N

HAL

open science

P vs NP
Frank Vega

» To cite this version:

‘ Frank Vega. P vs NP. 2014. hal-00984866v5

HAL Id: hal-00984866
https://hal.science/hal-00984866v5

Preprint submitted on 18 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00984866v5
https://hal.archives-ouvertes.fr

P VS NP

FRANK VEGA

ABSTRACT. UNIQUE SAT is the problem of deciding whether a given Boolean
formula has exactly one satisfying truth assignment. The UNIQUE SAT
is coNP — hard. We prove the UNIQUE SAT is in NP, and therefore,
NP = coNP. Furthermore, we prove if NP = coNP, then some problem in
coNPC is in P, and thus, P = NP. In this way, the P versus NP problem is
solved with a positive answer.

1. INTRODUCTION

The P versus NP problem is the major unsolved problem in computer science.
It was introduced in 1971 by Stephen Cook [2]. Today is considered by many
scientists as the most important open problem in this field [4].

During the first half of the twentieth century many investigations were focused
on formalizes the knowledge about the algorithms using the theoretical model de-
scribed by Turing Machines. On this time appeared the first computers and the
mathematicians were able to model the capabilities and limitations of such devices
appearing precisely what is now known as the science of computational complexity
theory.

Since the beginning of computation, many tasks that man could not do, were
done by computers, but sometimes some difficult and slow to resolve were not
feasible for even the fastest computers. The only way to avoid the delay was to find
a possible method that cannot do the exhaustive search that was accompanied by
“brute force”. Even today, there are problems which have not a known method to
solve easily yet.

If P = NP, then it would ensure that there are hundreds of problems that have
a feasible solution. This is largely derived from this result that there will be a huge
amount of problems that can be checked easily and have some practical solution at
the same time [8].

The studies of this incognita brought along new unsolved questions such as the
NP versus coN P problem. We show in this work the UNIQUFE SAT problem
belongs to N P, and in this way, we prove the complexity classes N P and colN P are
equals, where colN P represents the complements of languages in N P. It is a proved
result if P = NP, then NP = coNP [7]. Moreover, we prove if NP = coN P, then
P = NP and for that reason P = NP.

2. THEORY

The argument made by Alan Turing in the twentieth century proves mathemat-
ically that for any computer program we can create an equivalent Turing Machine

2000 Mathematics Subject Classification. Primary 68-XX, 68Qxx, 68Q15.
Key words and phrases. Complexity class, P, NP, coNP, Turing Machine, Language.

1

2 FRANK VEGA

[9]. A Turing Machine M has a finite set of states K and a finite set of symbols A
called the alphabet of M. The set of states has a special state s which is known as
the initial state. The alphabet contains special symbols such as the start symbol
> and the blank symbol $.

The operations of a Turing Machine are based on a transition function d, which
takes the initial state with a string of symbols of the alphabet that is known as the
input. Then, it proceeds to reading the symbols on the cells contained in a tape,
through a head or cursor. At the same time, the symbols on each step are erased
and written by the transition function, and later moved to the left +—, right —
or remained in the same place — for each cell. Finally, this process is interrupted if
it halts in a final state: the state of acceptance “yes”, the rejection “no” or halting
h [7].

A Turing Machine halts if it reaches a final state. If a Turing Machine M accepts
or rejects a string x, then M (z) = “yes” or “no” is respectively written. If it reaches
the halting state h , we write M (z) = y, where the string y is considered as the
output string, i.e., the string remaining in M when this halts [7].

A transition function § is also called the “program” of the Turing Machine and
is represented as the triple §(g, o) = (p, p, D). For each current state ¢ and current
symbol o of the alphabet, the Turing Machine will move to the next state p, over-
writing the symbol o by p, and moving the cursor in the direction D € {+—, — —}
[7). When there is more than one tape, § remains deciding the next state, but it
can overwrite different symbols and move in different directions over each tape.

Operations by a Turing Machine are defined using a configuration that contains a
complete description of the current state of the Machine. A configuration is a triple
(¢, w,u) where q is the current state and w, u are strings over the alphabet showing
the string to the left of the cursor including the scanned symbol and the string to
the right of the cursor respectively and this is during any instant in which there
is a transition on § [7]. The configuration definition can be extended to multiple
tapes using the corresponding cursors.

A deterministic Turing Machine is a Turing Machine that has only one next
action for each step defined in the transition function [6], [5]. However, a non-
deterministic Turing Machine can contain more than one action defined for each
step of the program, where this program was no longer a function but a relation
[6], [5].

