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Abstract. An s-spanner H of a graph G is a subgraph such that the
distance between any two vertices u and v in H is greater by at most a
multiplicative factor s than the distance in G. In this paper, we focus on
an extension of the concept of spanners to p-multipath distance, defined
as the smallest length of a collection of p pairwise (vertex or edge) dis-
joint paths. The notion of multipath spanners was introduced in [15, 16]
for edge (respectively, vertex) disjoint paths. This paper significantly im-
proves the stretch-size tradeoff result of the two previous papers, using
the related concept of fault-tolerant s-spanners, introduced in [6] for gen-
eral graphs. More precisely, we show that at the cost of increasing the
number of edges by a polynomial factor in p and s, it is possible to obtain
an s-multipath spanner, thereby improving on the large stretch obtained
in [15, 16].

1 Introduction

Consider a graph G = (V,E). An s-spanner H of a graph G is a spanning
subgraph that preserves distances between all pairs of nodes within a factor of
s, namely, such that δ(u, v,H) ≤ s · δ(u, v,G) for every two nodes u, v ∈ V ,
where δ(u, v,G′) for a graph G′ is the distance from u to v in G′.

Graph spanners were introduced in [21, 22] in the context of distributed
networks. It is well-known how to efficiently construct an s-spanner of size

O(n1+ 2
s+1 ) [1], for an odd integer s. Spanners have numerous applications, such

as synchronizers [22], efficient routing [7, 8, 22, 25, 26], broadcasting [14], near-
shortest path algorithms [11–13], covers [2], dominating sets [10], distance or-
acles [4, 27], or emulators and distance preservers [5]. For recent reviews on
spanners see [23, 28].

This paper considers spanners for the multipath graph length. A p-vertex
(resp., p-edge) multipath between two vertices u and v is a subgraph consisting
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of the union of p pairwise vertex-disjoint (resp., edge-disjoint) paths between u
and v (except for the endpoints). The cost of a p-vertex (resp., p-edge) multipath
between u and v is the sum of the weights of its edges.

For a weighted graph G and two vertices u and v, let δpV (u, v,G) (resp.,
δpE(u, v,G)) be the minimum cost of a p-vertex (resp., p-edge) multipath in G
between u and v if one exists, and ∞ otherwise. We say that a subgraph H is a
p-vertex (resp., p-edge) multipath s-spanner of G if δpV (u, v,H) ≤ s · δpV (u, v,G)
(resp., δpE(u, v,H) ≤ s · δpE(u, v,G)) for every two vertices u and v such that
δpV (u, v,G) �= ∞ (resp., δpE(u, v,G) �= ∞).

Our interest in the disjoint multipath graph length stems from the need for
multipath routing in networks. Using multiple paths between a pair of nodes is
an obvious way to aggregate bandwidth. Additionally, a classical approach to
quickly overcome link failures consists in pre-computing alternate paths which
are disjoint from the primary paths [18, 24, 20]. Multipath routing can be used
for traffic load balancing and for minimizing delays. It has been extensively
studied in ad hoc networks for load balancing, fault-tolerance, higher aggregate
bandwidth, diversity coding, minimizing energy consumption (see [19] for a quick
overview). Considering only a subset of links is a practical concern in link state
routing in ad hoc networks [17]. This raises the problem of computing span-
ners for the multipath graph length, a first step towards constructing compact
multipath routing schemes.

Edge-disjoint multipath spanners were first introduced in [15], where the au-
thors provided construction examples. More specifically, they showed how to

construct a p-edge multipath spanner with O(pn1+ 2
s+1 ) edges and stretch s · p.

It was also shown that the factor p in the stretch can be discarded by an ad-
hoc construction for p = 2 and s = 3. In [16] the authors proved that for
every weighted graph one can efficiently construct a p-vertex multipath spanner

with O(p2n1+ 2
s+1 ) edges, but with a large stretch for large values of p (about

(1 + p/s)s).
In this paper, we significantly improve the stretch bounds from the two previous

papers, using the related concept of fault-tolerant s-spanners, introduced in [6] for
general graphs. We show that the constructions of edge-fault tolerant s-spanners
from [6] and vertex-fault tolerant s-spanners from [9] can yield p-multipath s-
spanners, by fixing the right number of faults. Specifically, for edge multipath
spanners we reduce the stretch from s · p to s, thus deriving edge multipath span-
ners with stretch-size tradeoff close to the best known bounds for standard span-
ners. For vertex multipath spanners we reduce the stretch bound from a function
of both s and p to just s in the case of unweighted graphs, and to s · p in the case
of weighted graphs, s being the stretch of the underlying fault-tolerant spanner.

