Shiri Chechik 
email: shiri.chechik@gmail.com
  
Quentin Godfroy 
email: quentin@godfroy.eu
  
David Peleg 
email: david.peleg@weizmann.ac.il
  
Multipath Spanners via Fault-Tolerant Spanners

published or not. The documents may come    

Introduction

Consider a graph G = (V, E). An s-spanner H of a graph G is a spanning subgraph that preserves distances between all pairs of nodes within a factor of s, namely, such that δ(u, v, H) ≤ s • δ(u, v, G) for every two nodes u, v ∈ V , where δ(u, v, G ) for a graph G is the distance from u to v in G .

Graph spanners were introduced in [START_REF] Peleg | Graph spanners[END_REF][START_REF] Peleg | An optimal synchronizer for the hypercube[END_REF] in the context of distributed networks. It is well-known how to efficiently construct an s-spanner of size O(n 1+ 2 s+1 ) [START_REF] Althöfer | On sparse spanners of weighted graphs[END_REF], for an odd integer s. Spanners have numerous applications, such as synchronizers [START_REF] Peleg | An optimal synchronizer for the hypercube[END_REF], efficient routing [START_REF] Cowen | Compact routing with minimum stretch[END_REF][START_REF] Cowen | Compact roundtrip routing in directed networks[END_REF][START_REF] Peleg | An optimal synchronizer for the hypercube[END_REF][START_REF] Roditty | Roundtrip spanners and roundtrip routing in directed graphs[END_REF][START_REF] Thorup | Compact routing schemes[END_REF], broadcasting [START_REF] Farley | Spanners and message distribution in networks[END_REF], nearshortest path algorithms [START_REF] Elkin | Computing almost shortest paths[END_REF][START_REF] Elkin | A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners[END_REF][START_REF] Elkin | Efficient algorithms for constructing (1 + , β)-spanners in the distributed and streaming models[END_REF], covers [START_REF] Awerbuch | Near-linear cost sequential and distributed constructions of sparse neighborhood covers[END_REF], dominating sets [START_REF] Dubhashi | Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons[END_REF], distance oracles [START_REF] Baswana | Faster algorithms for approximate distance oracles and all-pairs small stretch paths[END_REF][START_REF] Thorup | Approximate distance oracles[END_REF], or emulators and distance preservers [START_REF] Bollobás | Sparse distance preservers and additive spanners[END_REF]. For recent reviews on spanners see [START_REF] Pettie | Low Distortion Spanners[END_REF][START_REF] Woodruff | Lower bounds for additive spanners, emulators, and more[END_REF].

This paper considers spanners for the multipath graph length. A p-vertex (resp., p-edge) multipath between two vertices u and v is a subgraph consisting of the union of p pairwise vertex-disjoint (resp., edge-disjoint) paths between u and v (except for the endpoints). The cost of a p-vertex (resp., p-edge) multipath between u and v is the sum of the weights of its edges.

For a weighted graph G and two vertices u and v, let δ p V (u, v, G) (resp., δ p E (u, v, G)) be the minimum cost of a p-vertex (resp., p-edge) multipath in G between u and v if one exists, and ∞ otherwise. We say that a subgraph H is a p-vertex (resp., p-edge) multipath s-spanner of

G if δ p V (u, v, H) ≤ s • δ p V (u, v, G) (resp., δ p E (u, v, H) ≤ s • δ p E (u, v, G))
for every two vertices u and v such that δ p V (u, v, G) = ∞ (resp., δ p E (u, v, G) = ∞). Our interest in the disjoint multipath graph length stems from the need for multipath routing in networks. Using multiple paths between a pair of nodes is an obvious way to aggregate bandwidth. Additionally, a classical approach to quickly overcome link failures consists in pre-computing alternate paths which are disjoint from the primary paths [START_REF] Kushman | R-BGP: Staying connected in a connected world[END_REF][START_REF] Pan | Fast Reroute Extensions to RSVP-TE for LSP Tunnels[END_REF][START_REF] Nasipuri | Performance of multipath routing for on-demand protocols in mobile ad hoc networks[END_REF]. Multipath routing can be used for traffic load balancing and for minimizing delays. It has been extensively studied in ad hoc networks for load balancing, fault-tolerance, higher aggregate bandwidth, diversity coding, minimizing energy consumption (see [START_REF] Mueller | Multipath Routing in Mobile Ad Hoc Networks: Issues and Challenges[END_REF] for a quick overview). Considering only a subset of links is a practical concern in link state routing in ad hoc networks [START_REF] Jacquet | Remote spanners: what to know beyond neighbors[END_REF]. This raises the problem of computing spanners for the multipath graph length, a first step towards constructing compact multipath routing schemes.