A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [3]. There are two
complexity classes that have a close relationship with the previous concepts and
are represented as P and NP. In computational complexity theory, the class P
contains the languages that are decided by a deterministic Turing Machine in poly-
nomial time [6]. The class NP contains the languages that are decided by a non-
deterministic Turing Machines in polynomial time [5].

Moreover, a language L € NP if there is a polynomial-time decidable and poly-
nomially balanced relation Ry, such that for all strings x: there is a string y with
Ry (z,y) if and only if x € L [7]. This string y is known as certificate. If NP
is the class of problems that have succinct certificates, then the complexity class
coNP must contain those problems that have succinct disqualifications [7]. That
is, a “no” instance of a problem in colN P possesses a short proof of its being a “no”
instance; and only “no” instances have such proofs [7].

P VS NP 3

There are another derived complexity classes from NP and colN P that are NP —
complete and coN P — complete denoted as NPC and coNPC. We show a NPC
problem and other that is in coN PC' in the following paragraph:

The problem ONE — IN — THREFE 3SAT is the following: Given a Boolean
formula ¢ in 3C N F, is there a truth assignment that satisfies ¢ such that each clause
in ¢ has exactly one true literal? The problem UNSATISFIABLE 3SAT is the
following: Given a Boolean formula ¢ in 3CNF, does ¢ have not any satisfying
truth assignment?

On the other hand, the problem UNIQUE SAT is the following: Given a
Boolean formula ¢, is it true that it has a unique satisfying truth assignment?
If UNIQUE SAT is in NP, then NP = coNP [1].

3. RESULTS

We are going to assume the reader has basic elements of computational com-
plexity. However, if you have not any knowledge about this science, it will be very
useful to take a look before to the Theory section even though it has a very basic
content.

3.1. NP = coNP. We start clarifying that all the elements that we mentioned in
this section, such as a Boolean formula ¢ and so forth, are assumed as they were
in a binary encoding when they are used as input for a Turing Machine to make
more clear our arguments.

Definition 3.1. Let Mgar be a Turing Machine which decides for a Boolean for-
mula ¢ and a truth assignment T if T = ¢, that is when the truth assignment T
satisfies ¢ [7].

When Mgar(¢,T) = “yes”, then the existence of the mapping of the Boolean
variables to the values of true or false, that is T, implies that the formula ¢ is
satisfiable. When Mgar(¢,T) = “no”, we could make the conclusion that ¢ is not
a tautology or T is not an appropriate truth assignment for ¢ [7].

Lemma 3.2. The Turing Machine Mgar could be deterministic and make their
decisions in polynomial time.

This is a direct consequence of SAT € N P, because Mg a7 defines the polynomial-
time decidable and polynomially balanced relation Rgap which relates a Boolean
formula ¢ with a truth assignment 7" if and only if Mgar (¢, T) = “yes”.

Lemma 3.3. The deterministic Turing Machine Mgar could have only one tape
and always accept in the configuration (“yes”, >, @) in polynomial time with the
input ¢$T when T = ¢ and where $ is the blank symbol. Besides, the transition
function of Mgar will visit the initial state only in the first action where it will
read the start symbol in the computation of any input.

The language SAT € NP has a deterministic Turing Machine which decides in
polynomial time the polynomially balanced relation Rgapr. This Turing Machine
could be transformed into another Turing Machine of one tape which has a poly-
nomial time in relation with the running time of the original [7]. Therefore, the
deterministic Turing Machine that decides Rgar could be of one tape.

If the initial state is visited more than once in the transition function of this one-
tape deterministic Turing Machine, then we will create a new initial state replacing

4 FRANK VEGA

the old one that it will only read the start symbol in the first action and continue
the normal execution.

This one-tape deterministic Turing Machine can be transformed into two-tapes
deterministic Turing Machine that receives the input in the first tape. This new
Turing Machine will copy the input in the second tape and simulate the original
one-tape Turing Machine on this second tape. When the simulation of the original
Turing Machine accepts, it will delete the content in the second tape and remove
the certificate T' from the first tape. Finally, it will set the cursors in the start
symbol of each tape and halt in the state of acceptance. In case of rejection, the
two-tapes deterministic Turing Machine will reject too. This new Turing Machine
can be transformed into a one-tape Turing Machine Mgar complying with the
Lemma 3.3.

Theorem 3.4. The deterministic Turing machine Mgar, which complies with the
Lemma 3.3, can be inverted into a non-deterministic Turing machine Ngar.