More precisely, we show the following theorems.

Theorem 1. Given a weighted graph G = (V,E) with maximal edge weight
ω̂ and minimal edge weight 1, odd integer s and integer p, one can efficiently

construct a p-edge-multipath s-spanner with O
(
sp2 · log ω̂ · n1+ 2

s+1

)
edges.
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Theorem 2. Given an unweighted graph G = (V,E), odd integer s and integer
p, one can efficiently construct a p-vertex-multipath s-spanner with

O
((

s6αp2α + (s · p)4α)n1+ 2
s+1 logn

)
edges, where α = 1− 1

s+1 .

Theorem 3. Given a weighted graph G = (V,E), odd integer s and integer p,
one can efficiently construct a p-vertex-multipath (s · p)-spanner with

O
(
(p · s)2α · n1+ 2

s+1 logn
)
edges, where α = 1− 1

s+1 .

2 Preliminaries

For a graph H and two vertices u and v, let δ(u, v,H) denote the distance
between u and v in H . A subgraph H of G is a spanner of stretch s (or, an
s-spanner) of G if δ(u, v,H) ≤ s · δ(u, v,G) for every u, v ∈ V . For a path P and
two vertices x and y on it, let P [x, y] denote the subpath of P from x to y.

A graph H is an r-vertex (resp., edge) fault-tolerant s-spanner of G if for
any set F ⊆ V (resp., F ⊆ E) of size at most r, the subgraph H \ F is an
s-spanner of G \F , where H ′ \F ′ for a subgraph H ′ and set of vertices F ′ is the
graph obtained by removing all vertices F ′ from H ′ together with their edges.
Similarly H ′ \ F ′ for a subgraph H ′ = (V ′, E′) and set of edges F ′ is the graph
(V ′, E′ \ F ′).

For a subgraph H , let cost(H) denote the sum of weights of the edges in H .
For a path P , let V (P ) be the set of vertices on P and let E(P ) be the set of

edges on P . Similarly for a set of paths S, let V (S) = ⋃
P∈S V (P ) and E(S) =⋃

P∈S E(P ). Consider two paths P1 and P2 between the same two vertices x and
y. We say that P1 and P2 are internal vertex-disjoint if V (P1)∩ V (P2) = {x, y}.
We say that a path is an s-path if it is of length at most s.

3 Edge Disjoint Multipath Spanners

In this section we show that every edge fault-tolerant spanner is an edge multi-
path spanner with the same stretch, by fixing the right number of faults.

We begin by considering the unweighted case, and show later how to proceed
with weighted graphs.

A set of paths B is called a set of edge-disjoint-s-bypasses of u and v if the
paths in B are edge-disjoint s-paths between u and v.

Consider two vertices x and y and let S = {Q1, ..., Qp} be the set of p vertex-
disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v)
such that e ∈ E(S). The next lemma shows that G does not contain “many”
edge-disjoint-s-bypasses, namely, edge disjoint s-paths between u and v, that
intersect with the other paths of S.
Lemma 1. Consider two vertices x and y and let S = {Q1, ..., Qp} be the set
of p edge-disjoint paths from x to y in G of minimal cost. Consider an edge
e = (u, v) ∈ Qi for some 1 ≤ i ≤ p. There are at most 2sp+ 2p edge-disjoint-s-
bypasses between u to v, that intersect with E(S) \ E(Qi).
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Proof: Assume towards contradiction that there are more than 2sp+ 2p edge-
disjoint-s-bypasses between u and v that intersect with E(S) \E(Qi). Let B be
the set of all these edge-disjoint-s-bypasses that intersect with E(S) \ E(Qi).
Let J be the set of indices j such that 1 ≤ j ≤ p, j �= i and E(Qj) ∩ E(B) �= ∅.
For an index j ∈ J , let ejh = (uj

h, v
j
h) be the edge in E(Qj) ∩ E(B) closest to

x in Qj , and let ejl = (uj
l , v

j
l ) be the edge in E(Qj) ∩ E(B) closest to y in Qj .

Let Mj = [uj
h, v

j
l ] for j ∈ J and let M =

⋃
j∈J Mj . We show that it is possible

to replace the set of edges E(M) with a set of edges E′ such that the resulting
graph contains p edge disjoint paths from x to y and its cost is less than cost(S)
and thus derive a contradiction to the optimality of S.

