multiplicity 4



8 NANCY ABDALLAH

in C representing the intersection of exactly 2 components, such that one of which has
a triple point at p (respectively each one has a node at p). Then one has∑

0≤i<j≤r

P (Ci ∩ Cj) =
∑

0≤i<j≤r

NiNj − b23 − 3b̃24 − 2b24 − 2b34.

Indeed, a point of type b23 (resp. b24, resp. b̃24) occurs only in one intersection Ci ∩ Cj,
and has the multiplicy 2 (resp.3, resp. 4) in this intersection. A point of type b34 occurs
in 3 intersections Ci∩Cj with multiplicitities 1, 2, 2, and this accounts for the correction
term −2b34. Then one has∑

0≤i<j<k≤r

P (Ci ∩ Cj ∩ Ck) = b33 + b34 +

(
4

3

)
b44,

and ∑
0≤i<j<k<l≤r

P (Ci ∩ Cj ∩ Ck ∩ Cl) = b44.

Hence, by Proposition 2.1, we get the following.

P (C) = ruv − (
r∑

j=1

gj)u− (
r∑

j=1

gj)v −
r∑

j=1

(aj2 + 2aj3 + 3aj4)−
∑

NiNj

+ b23 + 3b̃24 + 2b24 + 3b34 + b33 + 3b44.

Therefore, as above, we obtain

P (U) = u2v2 − (r − 1)uv + 1− r + (
r∑

j=1

gj)u+ (
r∑

j=1

gj)v +
r∑

j=1

(aj2 + 3aj3 + 6aj4)

−
r∑

j=1

(aj3 + 3aj4) +
∑

NiNj − b23 − 3b̃24 − 2b24 − 3b34 − b33 − 3b44.

Finally we get

dimGr2FH
2(U) =

r∑
j=1

(gj + aj2 + 3aj3 + 6aj4 − 1) +
∑

NiNj + 1− (
r∑

j=1

aj3 + b23 + b33)

− 3(
r∑

j=1

aj4 + b̃24 + b24 + b34 + b44) + b24

=
(N − 1)(N − 2)

2
− n3 − 3n4 + b24,

with nm the number of ordinary m-tuple points of C.

Theorem 4.1. Let C ⊂ P2 be a curve of degree N having only ordinary singular points
of multiplicity at most 4. If U = P2 \ C, then one has

dimGr2FH
2(U,C) =

(N − 1)(N − 2)

2
−
∑
m=3,4

(
m− 1

2

)
nm + b24,
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with nm the number of ordinary m-tuple points of C and b24 the number of singular
points p of C which are smooth on one component Ci of C and have multiplicity 3 on
the other component Cj of C passing through p.

5. Pole order filtration versus Hodge filtration for plane curve
complements

For any hypersurface V in a projective space Pn, the cohomology groups H∗(U,C) of
the complement U = Pn \ V have a pole order filtration P k, see for instance [8], and it
is known by the work of P. Deligne, A. Dimca [3] and M. Saito [11] that one has

F kHm(U,C) ⊂ P kHm(U,C)

for any k and any m. For m = 0 and m = 1, the above inclusions are in fact equalities
(the case m = 0 is obvious and the case m = 1 follows from the equality F 1H1(U,C) =
H1(U,C)). For m = 2, we have again F kH2(U,C) = P kH2(U,C) for k = 0, 1 for
obvious reasons, but one may get strict inclusions

F 2H2(U,C) 6= P 2H2(U,C)

already in the case when V = C is a plane curve, see [5], Remark 2.5 or [4]. However,
to give such examples of plane curves was until now rather complicated. We give below
a numerical condition which tells us exactly when the above strict inclusion holds.

We need first to recall some basic definitions. Let S = ⊕rSr = C[x, y, z] be the
graded ring of polynomials with complex coefficients, where Sr is the vector space of
homogeneous polynomials of S of degree r. For a homogeneous polynomial f of degree
N , define the Jacobian ideal of f to be the ideal Jf generated in S by the partial
derivatives fx, fy, fz of f with respect to x, y and z. The graded Milnor algebra of f is
given by

M(f) = ⊕rM(f)r = S/Jf .

Note that the dimensions dimM(f)r can be easily computed in a given situation using
some computer software e.g. Singular. Now we can state the main result of this section.