We are going to change the transition function § of the deterministic Turing
machine Mg of Lemma 3.3 in the following way:

(1) Vp,q,r € K AVo1,00,p1,p2 € A:

(2) [0(g,01) = (p, p1, Dp) A 6(r,02) = (g, p2, Dy)] =
(3) ([6'(q. p1) = (r,00, D))]

(4) A [(Dy =) = (D, =—)]

(5) A [(Dg =—) = (D, =)

(6) A[(Dg = =) = (Dy =)

This new program ¢ will represent a new Turing machine Ngar where K and A
are the set of states and alphabet of Mg a1 respectively. The initial state of Mgar
will be replaced by the state of acceptance in Ngar. The state of acceptance in
Mg a1 will be replaced by the initial state in Nga7 with the following actions:

(7) Vge K AVoy,p1 € A:

(8) [5((]3 Ul) = (“yes” , P1, D“yes”)] -
(9) ([6/ (37 I>) = (q’ >, Di‘yes”)]

(10) A [(D“yQS” :<_) = (Dz‘yes” :—>)]
(11) A (Diyes = =) = (Dlyer = -)])

We define the rejection state in Ngar in the following way: for every ¢ state in
the set of states of Ngar except for the state of acceptance and every o symbol of
its alphabet, if there is no action in & such that from the state ¢ we could read the
o symbol, then 6 (¢,0) = (“no”, o, —).

In Ngar over the Mgar construction it is achieved that in almost all states,
those symbols that are read in the tapes and the symbols that overwrite them are
exchanged among them during the steps of Mgar transition function. It is also
possible to verify that Ngar is nearly a “mirror” of Mg and transits backwards
along Mgar states. The Ngar Turing machine in every state is directed towards

P VS NP 5

predecessors appearing in transaction function 4, thus changing the movement di-
rection of Mgar simulating “backwards”. This new Turing machine Ngar will be
a non-deterministic Turing machine.

Lemma 3.5. The non-deterministic Turing machines Ngar accepts in polynomial
time.

The configuration in the state of acceptance in Ngar will be (“yes”, >, ¢$T),
where ¢$T is the original input of Mgar when ¢ € SAT with the certificate T. The
non-deterministic Turing machines Ng a1 could accept in polynomial time, because
the amount of steps in the execution of Ngar(¢) when Ngar(¢) = “yes” could be
at most equal to the number of actions in the longer running time of Mgar (¢, T) for
all T if Mgar (4, T) = “yes”. Moreover, the binary relation Rgar which defines the
language SAT in N P is polynomially balanced, and therefore, if the longer running
time of Mgar(¢,T) for all T if Mgar(¢, T) = “yes” is of order O(| ¢$T |?), where
| ¢$T | is the size of ¢$T', then the execution of Nga7(¢) will be of order O(| ¢ |¥)
where k could be always a fixed and small constant.

Definition 3.6. Let M/SAT be a Turing Machine which has all the properties and
the same behavior of the deterministic Turing machine Mgar of Lemma 8.3, except
that for a specific and single input ¢ $T we have that M;VAT(QS,,T/) = “no” when

Msar(¢,T') = “yes”.

Indeed, M /S a7 continues deciding each Boolean formula ¢ with a truth assign-
ment T if T |= ¢, except that only for the formula qﬁ/ and truth assignment T the
Turing Machine M /S a7 makes a rejection even though T = gZ)'.

Theorem 3.7. We could build MéAT adding a polynomial amount of states and
actions inside of Mgar in relation with the size of the input ¢/$T/ and rejecting
¢ $T" in polynomial time.

We could add the following actions to the transition function of Mgar:

(12) Iterating in reverse order through the symbols of ¢ $T"
(13) We take each symbol o; from the i — th position
(14) Adding the states p; and p;y1 if they do not exist in K
(15) With a new action :

(16) 6(pi, 0:) = (Piv1, 04, —)

We rename the initial state of Mg as ss and we add a new action to the state
p1 that represents the state which reads the first symbol of ¢ $7T .

(17) o(s,>) = (p1,>,—)

With the previous action we recreate the initial state in Mgapr. Then, we add
another action to the state pj,gr 4, that is the other state in the first action
created in this transformation related with Pl 1| which represents the state that

reads the last symbol of ¢ $7".