We now explain how to gradually build the set of edges E′. Roughly speaking,
the set of edges E′ is the union of some prefixes and suffixes of the paths Mj

together with some edge-disjoint-s-bypasses from B.
Let pj = ejh (resp., sj = ejl ) be the prefix (resp., suffix) ofMj . Our construction

process will gradually add edges to these prefixes and suffixes.
Let tip(pj) (resp., tip(sj)) be the edge in E(pj) ∩E(B) (resp., E(sj) ∩E(B))

closest to y on Qj (resp., to x on Qj). We examine the set of tips of the prefixes
and suffixes, and the set of edge-disjoint-s-bypasses B′ in which they appear. Let
X be the set of prefixes and suffixes, namely, X =

⋃
j∈J {pj, sj}. The set B′ is

the set of edge-disjoint-s-bypasses containing one of the edges {tip(pj), tip(sj) |
j ∈ J}. For an edge e ∈ E(B′), let B(e) be the edge-disjoint-s-bypass such
that e ∈ E(B). Note that there is exactly one such edge-disjoint-s-bypass since
the edge-disjoint-s-bypasses are disjoint. We say that a path P ∈ X is clean if
the sub-path B(tip(e))[tip(P ), u] does not contain other edges from E(X). For
an edge-disjoint-s-bypass B ∈ B′, let Pclean(B) be the path P ∈ X such that
tip(P ) ∈ E(B) and P is clean; note that there is exactly one such path.

We say that a prefix pj ∈ X (resp., suffix sj) is complete if pj ◦ sj = Mj. We
apply the following process until all paths in X are clean. Choose an unclean
incomplete path and add edges to it until it becomes clean. By adding an edge to
a prefix pj (resp., suffix sj) we mean adding the edge on Mj adjacent to tip(pj)
(resp., tip(sj)) closest to y (resp., to x).

Note that it could happen that during this process some clean path becomes
unclean. Note also that edge-disjoint-s-bypasses are only added to B′ (but never
removed). Namely, B′(t1) ⊆ B′(t2) for t1 ≤ t2, where B′(t) is the set B′ in the
t’th step of this process. To see this, note that the process does not add edges to
Pclean(B) for any B ∈ B′. Thus in any stage of this process, B contains tip(P )
for P = Pclean(B). Hence, by definition, B ∈ B′. Notice that the path Pclean(B)
itself may change (since the process might add an edge to another path and this
edge could belong to the path from tip(P ) to u).

We claim that B′ contains at most 2p edge-disjoint-s-bypasses. This follows
directly from the fact that each edge-disjoint-s-bypassB ∈ B′ contains a different
path Pclean(B) and that there are 2p paths in X .

We now show that it possible to substitute the paths in M with “cheaper”
paths and thus derive a contradiction to the optimality of S. For every incomplete
prefix pj ∈ X , let p′j be the clean subpath B(pj)[tip(pj), u]. Similarly, let s′j be
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the clean subpath B(sj)[u, tip(sj)]. For every index j ∈ J , if pj is complete then

set Q′
j = Qj, otherwise set Q′

j = Qj[x, u
j
h] ◦ pj ◦ p′j ◦ s′j ◦ sj ◦Qj[v

j
l , y].

Let D′ =
⋃

j∈J E(p′j ◦ s′j) and D =
⋃

j �=i E(Mj) \ (E(pj) ∪ E(sj)). Let S ′ =
{Q′

1, ..., Q
′
p}. Note that |E(S ′)| = |E(S)| + |D′| − |D|. It is not hard to verify

that the paths Q′
j are disjoint and each of them leads from x to y. Moreover, M

intersects with at least 2sp+2p+1 edge-disjoint-s-bypasses, and the set E(pj)∪
E(sj) intersects with at most 2p edge-disjoint-s-bypasses, thus |D| > 2sp + 1.
In addition, |D′| ≤ 2sp. We get that |D| > |D′| and thus cost(S ′) < cost(S),
contradiction.

We now show that edge fault-tolerant spanners constructed by the algorithm of
[6] are also edge multipath spanners with the same stretch, by fixing the right
number of faults. For completeness, we outline the algorithm and its properties
that are essential for our needs. The algorithm operates in q iterations. Initially,
set H = (V, ∅). In each iteration i, consider the graph Gi = (V,E \ E(H)), and
construct an s-spanner Hi for this graph, (say, using the algorithm of [1]), and
add the edges of Hi to the subgraph H .