Edge-disjoint multipath spanners were first introduced in [START_REF] Gavoille | Multipath Spanners[END_REF], where the authors provided construction examples. More specifically, they showed how to construct a p-edge multipath spanner with O(pn 1+ 2 s+1 ) edges and stretch s • p. It was also shown that the factor p in the stretch can be discarded by an adhoc construction for p = 2 and s = 3. In [START_REF] Gavoille | Node-Disjoint Multipath Spanners and Their Relationship with Fault-Tolerant Spanners[END_REF] the authors proved that for every weighted graph one can efficiently construct a p-vertex multipath spanner with O(p 2 n 1+ 2 s+1 ) edges, but with a large stretch for large values of p (about (1 + p/s) s ).

In this paper, we significantly improve the stretch bounds from the two previous papers, using the related concept of fault-tolerant s-spanners, introduced in [START_REF] Chechik | Fault-tolerant spanners for general graphs[END_REF] for general graphs. We show that the constructions of edge-fault tolerant s-spanners from [START_REF] Chechik | Fault-tolerant spanners for general graphs[END_REF] and vertex-fault tolerant s-spanners from [START_REF] Dinitz | Fault-Tolerant Spanners: Better and Simpler[END_REF] can yield p-multipath sspanners, by fixing the right number of faults. Specifically, for edge multipath spanners we reduce the stretch from s • p to s, thus deriving edge multipath spanners with stretch-size tradeoff close to the best known bounds for standard spanners. For vertex multipath spanners we reduce the stretch bound from a function of both s and p to just s in the case of unweighted graphs, and to s • p in the case of weighted graphs, s being the stretch of the underlying fault-tolerant spanner.

More precisely, we show the following theorems. 

Preliminaries

For a graph H and two vertices u and v, let δ(u, v, H) denote the distance between u and v in

H. A subgraph H of G is a spanner of stretch s (or, an s-spanner) of G if δ(u, v, H) ≤ s • δ(u, v, G) for every u, v ∈ V .
For a path P and two vertices x and y on it, let P [x, y] denote the subpath of P from x to y.

A graph H is an r-vertex (resp., edge) fault-tolerant s-spanner of G if for any set F ⊆ V (resp., F ⊆ E) of size at most r, the subgraph H \ F is an s-spanner of G \ F , where H \ F for a subgraph H and set of vertices F is the graph obtained by removing all vertices F from H together with their edges. Similarly H \ F for a subgraph H = (V , E ) and set of edges F is the graph (V , E \ F ).

For a subgraph H, let cost(H) denote the sum of weights of the edges in H. For a path P , let V (P ) be the set of vertices on P and let E(P ) be the set of edges on P . Similarly for a set of paths S, let V (S) = P ∈S V (P ) and E(S) = P ∈S E(P ). Consider two paths P 1 and P 2 between the same two vertices x and y. We say that P 1 and P 2 are internal vertex-disjoint if V (P 1 ) ∩ V (P 2 ) = {x, y}. We say that a path is an s-path if it is of length at most s.

Edge Disjoint Multipath Spanners

In this section we show that every edge fault-tolerant spanner is an edge multipath spanner with the same stretch, by fixing the right number of faults.

We begin by considering the unweighted case, and show later how to proceed with weighted graphs.

A set of paths B is called a set of edge-disjoint-s-bypasses of u and v if the paths in B are edge-disjoint s-paths between u and v.

Consider two vertices x and y and let S = {Q 1 , ..., Q p } be the set of p vertexdisjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) such that e ∈ E(S). The next lemma shows that G does not contain "many" edge-disjoint-s-bypasses, namely, edge disjoint s-paths between u and v, that intersect with the other paths of S. Lemma 1. Consider two vertices x and y and let S = {Q 1 , ..., Q p } be the set of p edge-disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) ∈ Q i for some 1 ≤ i ≤ p. There are at most 2sp + 2p edge-disjoint-sbypasses between u to v, that intersect with E(S) \ E(Q i ).