(18) (5(])|¢/$,1—‘/|_,’_17 $) = (“TLO”, ,—)

6 FRANK VEGA

In this way, we check the input is equal to ¢ $T" and reject. In case the input is
not equal to ¢ $7", then we need to continue the normal execution of Mg47. For
this purpose we add a new step r and the following actions:

(19) For each state p; from the i — th symbol in ¢ $T’
(20) We add a new action for each symbol o; € A where o; # 0; :
(21) 6(pia0-j) = (Ta 0j7_)

We related r with the special state Pl $T' |41 in the following actions too:

(22) 5(p\¢/$T'|+13 O) = (T’ 07 _)
(23) 5(p\¢’$T’|+171) = (7‘717_)
(24) 5(P1y s/ 415) = (11>,)

After that, we transit backward through the symbols of the input from the state
r to the created state ss with the following actions:

(25) 6(r,0) = (r,0,+—)
(26) o(r,1) = (r,1,+—)
(27) 5(r,8) = (r,8,«—)
(28) o(r,>) = (ss,>,—)

Finally, we start to simulate the usual computation of the Turing Machine Mg ar
of Lemma 3.3 from the state ss where ss was the old initial state in Mgyr that
was renamed.

The final result of this transformation is the Turing Machine M é a7 Which was
created with a polynomial amount of states and actions inside of Mg a7 in relation
with the size of the input ¢/$T/ and the rejection of ¢/$T/ would be in polynomial
time.

Lemma 3.8. The deterministic Turing machine M/SAT can be inverted into a non-
deterministic Turing machine Ng oo and Ng ,p accepts in polynomial time.

This is possible because we can use the same construction that we did in Theorem
3.4 for Mgar. For that reason, the non-deterministic Turing machine Ng,, has
the same behavior of Ngar due to the similarity between Mgar and M é AT

Theorem 3.9. UNIQUE SAT € NP.

We could compute UNIQU E SAT for any Boolean formula ¢ in a non-deterministic
in polynomial time in the following way:

e First, we build the non-deterministic Turing machine Ngar from Mgar in
constant time.

e Next, we check that Ngar(¢) = “yes” and obtain a satisfying truth assign-
ment T. If Noar(¢) = “no”, then we finish rejecting ¢ for UNIQUE SAT.

o After that, we change Mg into another Turing Machine M ;« Ar Which has
the same behavior of Mgar, except that M;AT(QS, T) = “no” where T is
the satisfying truth assignment in the previous step.

e Then, we build the non-deterministic Turing machine N:.; ap from M é AT

P VS NP 7

e Finally, we check that N:gAT(gb) = “no” and finish accepting ¢ for UNIQUE SAT.

It NéAT(¢) = “yes”, then we finish rejecting ¢ for UNIQUE SAT.

When Ngar(¢) = “yes” and Ng 41(¢) = “no”, we could assure there is a unique
truth assignment 7" such that T' = ¢, and therefore, ¢ € UNIQUE SAT. The pre-
vious pseudo-algorithm proves that UNIQUE SAT € NP, because Ngar and
Ng 4 are non-deterministic Turing Machines that could compute ¢ in polynomial
time. Moreover, the transformation of Mg7 into M:g a7 could be made in poly-
nomial time in relation with the size of ¢, because the binary relation Rga7 which
defines the language SAT in NP is polynomially balanced. Furthermore, the differ-
ence between Mgar and M :9 a7 is only a polynomial amount of states and actions
in relation with the size of the input ¢$T, and therefore, the construction of N :g AT
is possible in a polynomial time considering the size of ¢ plus the constant time of
the first step.

Lemma 3.10. NP = coNP.
This is a consequence of the Theorem above [1].
3.2. P = NP.

Definition 3.11. Let Lyqsn be a language that contains Boolean formulas ¢ in
3CNF such that ¢ € Lyash < (9 € UNSATISFIABLE 3SATV ¢ € ONE —
IN —THREE 3SAT) where V is the OR Boolean function. We will call this new
language as Nash’s language.

The Boolean formulas ¢ that belongs to L y.spn are all the Boolean expressions ¢
in 3CNF which are in UNSATISFIABLE 3SAT or ONE—IN—-THREE 3SAT
languages.

Lemma 3.12. If NP = coNP, then Ly.sn € NPC.

If NP = coNP, then UNSATISFIABLE 3SAT € NPC, this is possible
because UNSATISFIABLE 3SAT € coNPC and every language in coNPC
would be in NPC when NP = coNP [5]. Indeed, we could easily deduce when
¢ is not in UNSATISFIABLE 3SAT, then ¢ € 3SAT. Moreover, ONE —
IN — THREE 3SAT € NPC [5]. Hence, Lnssn, € NPC because Lygsn =
UNSATISFIABLE 3SAT UONE — IN —THREFE 3SAT and the complexity
class NPC is close under the union set operation [5].