We summarize the required properties for our purposes in the following lemma.

Lemma 2. [6] For every graph G = (V,E), odd integer s and integer q, one can
efficiently construct in polynomial time a collection of edge disjoint subgraphs
{H1, ..., Hq} with the following properties. Let H be the union of the subgraphs
{H1, ..., Hq}.
(1) The number of edges in H is at most O(q · n1+ 2

s+1 ).
(2) For every edge e = (u, v) ∈ E, either e ∈ E(H) or each Hi contains a path

from u to v of length at most s.

Theorem 4. Given a graph G = (V,E), odd integer s and integer p, one can

efficiently construct a p-multipath s-spanner with O
(
sp2 · n1+ 2

s+1

)
edges.

Proof: Construct the collection of subgraphs {H1, ..., H2sp2+2p2+p} of Lemma 2
with parameters s and q = 2sp2 + 2p2 + p. Let H be the union of all subgraphs
{H1, ..., H2sp2+2p2+p}. Consider two vertices x and y and let S = {Q1, ..., Qp} be
the set of p edge-disjoint paths from x to y in G of minimal cost. We now show
how to find a set of edge-disjoint paths S ′ = {Q′

1, ..., Q
′
p} from x to y such that

E(S ′) ⊆ E(H) and cost(Q′
i) ≤ s · cost(Qi). Let Ti = {Hj | (2sp+ 2p+ 1) · (i−

1)+1 ≤ j ≤ (2sp+2p+1) ·i} for 1 ≤ i ≤ p. Note that E(Ti) contains 2sp+2p+1
edge-disjoint paths from u to v for every edge (u, v) /∈ E(H). Moreover, the sets
E(Ti) are disjoint for 1 ≤ i ≤ p.

The path Q′
i is constructed as follows. For every edge e ∈ E(Qi) ∩E(H) add

e to Q′
i. For every edge e = (u, v) ∈ E(Qi) \ E(H), consider the set Bi with

the maximum number of edge-disjoint-s-bypasses from u to v in Ti. By Lemma
1, there are at most 2sp+ 2p edge-disjoint-s-bypasses in Bi that intersect with
E(S)\E(Qi). Since Bi contains at least 2sp+2p+1 edge-disjoint-s-bypasses, at
least one edge-disjoint-s-bypass B(e) ∈ Bi does not intersect with E(S)\E(Qi).
Add B(e) to Q′

i instead of e.
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We claim that (1) the paths Q′
i for 1 ≤ i ≤ p are edge-disjoint, and (2)

cost(S ′) ≤ s · cost(S).
To see claim (1), consider an edge e = (u, v) such that e ∈ E(Q′

i) for some
1 ≤ i ≤ p. We consider two cases. The first case is when e ∈ E(Qi). Note that
e does not appear in any E(Qj) for i �= j, since the paths in S are disjoint.
Moreover, e does not appear in any B(e′) for e′ ∈ E(Qj) for some j �= i. To see
this, recall that B(e′) does not intersect with E(S) \E(Qj). The second case is
when e ∈ B(ẽ) for some ẽ ∈ E(Qi). The edge-disjoint-s-bypass B(ẽ) does not
intersect with E(S)\E(Qi). Moreover, the edge-disjoint-s-bypass B(ẽ) does not
intersect with any B(e′) for e′ ∈ E(Qj) for some j �= i. To see this, recall that
E(B(ẽ)) ⊆ E(Ti), E(B(e′)) ⊆ E(Tj), and E(Ti)∩E(Tj) = ∅. It follows that the
paths Q′

i are edge-disjoint for 1 ≤ i ≤ p.
To see claim (2), note that for every edge e ∈ E(Qi), either e itself or an

alternative path of length s is added to E(Q′
i). We get that cost(Q′

i) ≤ s ·
cost(Qi). Claim (2) follows.

Weighted Graphs. We now show the modifications needed for weighted graphs.
Assume the minimal edge weight is 1 and let ω̂ be the maximal edge weight. We
now describe the algorithm for constructing p-edge multipath s-spanner. Initially,
set H = (V, ∅). Consider the graphs Gi = (V,Ei) such that Ei = {e ∈ E | 2i−1 ≤
ω(e) ≤ 2i} for every 1 ≤ i ≤ �log ω̂�. Construct the collection of subgraphs
Fi = {H1, ..., H4sp2+2p2+p} of Lemma 2 for parameters s and q = 4sp2 +2p2 + p
on the graph Gi. Add E(Fi) to H .