Proof: Assume towards contradiction that there are more than 2sp + 2p edgedisjoint-s-bypasses between u and v that intersect with E(S) \ E(Q i ). Let B be the set of all these edge-disjoint-s-bypasses that intersect with E(S) \ E(Q i ). Let J be the set of indices j such that 1 ≤ j ≤ p, j = i and E(Q j ) ∩ E(B) = ∅. For an index j ∈ J, let e j h = (u j h , v j h ) be the edge in E(Q j ) ∩ E(B) closest to x in Q j , and let e j l = (u j l , v j l ) be the edge in

E(Q j ) ∩ E(B) closest to y in Q j . Let M j = [u j h , v j l ]
for j ∈ J and let M = j∈J M j . We show that it is possible to replace the set of edges E(M ) with a set of edges E such that the resulting graph contains p edge disjoint paths from x to y and its cost is less than cost(S) and thus derive a contradiction to the optimality of S.

We now explain how to gradually build the set of edges E . Roughly speaking, the set of edges E is the union of some prefixes and suffixes of the paths M j together with some edge-disjoint-s-bypasses from B.

Let p j = e j h (resp., s j = e j l ) be the prefix (resp., suffix) of M j . Our construction process will gradually add edges to these prefixes and suffixes.

Let tip(p j ) (resp., tip(s j )) be the edge in

E(p j ) ∩ E(B) (resp., E(s j ) ∩ E(B)) closest to y on Q j (resp., to x on Q j ).
We examine the set of tips of the prefixes and suffixes, and the set of edge-disjoint-s-bypasses B in which they appear. Let X be the set of prefixes and suffixes, namely, X = j∈J {p j , s j }. The set B is the set of edge-disjoint-s-bypasses containing one of the edges {tip(p j ), tip(s j ) | j ∈ J}. For an edge e ∈ E(B ), let B(e) be the edge-disjoint-s-bypass such that e ∈ E(B). Note that there is exactly one such edge-disjoint-s-bypass since the edge-disjoint-s-bypasses are disjoint. We say that a path P ∈ X is clean if the sub-path B(tip(e))[tip(P ), u] does not contain other edges from E(X). For an edge-disjoint-s-bypass B ∈ B , let P clean (B) be the path P ∈ X such that tip(P ) ∈ E(B) and P is clean; note that there is exactly one such path.

We say that a prefix p j ∈ X (resp., suffix s j ) is complete if p j • s j = M j . We apply the following process until all paths in X are clean. Choose an unclean incomplete path and add edges to it until it becomes clean. By adding an edge to a prefix p j (resp., suffix s j ) we mean adding the edge on M j adjacent to tip(p j ) (resp., tip(s j )) closest to y (resp., to x).

Note that it could happen that during this process some clean path becomes unclean. Note also that edge-disjoint-s-bypasses are only added to B (but never removed). Namely, B (t 1 ) ⊆ B (t 2 ) for t 1 ≤ t 2 , where B (t) is the set B in the t'th step of this process. To see this, note that the process does not add edges to P clean (B) for any B ∈ B . Thus in any stage of this process, B contains tip(P ) for P = P clean (B). Hence, by definition, B ∈ B . Notice that the path P clean (B) itself may change (since the process might add an edge to another path and this edge could belong to the path from tip(P ) to u).

We claim that B contains at most 2p edge-disjoint-s-bypasses. This follows directly from the fact that each edge-disjoint-s-bypass B ∈ B contains a different path P clean (B) and that there are 2p paths in X.

We now show that it possible to substitute the paths in M with "cheaper" paths and thus derive a contradiction to the optimality of S. For every incomplete prefix p j ∈ X, let p j be the clean subpath B(p j )[tip(p j ), u]. Similarly, let s j be the clean subpath B(s j )[u, tip(s j )]. For every index j ∈ J, if p j is complete then set

Q j = Q j , otherwise set Q j = Q j [x, u j h ] • p j • p j • s j • s j • Q j [v j l , y]. Let D = j∈J E(p j • s j ) and D = j =i E(M j ) \ (E(p j ) ∪ E(s j )). Let S = {Q 1 , ..., Q p }. Note that |E(S )| = |E(S)| + |D | -|D|.
It is not hard to verify that the paths Q j are disjoint and each of them leads from x to y. Moreover, M intersects with at least 2sp + 2p + 1 edge-disjoint-s-bypasses, and the set E(p j ) ∪ E(s j ) intersects with at most 2p edge-disjoint-s-bypasses, thus |D| > 2sp + 1. In addition, |D | ≤ 2sp. We get that |D| > |D | and thus cost(S ) < cost(S), contradiction.