Definition 3.13. Let coL nasp be a language that is the complement of Lyqsn. We
could define coLngsn as the Boolean formulas ¢ in SCNF that has a satisfying
truth assignment such that each clause in ¢ has at least two true literals.

This new language will be the key in our proof.
Lemma 3.14. If NP = coNP, then coLnasn € coNPC.

It is a known result that the complement of a language in NPC is in coN PC
[7]. Therefore, this is a direct consequence of Lemma 3.12.

Theorem 3.15. coLygsn € P.

We could compute coL s for any Boolean formula ¢ in 3CNF of m clauses
with a deterministic Turing Machine in polynomial time in the following way:

8 FRANK VEGA

e First, we build for every i — th clause ¢; = (z Vy V 2) in ¢, where z, y and
z are literals, the following formula d; = (x Vy) A (y V 2).

e Next, we create a Boolean formula ¢- that is equal to d; Ads A ... Ad,, that
is the conjunction of all the formulas d; of the previous step.

e Finally, we check that ¢o € 2SAT and finish accepting ¢ for coL ngsh,
otherwise we reject ¢.

We can check if the clause (z VyV z) has at least two true literals for some truth
assignment if and only if the formula (zVy)A(yVz) has a satisfying truth assignment
contained in this truth assignment. In general, if we want to guarantee this property
through all the clauses of ¢, then each formula d; must have a satisfying truth
assignment contained into a single truth assignment for ¢ at the same time. Then,
the union of simultaneous truth assignment in each formula d; could be achieved
by joining the d; formulas with the AND function and creating a new Boolean
formula in 2C N F' that would be ¢5. Therefore, a satisfying truth assignment to ¢o
is possible if and only if with this truth assignment each clause ¢; has at least two
true literals that is when ¢ € coL nash-

The creation of ¢, is possible in polynomial time, because we only need to
iterate with a polynomial steps through the m clauses of ¢. The last step could be
computed in polynomial time because 25SAT € P [7]. In conclusion, the three steps
of this pseudo-algorithm could be computed in polynomial time by a deterministic
Turing Machine.

Lemma 3.16. P= NP & NP =coNP.

This is a consequence of the Theorem above, because if NP = coN P and some
problem in coNPC is in P, then P = NP and it is a known result if P = NP,
then NP = coNP [7].

Theorem 3.17. P = NP.

This is the result of applying the Lemmas 3.10 and 3.16.

4. CONCLUSIONS

This proof will have stunning practical consequences, because this leads to effi-
cient methods for solving some of the important problems in N P. After decades of
studying these problems no one has been able to find a polynomial time algorithm
for any of more than 3000 important known NP-complete problems and this work
shows that a feasible solution for all NP-complete problems is possible. There are
enormous positive consequences because many problems in operations research are
NP-complete, such as some types of integer programming, and the travelling sales-
man problem. Besides, many other important problems, such as some problems in
protein structure prediction, are also NP-complete, and so, this work implies a con-
siderable advance in biology too. In addition, this proof will transform mathematics
by allowing a computer to find a formal proof of any theorem which has a proof
of a reasonable length, since formal proofs can easily be recognized in polynomial
time.

ACKNOWLEDGEMENT

I thank my mother Iris Delgado for her support and confidence.

oo

P VS NP 9

REFERENCES

. Andreas Blass and Yuri Gurevich, On the unique satisfiability problem, Information and Control

55 (1982), 80-88.

. Stephen A. Cook, The complexity of theorem proving procedures, Proceedings of the 3rd Annual

ACM Symposium on the Theory of Computing (STOC’71), ACM Press, 1971, pp. 151-158.

. Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction

to algorithms, second edition, MIT Press, 2001.

. Lance Fortnow, The status of the P wversus NP problem, Communications of the ACM 52

(2009), no. 9, 78-86.

. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of np-

completeness (series of books in the mathematical sciences), first edition ed., W. H. Freeman,
1979.

. Harry R. Lewis and Christos H. Papadimitriou, Elements of the theory of computation (2. ed.),

Prentice Hall, 1998.

. Christos H. Papadimitriou, Computational complezity, Addison-Wesley, 1994.
. M. Sipser, Introduction to the theory of computation, International Thomson Publishing, 1996.
. Alan M. Turing, On computable numbers, with an application to the entscheidungsproblem,

Proceedings of the London Mathematical Society 42 (1936), 230-265.

Datys, PLAYA, HAavana, CUBA
E-mail address: vega.frank@gmail.com