We claim that H is a p-edge multipath s-spanner. The analysis is very similar
to the unweighted case. We now outline the slight changes.

Here we call a set of paths B a set of edge-disjoint-s-bypasses of two nodes u
and v that are connected by an edge if the paths in B are edge-disjoint paths
between u and v of length at most s · ω(u, v) each.

Consider two vertices x and y and let S = {Q1, ..., Qp} be the set of p edge-
disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) ∈ Qi

for some 1 ≤ i ≤ p. Let i be the index such 2i−1 ≤ ω(e) ≤ 2i. In Lemma 1
we prove that the graph (V,E(Fi)) contains at most 4sp + 4p edge-disjoint-s-
bypasses B from u to v. Note that since the weight of the edges in the edge-
disjoint-s-bypasses B could be half the weight ω(e), we double the factor of sp2

in the number of edge-disjoint-s-bypasses. The rest of the proof of Lemma 1 is
similar to the unweighted case.

The proof of Theorem 4 is also similar to the unweighted case, where for each
edge e = (u, v) ∈ Qj for some 1 ≤ j ≤ p such that e /∈ E(H), we pick an
edge-disjoint-s-bypass from Fi that does not intersect E(S) \ E(Qj), for i such
that 2i−1 ≤ ω(e) ≤ 2i.

We thus conclude with Theorem 1.

4 Vertex Disjoint Multipath Spanners

In this section we show that every vertex fault-tolerant s-spanner is a vertex
multipath spanner with the same stretch, by fixing the right number of faults.
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Note that it is unclear how to generalize the analysis from the previous section
to vertex disjoint multipath spanners. To see this, recall that in the previous
section we consider a set S = {Q1, ..., Qp} of p vertex-disjoint paths from x to y
in G of minimal cost. We claim that every edge e ∈ E(Qi) does not contain too
many bypasses that intersect with the other paths of S. To prove this claim, we
substitute sub-paths of each Qj with some E-bypasses of the edge e = (u, v). All
these E-bypasses are edge disjoint but not vertex-disjoint. Specifically, all these
E-bypasses contain the nodes u and v. Therefore, it is unclear how to use these
E-bypasses to substitute multiple sub-paths and stay with vertex disjoint paths.
We thus present a different analysis for vertex disjoint multipath spanners at
the price of slightly increasing the size of the spanner. Moreover, our analysis for
vertex disjoint multipath spanners works only for unweighted graphs. We later
show a simple construction for weighted vertex multipath spanners with stretch
sp (instead of s).

A subgraph H is q-vertex-resilient with stretch s if for every edge e = (x, y) ∈
E, either e ∈ E(H) or H has at least q internal vertex-disjoint s-paths between
x and y. For a path P between two nodes x and y and a vertex v ∈ V (P ), let
index(v, P ) be the distance (number of hops) between x and v in P . Two paths
are said to intersect if they have at least one common vertex.

A set of paths B is called a set of vertex-disjoint-s-bypasses of u and v if the
paths in B are internal vertex-disjoint s-paths between u and v. The next lemma
shows that every vertex fault-tolerant s-spanner H has “many” vertex-disjoint-
s-bypasses between u and v for every edge e = (u, v) in E \ E(H).

Lemma 3. Every r-fault tolerant s-spanner is 
r/(s − 1)�-vertex-resilient with
stretch s.

Proof: Consider an r-fault tolerant s-spanner H . Consider an edge e = (u, v) ∈
E\E(H). We need to show thatH contains 
r/(s−1)� vertex-disjoint-s-bypasses.
Assume towards contradiction that H contains only k vertex-disjoint-s-bypasses
between u and v such that k < 
r/(s − 1)�. Let B be the set of these k vertex-
disjoint-s-bypasses. Note that V (B)\{u, v} contains at most (s−1)·k < r vertices.
Fix the set of vertices F = V (B) \ {u, v} to be faulty. Since the subgraph H is
an r-fault tolerant s-spanner, by definition H \ F contains an s-path between u
and v. Therefore H contains more than k vertex-disjoint-s-bypasses between u
and v, contradiction.