We now show that edge fault-tolerant spanners constructed by the algorithm of [START_REF] Chechik | Fault-tolerant spanners for general graphs[END_REF] are also edge multipath spanners with the same stretch, by fixing the right number of faults. For completeness, we outline the algorithm and its properties that are essential for our needs. The algorithm operates in q iterations. Initially, set H = (V, ∅). In each iteration i, consider the graph G i = (V, E \ E(H)), and construct an s-spanner H i for this graph, (say, using the algorithm of [START_REF] Althöfer | On sparse spanners of weighted graphs[END_REF]), and add the edges of H i to the subgraph H.

We summarize the required properties for our purposes in the following lemma.

Lemma 2. [START_REF] Chechik | Fault-tolerant spanners for general graphs[END_REF] For every graph G = (V, E), odd integer s and integer q, one can efficiently construct in polynomial time a collection of edge disjoint subgraphs {H 1 , ..., H q } with the following properties. Let H be the union of the subgraphs {H 1 , ..., H q }.

(1) The number of edges in H is at most O(q • n 1+ 

Q i ) ≤ s • cost(Q i ). Let T i = {H j | (2sp + 2p + 1) • (i - 1)+ 1 ≤ j ≤ (2sp+2p+1)•i} for 1 ≤ i ≤ p. Note that E(T i ) contains 2sp+2p+1 edge-disjoint paths from u to v for every edge (u, v) / ∈ E(H). Moreover, the sets E(T i ) are disjoint for 1 ≤ i ≤ p.
The path Q i is constructed as follows. For every edge e ∈ E(Q i ) ∩ E(H) add e to Q i . For every edge e = (u, v) ∈ E(Q i ) \ E(H), consider the set B i with the maximum number of edge-disjoint-s-bypasses from u to v in T i . By Lemma 1, there are at most 2sp + 2p edge-disjoint-s-bypasses in B i that intersect with E(S) \ E(Q i ). Since B i contains at least 2sp + 2p + 1 edge-disjoint-s-bypasses, at least one edge-disjoint-s-bypass B(e) ∈ B i does not intersect with

E(S) \ E(Q i ). Add B(e) to Q i instead of e.
We claim that (1) the paths Q i for 1 ≤ i ≤ p are edge-disjoint, and ( 2) cost(S ) ≤ s • cost(S).

To see claim [START_REF] Althöfer | On sparse spanners of weighted graphs[END_REF], consider an edge e = (u, v) such that e ∈ E(Q i ) for some 1 ≤ i ≤ p. We consider two cases. The first case is when e ∈ E(Q i ). Note that e does not appear in any E(Q j ) for i = j, since the paths in S are disjoint. Moreover, e does not appear in any B(e ) for e ∈ E(Q j ) for some j = i. To see this, recall that B(e ) does not intersect with E(S) \ E(Q j ). The second case is when e ∈ B(ẽ) for some ẽ ∈ E(Q i ). The edge-disjoint-s-bypass B(ẽ) does not intersect with E(S) \ E(Q i ). Moreover, the edge-disjoint-s-bypass B(ẽ) does not intersect with any B(e ) for e ∈ E(Q j ) for some j = i. To see this, recall that

E(B(ẽ)) ⊆ E(T i ), E(B(e )) ⊆ E(T j ), and E(T i ) ∩ E(T j ) = ∅. It follows that the paths Q i are edge-disjoint for 1 ≤ i ≤ p.
To see claim [START_REF] Awerbuch | Near-linear cost sequential and distributed constructions of sparse neighborhood covers[END_REF], note that for every edge e ∈ E(Q i ), either e itself or an alternative path of length s is added to

E(Q i ). We get that cost(Q i ) ≤ s • cost(Q i ). Claim (2) follows.
Weighted Graphs. We now show the modifications needed for weighted graphs. Assume the minimal edge weight is 1 and let ω be the maximal edge weight. We now describe the algorithm for constructing p-edge multipath s-spanner.

Initially, set H = (V, ∅). Consider the graphs G i = (V, E i ) such that E i = {e ∈ E | 2 i-1 ≤ ω(e) ≤ 2 i } for every 1 ≤ i ≤ log ω . Construct the collection of subgraphs F i = {H 1 , ..., H 4sp 2 +2p 2 +p } of Lemma 2 for parameters s and q = 4sp 2 + 2p 2 + p on the graph G i . Add E(F i ) to H.
We claim that H is a p-edge multipath s-spanner. The analysis is very similar to the unweighted case. We now outline the slight changes.

