
HAL Id: hal-00984866
https://hal.science/hal-00984866v3

Preprint submitted on 24 Jun 2014 (v3), last revised 18 Aug 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P versus NP
Frank Vega

To cite this version:

Frank Vega. P versus NP. 2014. �hal-00984866v3�

https://hal.science/hal-00984866v3
https://hal.archives-ouvertes.fr

P versus NP

Frank Vega

Datys, Playa, Havana, Cuba

Abstract

There are some function problems in FEXP − complete, which has a corre-

sponding function problem in FNP , such that each of these function prob-

lems in FEXP − complete could be solved by some solution that has the

related function problem in FNP for the same input, even though it has

other several solutions. This event is not necessarily true when the solution

does not exist for the inputs in these function problems in FEXP−complete.

We also show there is no possible reduction between these problems, be-

cause there is not any computable function in logarithmic space that matches

when overlap the solutions for the same input. Indeed, we are not trying to

prove that EXP is in NP , because this would lead us to a relativizing proof.

In this way, if FP = FNP , then we might have the chance of resolve

the solutions of the inputs in some of these function problems in FEXP −

complete by a polynomial time algorithm and this would only happen when

the solutions exist, but this is not possible by the time hierarchy theorem.

Therefore, by reductio ad absurdum, P 6= NP .

Keywords: Complexity classes, Turing Machines, P, NP, EXP

Email address: vega.frank@gmail.com (Frank Vega)

Preprint submitted to Theoretical Computer Science June 23, 2014

1. Introduction

The P versus NP problem is the major unsolved problem in computer

science. It was introduced in 1971 by Stephen Cook [1]. Today is considered

by many scientists as the most important open problem in this field [2].

A solution to this problem will have a great impact in other fields such as

mathematics and biology.

During the first half of the twentieth century many investigations were

focused on formalizes the knowledge about the algorithms using the theoret-

ical model described by Turing Machines. On this time appeared the first

computers and the mathematicians were able to model the capabilities and

limitations of such devices appearing precisely what is now known as the

science of computational complexity theory.

Since the beginning of computation, many tasks that man could not do,

were done by computers, but sometimes some difficult and slow to resolve

were not feasible for even the fastest computers. The only way to avoid the

delay was to find a possible method that cannot do the exhaustive search that

was accompanied by “brute force”. Even today, there are problems which

have not a known method to solve easily yet.

If P 6= NP , then it would ensure that there are hundreds of problems that

have no a feasible solution. This is largely derived from this result that there

will be a huge amount of problems that can be checked easily but without

some feasible solution [3]. It will remain the best option to use brute force

or a heuristic algorithm in many cases.

2

2. Methods

We use in this work a method known as reductio ad absurdum which is

a common form of argument which seeks to demonstrate that a statement

is true by showing that a false or absurd result follows from its denial. This

rule has formed the basis in formal fields like logic and mathematics. In this

work we assume that FP = FNP and obtain a contradiction following a

solid argumentation, and therefore, P 6= NP applying this method.

3. Theory

The argument made by Alan Turing in the twentieth century proves math-

ematically that for any computer program we can create an equivalent Turing

Machine [4]. A Turing Machine M has a finite set of states K and a finite set

of symbols A called the alphabet of M . The set of states has a special state

s which is known as the initial state. The alphabet contains special symbols

such as the start symbol ⊲ and the blank symbol $.

The operations of a Turing Machine are based on a transition function

δ, which takes the initial state with a string of symbols of the alphabet that

is known as the input. Then, it proceeds to reading the symbols on the

cells contained in a tape, through a head or cursor. At the same time, the

symbols on each step are erased and written by the transition function, and

later moved to the left←−, right −→ or remain in the same place − for each

cell. Finally, this process is interrupted if it halts in a final state: the state

of acceptance “yes”, the rejection “no” or halting h [5].

A Turing Machine halts if it reaches a final state. If a Turing Machine

M accepts or rejects a string x, then M(x) = “yes” or “no” is respectively

3

written. If it reaches the halting state h , we write M(x) = y, where the

string y is considered as the output string, i.e., the string remaining in M

when this halts [5].

A transition function δ is also called the “program” of the Turing Machine

and is represented as the triple δ(q, σ) = (p, ρ,D). For each current state

q and current symbol σ of the alphabet, the Turing Machine will move to

the next state p, overwriting the symbol σ by ρ, and moving the cursor in

the direction D ∈ {←−,−→,−} [5]. When there is more than one tape, δ

remains deciding the next state, but it can overwrite different symbols and

move in different directions over each tape.

Operations by a Turing Machine are defined using a configuration that

contains a complete description of the current state of the Machine. A con-

figuration is a triple (q, w, u) where q is the current state and w, u are strings

over the alphabet showing the string to the left of the cursor including the

scanned symbol and the string to the right of the cursor respectively, during

any instant in which there is a transition on δ [5]. The configuration definition

can be extended to multiple tapes using the corresponding cursors.

A deterministic Turing Machine is a Turing Machine that has only one

next action for each step defined in the transition function [6], [7]. However, a

non-deterministic Turing Machine can contain more than one action defined

for each step of the program, where this program was no longer a function

but a relation [6], [7].