Throughout, we consider a graph G(V,E). Consider two vertices x and y and
let S = {Q1, ..., Qp} be a set of p vertex-disjoint paths from x to y in G of mini-
mal cost. Consider an edge e = (u, v) in one of the paths of S. The next lemma
shows that G does not contain “many” vertex-disjoint-s-bypasses, namely, inter-
nal vertex disjoint s-paths between u and v, that intersect with the other paths
of S.
Lemma 4. Consider two vertices x and y and let S = {Q1, ..., Qp} be a set of
p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge e =
(u, v) ∈ Qi and /∈ H for some 1 ≤ i ≤ p. There are at most 2sp(p−1)+2p(p−1)
vertex-disjoint-s-bypasses between u and v that intersect with V (S) \ V (Qi).
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Proof: Assume towards contradiction that there are more than 2sp(p − 1) +
2p(p − 1) such vertex-disjoint-s-bypasses that intersect V (S) \ V (Qi). By the
Pigeonhole principle, there exists a path Qj for some j �= i such that at least
2sp+ 2p+ 1 of these vertex-disjoint-s-bypasses intersect with Qj . Let B be the
set of all these vertex-disjoint-s-bypasses that intersect Qj . For every vertex-
disjoint-s-bypass A ∈ B, let top(A) be the earliest vertex of A on Qj , i.e., the
vertex in V (A) ∩ V (Qj) with minimal index(top(A), Qj), and let bottom(A)
be the last vertex of A on Qj , i.e., the vertex in V (A) ∩ V (Qj) with maximal
index(top(A), Qj). Let Bh be the set of p vertex-disjoint-s-bypasses A ∈ B with
minimal index(top(A), Qj) and let Bl be the set of p vertex-disjoint-s-bypasses
A ∈ B with maximal index(bottom(A), Qj). Let Ah ∈ Bh be the vertex-
disjoint-s-bypass with maximal index(top(Ah), Qj) and let qh = top(Ah). Let
Al ∈ Bl be the vertex-disjoint-s-bypass with minimal index(bottom(Al), Qj)
and let ql = bottom(Al). Let M = Qj[qh, ql] (i.e., the subpath of Qj from qh
to ql). See Figure 1 for illustration.

Fig. 1. Illustration of the sets Bh, Bl (p = 2) and the path M

We claim that (1) the subgraph H ′(V,S ′) for S ′ = (E(S) \E(M)) ∪E(Bh)∪
E(Bl) contains p vertex-disjoint paths from x to y and (2) cost(S ′) ≤ cost(S).

To prove claim (1) we use Menger’s theorem. We show that there is no set
F of p − 1 vertices such that x and y are disconnected in S ′ \ F . Consider a
set F of at most p − 1 vertices. If F fails to intersect a path Qr ∈ S, for some
r �= j, then clearly x and y are connected in S ′ \ F . So suppose the set F
disconnects every path Qr ∈ S, for r �= j, hence F contains exactly one vertex
from each path Qr ∈ S for every r �= j. In particular, F contains only one vertex
of Qi. Therefore, one of u or v is not in F . Assume without loss of generality
that u /∈ F . Note that both sets Bh and Bl contain p vertex-disjoint-s-bypasses.
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Since F contains at most p− 1 vertices, there must be a vertex-disjoint-s-bypass
Bh ∈ Bh and a vertex-disjoint-s-bypass Bl ∈ Bl whose internal vertices are
not in F . Let x1 = top(Bh) and y1 = bottom(Bl). Note that the subpaths
Qj[x, x1] and Qj[y1, y] do not contain any vertex from F , as F ∩ V (Qj) = ∅.
Moreover, the vertex-disjoint-s-bypasses Bh and Bl contain subpaths Bh[x1, u]
and Bl[u, y1] that do not intersect F . Concatenating all these paths together, we
get a path Qj[x, x1]◦Bh[x1, u]◦Bl[u, y1]◦Qj[y1, y] from x to y. We thus conclude
that H ′ contains p vertex-disjoint paths from x to y, establishing (1). Next, we
show claim (2). Recall that B contains at least 2sp + 2p + 1 vertex-disjoint-
s-bypasses where each of which intersects Qj. Moreover, each of the subpaths
Qj[x, qh] and Qj [ql, y] intersect with exactly p vertex-disjoint-s-bypasses from
B. We get that the remaining part of Qj, namely, the path M = Qj [qh, ql],
intersects with at least 2sp + 2p + 1 − 2p = 2sp + 1 vertex-disjoint-s-bypasses
from B. Thus, the length of M is at least 2sp + 1. In contrast, the number of
edges in the edge collection E(Bh)∪E(Bl) that replaced M in S is at most 2ps.
Hence, cost(S ′) < cost(S).