Here we call a set of paths B a set of edge-disjoint-s-bypasses of two nodes u and v that are connected by an edge if the paths in B are edge-disjoint paths between u and v of length at most s • ω(u, v) each.

Consider two vertices x and y and let S = {Q 1 , ..., Q p } be the set of p edgedisjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) ∈ Q i for some 1 ≤ i ≤ p. Let i be the index such 2 i-1 ≤ ω(e) ≤ 2 i . In Lemma 1 we prove that the graph (V, E(F i )) contains at most 4sp + 4p edge-disjoint-sbypasses B from u to v. Note that since the weight of the edges in the edgedisjoint-s-bypasses B could be half the weight ω(e), we double the factor of sp 2 in the number of edge-disjoint-s-bypasses. The rest of the proof of Lemma 1 is similar to the unweighted case.

The proof of Theorem 4 is also similar to the unweighted case, where for each edge e = (u, v) ∈ Q j for some 1 ≤ j ≤ p such that e / ∈ E(H), we pick an edge-disjoint-s-bypass from F i that does not intersect E(S) \ E(Q j ), for i such that 2 i-1 ≤ ω(e) ≤ 2 i .

We thus conclude with Theorem 1.

Vertex Disjoint Multipath Spanners

In this section we show that every vertex fault-tolerant s-spanner is a vertex multipath spanner with the same stretch, by fixing the right number of faults.

Note that it is unclear how to generalize the analysis from the previous section to vertex disjoint multipath spanners. To see this, recall that in the previous section we consider a set S = {Q 1 , ..., Q p } of p vertex-disjoint paths from x to y in G of minimal cost. We claim that every edge e ∈ E(Q i ) does not contain too many bypasses that intersect with the other paths of S. To prove this claim, we substitute sub-paths of each Q j with some E-bypasses of the edge e = (u, v). All these E-bypasses are edge disjoint but not vertex-disjoint. Specifically, all these E-bypasses contain the nodes u and v. Therefore, it is unclear how to use these E-bypasses to substitute multiple sub-paths and stay with vertex disjoint paths. We thus present a different analysis for vertex disjoint multipath spanners at the price of slightly increasing the size of the spanner. Moreover, our analysis for vertex disjoint multipath spanners works only for unweighted graphs. We later show a simple construction for weighted vertex multipath spanners with stretch sp (instead of s).

A subgraph H is q-vertex-resilient with stretch s if for every edge e = (x, y) ∈ E, either e ∈ E(H) or H has at least q internal vertex-disjoint s-paths between x and y. For a path P between two nodes x and y and a vertex v ∈ V (P ), let index(v, P ) be the distance (number of hops) between x and v in P . Two paths are said to intersect if they have at least one common vertex.

A set of paths B is called a set of vertex-disjoint-s-bypasses of u and v if the paths in B are internal vertex-disjoint s-paths between u and v. The next lemma shows that every vertex fault-tolerant s-spanner H has "many" vertex-disjoints-bypasses between u and v for every edge e = (u, v) in E \ E(H).

Lemma 3. Every r-fault tolerant s-spanner is r/(s -1) -vertex-resilient with stretch s.

Proof: Consider an r-fault tolerant s-spanner H. Consider an edge e = (u, v) ∈ E\E(H). We need to show that H contains r/(s-1) vertex-disjoint-s-bypasses. Assume towards contradiction that H contains only k vertex-disjoint-s-bypasses between u and v such that k < r/(s -1) . Let B be the set of these k vertexdisjoint-s-bypasses. Note that V (B)\{u, v} contains at most (s-1)•k < r vertices. Fix the set of vertices F = V (B) \ {u, v} to be faulty. Since the subgraph H is an r-fault tolerant s-spanner, by definition H \ F contains an s-path between u and v. Therefore H contains more than k vertex-disjoint-s-bypasses between u and v, contradiction.

Throughout, we consider a graph G(V, E). Consider two vertices x and y and let S = {Q 1 , ..., Q p } be a set of p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) in one of the paths of S. The next lemma shows that G does not contain "many" vertex-disjoint-s-bypasses, namely, internal vertex disjoint s-paths between u and v, that intersect with the other paths of S. Lemma 4. Consider two vertices x and y and let S = {Q 1 , ..., Q p } be a set of p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) ∈ Q i and / ∈ H for some 1 ≤ i ≤ p. There are at most 2sp(p -1) + 2p(p -1) vertex-disjoint-s-bypasses between u and v that intersect with V (S) \ V (Q i ).