Theorem 5.1. Let C : f = 0 be a reduced curve of degree N in P2 having only weighted
homogeneous singularities and let Ci for i = 1, ..., r be the irreducible components of C.
If U = P2 \ C, then

dimP 2H2(U,C)− dimF 2H2(U,C) = τ(C) +
∑
i=1,r

gi − dimM(f)2N−3,

where τ(C) is the global Tjurina number of C (that is the sum of the Tjurina numbers of
all the singularities of C) and gi is the genus of the normalization of Ci for i = 1, ..., r.

In particular we get the following result, which yields in particular a new proof for
Theorem 1.3 in [7].

Corollary 5.2. If a reduced plane curve has only nodes as singularities, then one has

dimM(f)2N−3 = τ(C) +
∑
i=1,r

gi.
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Proof. Indeed, it is known that for a nodal curve one has the equality F 2H2(U,C) =
P 2H2(U,C), see [2] or [11].

�

Note that we have the following obvious consequence of Theorem 2.7.

Corollary 5.3. For a reduced plane curve C one has

dimP 2H2(U,C)− dimF 2H2(U,C) ≤
∑
i=1,r

gi.

Proof. Indeed, Theorem 2.7 can be restated as

dimH2(U,C)− dimF 2H2(U,C) =
∑
i=1,r

gi,

in view of the equality F 1H2(U,C) = H2(U,C), see [4], proof of Corollary 1.32, page
185. �

Remark 5.4. If a reduced plane curve C has only rational irreducible components, i.e.
gi = 0 for all i, then the above inequality implies F 2H2(U,C) = P 2H2(U,C). This
result can be regarded as an improvement of a part of the Remark 2.5 in [5], where the
result is claimed only for curves with nodes and cusps as singularities.

The above discussion implies also the following result, which can be regarded as a
generalization of Theorem 4.1 (A) in [1].

Corollary 5.5. If a reduced plane curve C : f = 0 has only weighted homogeneous
singularities, then one has

0 ≤ dimM(f)2N−3 − τ(C) ≤
∑
i=1,r

gi.

In particular, if in addition the curve C has only rational irreducible components, then
one has

dimM(f)2N−3 = τ(C).

Now we give the proof of Theorem 5.1. Corollary 1.3 in [8] implies that

dimP 2H2(U,C) = dimH2(U,C) + τ(C)− dimM(f)2N−3.

On the other hand, Theorem 2.7 and the fact dimF 1H2(U,C) = H2(U,C) yield

dimF 2H2(U,C) = dimH2(U,C)−
∑
i=1,r

gi,

which clearly completes the proof of Theorem 5.1.

Example 5.6. In this example we present a free divisor C : f = 0, whose irre-
ducible components consist of 12 lines and one elliptic curve, and where F 2H2(U,C) 6=
P 2H2(U,C). Let f = xyz(x3 + y3 + z3)[(x3 + y3 + z3)3 − 27x3y3z3]. If we consider the
pencil of cubic curves (x3 + y3 + z3, xyz), then the curve C contains all the singular
fibers of this pencil, and this accounts for the 12 lines given by

xyz[(x3 + y3 + z3)3 − 27x3y3z3] = 0,
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and the elliptic curve (hence of genus 1) given by x3+y3+z3 = 0. Then C is a free divisor,
see [13] or by a direct computation using Singular, which shows that I = Jf , where I is
the saturation of the Jacobian ideal Jf , see Remark 4.7 in [6]. The direct computation
by Singular also yields τ(C) = 156 and dimM(f)2N−3 = dimM(f)27 = 156. Moreover,
applying Corollary 1.5 in [9], we see via a Singular computation that all singularities of
the curve C are weighted homogeneous. Alternatively, there are 12 nodes, 3 in each of
the 4 singular fibers of the pencils (which are triangles), and the 9 base points of the
pencil, each an ordinary point of multiplicity 5. Each of the 12 lines contains exactly 3
of these base points, and they are exactly the intersection of the elliptic curve with the
line. This description implies that there are no other singularities, in accord with

12 + 9× 16 = 156 = τ(C).

It follows from Theorem 5.1 that dimP 2H2(U,C) − dimF 2H2(U,C) = 1. Hence the
presence of a single irrational component of C leads to F 2H2(U,C) 6= P 2H2(U,C).
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