Finally parts (1) and (2) of the claim imply a contradiction to the optimality
of S. The lemma follows.

Let f = ((4s+ 2)(p− 1)s+ 1 + 2sp(p− 1) + 2p(p− 1)).

Lemma 5. Every f -vertex-resilient subgraph H is a p-vertex disjoint multipath
spanner.

Proof: Consider two vertices x and y and let S = {Q1, ..., Qp} be the set of
p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge
e = (u, v) ∈ E(Qi) such that e /∈ E(H) for some 1 ≤ i ≤ p. By definition of H ,
H contains f vertex-disjoint-s-bypasses between u to v. By Lemma 4, there are
at most 2sp(p − 1) + 2p(p − 1) vertex-disjoint-s-bypasses between u to v, that
intersect V (S) \ V (Qi). We thus get that there exists a set Bypasses(e) of at
least f − 2sp(p− 1)− 2p(p− 1) vertex-disjoint-s-bypasses between u to v in H ,
that do not intersect V (S) \ V (Qi). We now show how to select for each edge
e ∈ Qi for some i a vertex-disjoint-s-bypass Be ∈ Bypasses(e), such that Be is
vertex disjoint with any Be′ for any e′ ∈ Qj such that e′ /∈ H and j �= i.

Consider an edge e = (u, v) ∈ Qi such that e /∈ E(H). Let Ee be the set of
edges e′ such that e′ ∈ E(Qj) \ E(H) and V (B) ∩ V (B′) �= ∅ for some j �= i,
B ∈ Bypasses(e) and B′ ∈ Bypasses(e′). Towards proving Lemma 5, we first
prove the next auxiliary lemma.

Lemma 6. For every edge e ∈ E(S) \E(H), the set Ee contains at most (4s+
2)(p− 1) edges

Proof: Assume, towards contradiction, that |Ee| ≥ (4s+ 2)(p− 1) + 1. By the
Pigeonhole principle, there is a path Qj (for j �= i) such that |E(Qj) ∩ Ee| >
4s+2. Let eh = (uh, vh) be the edge in E(Qj)∩Ee closest to x in Qj, and let el =
(ul, vl) be the edge in E(Qj)∩Ee closest to y in Qj. Let h1, h2 ∈ Bypasses(e),
h3 ∈ Bypasses(eh) and h4 ∈ Bypasses(el) such that h1 and h3 intersect and
h2 and h4 intersect (it could be that h1 = h2). Let M be the subpath Qj [vh, vl].
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We now claim that (1) the subgraph H ′′(V,S ′′) for S ′′ = E(S) \ E(M) ∪
E(h1)∪E(h2)∪E(h3)∪E(h4) contains p vertex disjoint paths from x to y and
(2) cost(S ′′) < cost(S).

We show claim (1) by using Menger’s theorem to establish that S ′′ contains
p vertex-disjoint paths from x to y. Consider a set F of at most p− 1 vertices.
If F fails to intersect a path Qr ∈ S, for some r �= j, then clearly x and y are
connected in S ′′ \ F . So suppose the set F disconnects every path Qr ∈ S, for
r �= j, hence F contains exactly one vertex from each path Qr ∈ S for every
r �= j. Note that all vertices in h3 and h4 are not in F as h3 and h4 are disjoint
from allQr for r �= j and we assume that F contains only nodes from Qr for some
r �= j. Since F contains exactly one vertex in Qi then one of u and v are not in F ,
assume w.l.o.g. that u /∈ F . Let r3 be a vertex in h3∩h1 and let r4 be a vertex in
h4∩h2. Note that the subgraph (E(Qj)\E(M))∪E(h3) contains a path from x
to r3 that does not intersect F . Similarly, the subgraph (E(Qj)\E(M))∪E(h4)
contains a path from r4 to y that does not intersect F . The cycle h1 ∪ {(u, v)}
contains at most one vertex in F and thus there is a path from r3 to u that does
not contain vertices from F . Similarly, h1 ∪ {(u, v)} contains a path from r4 to
u that does not contain vertices from F . Concatenating all these paths together
we get a path from x to y. Claim (1) follows. Next, we show claim (2) and thus
derive a contradiction to the optimality of S. the path Qj contains at least 4s+3
edges from Ee and since the path M contains all these edges but two (eh and el),
the length of M is at least 4s+ 1. In contrast, the number of edges in the edge
collection E(h1)∪E(h2)∪E(h3)∪E(h4) that replaced M in S is at most 4s. We
thus get that cost(S ′′) < cost(S). This implies a contradiction to the optimality
of S. The lemma follows.