Proof: Assume towards contradiction that there are more than 2sp(p -1) + 2p(p -1) such vertex-disjoint-s-bypasses that intersect V (S) \ V (Q i ). By the Pigeonhole principle, there exists a path Q j for some j = i such that at least 2sp + 2p + 1 of these vertex-disjoint-s-bypasses intersect with Q j . Let B be the set of all these vertex-disjoint-s-bypasses that intersect Q j . For every vertexdisjoint-s-bypass A ∈ B, let top(A) be the earliest vertex of A on Q j , i.e., the vertex in V (A) ∩ V (Q j ) with minimal index(top(A), Q j ), and let bottom(A) be the last vertex of A on Q j , i.e., the vertex in V (A) ∩ V (Q j ) with maximal index(top(A), Q j ). Let B h be the set of p vertex-disjoint-s-bypasses A ∈ B with minimal index(top(A), Q j ) and let B l be the set of p vertex-disjoint-s-bypasses A ∈ B with maximal index(bottom(A), Q j ). Let A h ∈ B h be the vertexdisjoint-s-bypass with maximal index(top(A h ), Q j ) and let q h = top(A h ). Let A l ∈ B l be the vertex-disjoint-s-bypass with minimal index(bottom(A l ), Q j ) and let q l = bottom(A l ). Let M = Q j [q h , q l ] (i.e., the subpath of Q j from q h to q l ). See Figure 1 for illustration. We claim that (1) the subgraph

H (V, S ) for S = (E(S) \ E(M )) ∪ E(B h ) ∪ E(B l ) contains p vertex-disjoint paths from x to y and (2) cost(S ) ≤ cost(S).
To prove claim (1) we use Menger's theorem. We show that there is no set F of p -1 vertices such that x and y are disconnected in S \ F . Consider a set F of at most p -1 vertices. If F fails to intersect a path Q r ∈ S, for some r = j, then clearly x and y are connected in S \ F . So suppose the set F disconnects every path Q r ∈ S, for r = j, hence F contains exactly one vertex from each path Q r ∈ S for every r = j. In particular, F contains only one vertex of Q i . Therefore, one of u or v is not in F . Assume without loss of generality that u / ∈ F . Note that both sets B h and B l contain p vertex-disjoint-s-bypasses.

Since F contains at most p -1 vertices, there must be a vertex-disjoint-s-bypass B h ∈ B h and a vertex-disjoint-s-bypass B l ∈ B l whose internal vertices are not in F . Let x 1 = top(B h ) and y 1 = bottom(B l ). Note that the subpaths

Q j [x, x 1 ] and Q j [y 1 , y] do not contain any vertex from F , as F ∩ V (Q j ) = ∅.
Moreover, the vertex-disjoint-s-bypasses B h and B l contain subpaths B h [x 1 , u] and B l [u, y 1 ] that do not intersect F . Concatenating all these paths together, we get a path

Q j [x, x 1 ]•B h [x 1 , u]•B l [u, y 1 ]•Q j [y 1
, y] from x to y. We thus conclude that H contains p vertex-disjoint paths from x to y, establishing [START_REF] Althöfer | On sparse spanners of weighted graphs[END_REF]. Next, we show claim [START_REF] Awerbuch | Near-linear cost sequential and distributed constructions of sparse neighborhood covers[END_REF]. Recall that B contains at least 2sp + 2p + 1 vertex-disjoints-bypasses where each of which intersects Q j . Moreover, each of the subpaths Q j [x, q h ] and Q j [q l , y] intersect with exactly p vertex-disjoint-s-bypasses from B. We get that the remaining part of Q j , namely, the path M = Q j [q h , q l ], intersects with at least 2sp + 2p + 1 -2p = 2sp + 1 vertex-disjoint-s-bypasses from B. Thus, the length of M is at least 2sp + 1. In contrast, the number of edges in the edge collection E(B h ) ∪ E(B l ) that replaced M in S is at most 2ps. Hence, cost(S ) < cost(S).

Finally parts ( 1) and ( 2) of the claim imply a contradiction to the optimality of S. The lemma follows.

Let f = ((4s + 2)(p -1)s + 1 + 2sp(p -1) + 2p(p -1)).

Lemma 5. Every f -vertex-resilient subgraph H is a p-vertex disjoint multipath spanner.

Proof: Consider two vertices x and y and let S = {Q 1 , ..., Q p } be the set of p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) ∈ E(Q i ) such that e / ∈ E(H) for some 1 ≤ i ≤ p. By definition of H, H contains f vertex-disjoint-s-bypasses between u to v. By Lemma 4, there are at most 2sp(p -1) + 2p(p -1) vertex-disjoint-s-bypasses between u to v, that intersect V (S) \ V (Q i ). We thus get that there exists a set Bypasses(e) of at least f -2sp(p -1) -2p(p -1) vertex-disjoint-s-bypasses between u to v in H, that do not intersect V (S) \ V (Q i ). We now show how to select for each edge e ∈ Q i for some i a vertex-disjoint-s-bypass B e ∈ Bypasses(e), such that B e is vertex disjoint with any B e for any e ∈ Q j such that e / ∈ H and j = i. Consider an edge e = (u, v) ∈ Q i such that e / ∈ E(H). Let E e be the set of edges e such that e ∈ E(Q j ) \ E(H) and V (B) ∩ V (B ) = ∅ for some j = i, B ∈ Bypasses(e) and B ∈ Bypasses(e ). Towards proving Lemma 5, we first prove the next auxiliary lemma. Lemma 6. For every edge e ∈ E(S) \ E(H), the set E e contains at most (4s + 2)(p -1) edges Proof: Assume, towards contradiction, that |E e | ≥ (4s + 2)(p -1) + 1. By the Pigeonhole principle, there is a path Q j (for j = i) such that |E(Q j ) ∩ E e | > 4s+2. Let e h = (u h , v h ) be the edge in E(Q j )∩E e closest to x in Q j , and let e l = (u l , v l ) be the edge in E(Q j ) ∩ E e closest to y in Q j . Let h 1 , h 2 ∈ Bypasses(e), h 3 ∈ Bypasses(e h ) and h 4 ∈ Bypasses(e l ) such that h 1 and h 3 intersect and h 2 and h 4 intersect (it could be that

h 1 = h 2 ). Let M be the subpath Q j [v h , v l ].
We now claim that (1) the subgraph H (V, S ) for S = E(S) \ E(M ) ∪ E(h 1 ) ∪ E(h 2 ) ∪ E(h 3 ) ∪ E(h 4 ) contains p vertex disjoint paths from x to y and (2) cost(S ) < cost(S).

We show claim (1) by using Menger's theorem to establish that S contains p vertex-disjoint paths from x to y. Consider a set F of at most p -1 vertices. If F fails to intersect a path Q r ∈ S, for some r = j, then clearly x and y are connected in S \ F . So suppose the set F disconnects every path Q r ∈ S, for r = j, hence F contains exactly one vertex from each path Q r ∈ S for every r = j. Note that all vertices in h 3 and h 4 are not in F as h 3 and h 4 are disjoint from all Q r for r = j and we assume that F contains only nodes from Q r for some r = j. Since F contains exactly one vertex in Q i then one of u and v are not in F , assume w.l.o.g. that u / ∈ F . Let r 3 be a vertex in h 3 ∩ h 1 and let r 4 be a vertex in h 4 ∩ h 2 . Note that the subgraph (E(Q j ) \ E(M )) ∪ E(h 3 ) contains a path from x to r 3 that does not intersect F . Similarly, the subgraph (E(Q j ) \ E(M )) ∪ E(h 4 ) contains a path from r 4 to y that does not intersect F . The cycle h 1 ∪ {(u, v)} contains at most one vertex in F and thus there is a path from r 3 to u that does not contain vertices from F . Similarly, h 1 ∪ {(u, v)} contains a path from r 4 to u that does not contain vertices from F . Concatenating all these paths together we get a path from x to y. Claim (1) follows. Next, we show claim (2) and thus derive a contradiction to the optimality of S. the path Q j contains at least 4s+3 edges from E e and since the path M contains all these edges but two (e h and e l ), the length of M is at least 4s + 1. In contrast, the number of edges in the edge collection E(h 1 ) ∪ E(h 2 ) ∪ E(h 3 ) ∪ E(h 4 ) that replaced M in S is at most 4s. We thus get that cost(S ) < cost(S). This implies a contradiction to the optimality of S. The lemma follows.