Consider the edges e ∈ E(S) \ E(H) one by one. For each edge e ∈ E(Qi) \
E(H), choose a vertex-disjoint-s-bypass Be that does not intersect with any
Be′ for an edge e′ that was already considered by this process and such that
e′ ∈ E(Qr) \ E(H) for some r �= i. We claim that this process never gets stuck,
namely, each time we consider an edge e ∈ E(Qi) \ E(H), there is at least one
vertex-disjoint-s-bypass in Bypasses(e) that does not intersect with the other
vertex-disjoint-s-bypasses selected so far. Let Ẽe ⊆ Ee be the set of edges that
were considered before e by this process. Note that |Ẽe| ≤ (4s + 2)(p − 1) by
Lemma 6. Moreover, note that each path Be′ for some e′ ∈ Ẽe intersects with
at most s vertex-disjoint-s-bypasses in Bypasses(e). Since there are more than
(4s+2)(p− 1)s vertex-disjoint-s-bypasses in Bypasses(e), at least one of these
vertex-disjoint-s-bypasses does not intersect with any of Be′ for e

′ ∈ Ẽe.
For each path Qr ∈ S for 1 ≤ r ≤ p, construct a path Q̃r as follows. For

every edge e ∈ E(Qr), if e ∈ E(H) then add e to Q̃r, otherwise add Be to
Q̃r. It is not hard to verify that V (Qi) ∩ V (Qj) = ∅ for any i �= j and that

each Qr is a path from x to y such that cost(Q̃r) ≤ s · cost(Qr). The lemma
follows.

The following theorem was shown by Dinitz and Krauthgamer in [9].
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Theorem 5. [9] For every graph G = (V,E), odd integer s and integer r, one
can construct in polynomial time with high probability a r-vertex fault-tolerant

s-spanner with O
(
r2−

2
s+1n1+ 2

s+1 logn
)
edges.

Combining Theorem 5, Lemma 3 and Lemma 5, we get Theorem 2.
We note that for weighted graphs, every p-vertex-resilient H with stretch s is

a p-vertex multipath (s · p)-spanner. To see this, consider two vertices x and y
and let S = {Q1, ..., Qp} be the set of p vertex-disjoint paths from x to y in G of
minimal cost. We now show how to construct a subgraph H ′(V,S ′) such that (1)
H ′ contains p vertex-disjoint paths from x to y and (2) cost(S ′) ≤ s · cost(S).

Initially, set S ′ = ∅. For every edge e = (u, v) ∈ E(Qr), if e ∈ E(H) then add
e to S ′, otherwise add to S ′ a set B(e) of V -bypasses such that |B(e)| = p and
E(B(e)) ⊆ E(H). Note that such a set B(e) exists since H is p-vertex-resilient
with stretch s.

To prove claim (1) we use Menger’s theorem. We show that there is no set F
of p− 1 vertices such that x and y are disconnected in S ′ \ F . Consider a set F
of at most p − 1 vertices. Note that, for every edge e ∈ (E(Qr) \ E(H)), there
exists a V -bypass B(e) ∈ B(e) that is internal vertex disjoint from F . To see
this, recall that B(e) contains p V -bypasses. In addition, there exists at least one
path Qr ∈ S such that V (Qr) ∩ F = ∅ for some 1 ≤ r ≤ p. Construct the path
Q′

r as follows. For every edge e = (u, v) ∈ E(Qr), if e ∈ E(H) then add e to Q′
r,

otherwise add the alternative path B(e) to Q′
r. It is not hard to verify that Q′

r

leads from x to y, E(Q′
r) ⊆ E(H), and V (Q′

r) ∩ F = ∅. Claim (1) follows.
To see claim (2), note that for every edge e ∈ E(S), either e itself or an

alternative path of length s is added to E(S ′). We get that cost(S ′) ≤ s·cost(S).
We note that Lemma 3 can be generalized to weighted graphs. This can be

done by invoking a construction for s-spanner, in the algorithm for constructing
vertex fault-tolerant spanners of Dinitz and Krauthgamer in [9], that satisfies
the following property, defined in [16]. Every edge e is either included in the
spanner H or H contains an alternative path to e of length at most s · ω(e) and
with at most s hops. The details are omitted.

Combining with Theorem 5, we conclude Theorem 3.
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