Consider the edges e ∈ E(S) \ E(H) one by one. For each edge e ∈ E(Q i ) \ E(H), choose a vertex-disjoint-s-bypass B e that does not intersect with any B e for an edge e that was already considered by this process and such that e ∈ E(Q r ) \ E(H) for some r = i. We claim that this process never gets stuck, namely, each time we consider an edge e ∈ E(Q i ) \ E(H), there is at least one vertex-disjoint-s-bypass in Bypasses(e) that does not intersect with the other vertex-disjoint-s-bypasses selected so far. Let Ẽe ⊆ E e be the set of edges that were considered before e by this process. Note that | Ẽe | ≤ (4s + 2)(p -1) by Lemma 6. Moreover, note that each path B e for some e ∈ Ẽe intersects with at most s vertex-disjoint-s-bypasses in Bypasses(e). Since there are more than (4s + 2)(p -1)s vertex-disjoint-s-bypasses in Bypasses(e), at least one of these vertex-disjoint-s-bypasses does not intersect with any of B e for e ∈ Ẽe .

For each path Q r ∈ S for 1 ≤ r ≤ p, construct a path Qr as follows. For every edge e ∈ E(Q r ), if e ∈ E(H) then add e to Qr , otherwise add B e to Qr . It is not hard to verify that V (Q i ) ∩ V (Q j ) = ∅ for any i = j and that each Q r is a path from x to y such that cost( Qr ) ≤ s • cost(Q r ). The lemma follows.

The following theorem was shown by Dinitz and Krauthgamer in [START_REF] Dinitz | Fault-Tolerant Spanners: Better and Simpler[END_REF]. Theorem 5. [START_REF] Dinitz | Fault-Tolerant Spanners: Better and Simpler[END_REF] For every graph G = (V, E), odd integer s and integer r, one can construct in polynomial time with high probability a r-vertex fault-tolerant s-spanner with O r 2-2 s+1 n 1+ 2 s+1 log n edges.

Combining Theorem 5, Lemma 3 and Lemma 5, we get Theorem 2. We note that for weighted graphs, every p-vertex-resilient H with stretch s is a p-vertex multipath (s • p)-spanner. To see this, consider two vertices x and y and let S = {Q 1 , ..., Q p } be the set of p vertex-disjoint paths from x to y in G of minimal cost. We now show how to construct a subgraph H (V, S ) such that (1) H contains p vertex-disjoint paths from x to y and ( 2) cost(S ) ≤ s • cost(S).

Initially, set S = ∅. For every edge e = (u, v) ∈ E(Q r ), if e ∈ E(H) then add e to S , otherwise add to S a set B(e) of V -bypasses such that |B(e)| = p and E(B(e)) ⊆ E(H). Note that such a set B(e) exists since H is p-vertex-resilient with stretch s.

To prove claim (1) we use Menger's theorem. We show that there is no set F of p -1 vertices such that x and y are disconnected in S \ F . Consider a set F of at most p -1 vertices. Note that, for every edge e ∈ (E(Q r ) \ E(H)), there exists a V -bypass B(e) ∈ B(e) that is internal vertex disjoint from F . To see this, recall that B(e) contains p V -bypasses. In addition, there exists at least one path Q r ∈ S such that V (Q r ) ∩ F = ∅ for some 1 ≤ r ≤ p. Construct the path Q r as follows. For every edge e = (u, v) ∈ E(Q r ), if e ∈ E(H) then add e to Q r , otherwise add the alternative path B(e) to Q r . It is not hard to verify that Q r leads from x to y, E(Q r ) ⊆ E(H), and V (Q r ) ∩ F = ∅. Claim (1) follows.

To see claim [START_REF] Awerbuch | Near-linear cost sequential and distributed constructions of sparse neighborhood covers[END_REF], note that for every edge e ∈ E(S), either e itself or an alternative path of length s is added to E(S ). We get that cost(S ) ≤ s•cost(S).

We note that Lemma 3 can be generalized to weighted graphs. This can be done by invoking a construction for s-spanner, in the algorithm for constructing vertex fault-tolerant spanners of Dinitz and Krauthgamer in [START_REF] Dinitz | Fault-Tolerant Spanners: Better and Simpler[END_REF], that satisfies the following property, defined in [START_REF] Gavoille | Node-Disjoint Multipath Spanners and Their Relationship with Fault-Tolerant Spanners[END_REF]. Every edge e is either included in the spanner H or H contains an alternative path to e of length at most s • ω(e) and with at most s hops. The details are omitted.

Combining with Theorem 5, we conclude Theorem 3.
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 1 Fig. 1. Illustration of the sets B h , B l (p = 2) and the path M
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