A complexity class is a set of problems, which are represented as a lan-

guage, grouped by measures such as the running time, memory, etc [8]. There

are three complexity classes that have a close relationship with the previous

4

concepts and are represented as P , EXP and NP . In computational com-

plexity theory, the class P contains the languages that are decided by a

deterministic Turing Machine in polynomial time [6]. The complexity class

EXP is the set of all decision problems solvable by a deterministic Tur-

ing machine in O(2p(n)) time, where p(n) is a polynomial function of n. The

class NP contains the languages that are decided by a non-deterministic Tur-

ing Machines in polynomial time [7]. Problems that are EXP − complete

might be thought of as the hardest problems in EXP . We do know that

EXP − complete problems are not in P : it has been proven that these prob-

lems cannot be solved in polynomial time, by the time hierarchy theorem

[5].

On the other hand, a language L ∈ NP if there is a polynomial-time

decidable, polynomially balanced relation RL such that for all strings x: there

is a string y with RL(x, y) if and only if x ∈ L [5]. The function problem

associated with L is the following computational problem: given x, find a

string y such that RL(x, y) if such a string exists; if no such string exists,

return “no” [5]. The class of all function problems associated as above with

languages in NP is called FNP [5].

The resulting class from FNP is the class FP which represents all func-

tion problems that can be solved in polynomial time [5]. We also could

define FEXP as the complexity class of function problems associated with

languages in EXP , but the relation would not be polynomial-time decidable.

We can talk about reductions between function problems. We say that

a function problem A reduces to function problem B if the following holds:

There are string functions R and S, both computable in logarithmic space,

5

such that for any strings x and z if x is an instance of A, then R(x) is an

instance of B and if z is a correct output of R(x), then S(z) is a correct

output of x [5].

The P versus NP problem is to know whether P is equal to NP or not.

This would be equivalent to prove whether FP is equal to FNP or not.

4. Results

Lemma 4.1. Every language Lexp ∈ EXP − complete has a determinis-

tic Turing Machine Mexp that has only one tape and always accepts in the

configuration (“yes”,⊲, x) when x ∈ Lexp.

Every Turing Machine could be transformed into another Turing Machine

of one tape which has a polynomial time in relation with the running time

of the original [5]. Therefore, the deterministic Turing Machine that decides

Lexp could be of one tape. This one-tape deterministic Turing Machine can

be transformed into two-tapes deterministic Turing Machine that receives

the input in the first tape. This new Turing Machine will copy the input in

the second tape and there, it will simulate the original Turing Machine of

one tape. When the simulation of the original Turing Machine accepts, it

will delete the content in the second tape. Finally, it will set the cursors in

the start symbols of each tape and halt in the state of acceptance. In case of

rejection, the two-tapes deterministic Turing Machine will reject too. This

new Turing Machine can be transformed into one-tape Turing Machine Mexp

complying with the Lemma 4.1.

Therefore, they will exist many languages Lexp ∈ EXP − complete that

are decided by some one-tape deterministic Turing Machine Mexp, such that

6

for every element x ∈ Lexp the Turing Machine Mexp will accept in the

configuration (“yes”,⊲, x). If | x | is the length of the string x, then we

could define the following definition.

Definition 4.2. If the deterministic Turing Machine Mexp of Lemma 4.1 for

a language Lexp ∈ EXP − complete accepts a string x ∈ Lexp in k steps or

actions in the transition function of Mexp where k would be different for each

element, then it will exist a function fLexp
which receives the configuration in

the k − ⌊log2 | x |⌋ steps on Mexp as input, that is, the configuration of the

execution on Mexp(x) in the ⌊log2 | x |⌋ steps before Mexp accepts x and fLexp

returns x for that configuration.

fLexp
is from strings to strings because the configurations could be repre-

sented as strings. The input x is at most polynomially longer or shorter than

the corresponding configuration in the k − ⌊log2 | x |⌋ steps because from

that configuration we cannot add or delete more than ⌊log2 | x |⌋ symbols

until the state of acceptance in ⌊log2 | x |⌋ steps due to Mexp will accept in

the configuration (“yes”,⊲, x). Moreover, fLexp
can be computed in poly-

nomial time if we simulate the execution of Mexp(x) in the configuration of

k − ⌊log2 | x |⌋ steps until the state of acceptance with the string x using

only ⌊log2 | x |⌋ steps.

Definition 4.3. We will call the configurations that receives fLexp
on the

deterministic Turing Machine Mexp of Lemma 4.1 as config − 1(x) when

fLexp
produces the string x in the state of acceptance with that configuration.

Notice that fLexp
could receive a configuration config−1(x) where x does

not belong to Lexp.

7

Definition 4.4. ASIALexp
will be the function problem defined by the in-

verse function f−1
Lexp

for some language Lexp ∈ EXP − complete on the de-

terministic Turing Machine Mexp of Lemma 4.1.

Theorem 4.5. ASIALexp
∈ FNP

We could invert the deterministic Turing MachineMexp changing the state

of acceptance with the initial state and reversing the transition function

of Mexp and in this way, we would create a new non-deterministic Turing

Machine Nexp. We are going to define the rejection state in Nexp in the

following way: for every q state in the set of states of Nexp and every σ symbol

of its alphabet, then δ(q, σ) = (“no”, σ,−), where δ will be the program of

Nexp. Indeed, the non-deterministic Turing Machine Nexp will simulate the

behavior of Mexp moving backwards.

In this simulation, we are going to interrupt the normal exponential ex-

ecution of Nexp(x) just in the first ⌊log2 | x |⌋ steps, and thus, we start

executing Nexp from the initial configuration (s,⊲, x) until some candidate

configuration config − 1(x) in only ⌊log2 | x |⌋ steps where we are going

to stop the possible exponential execution of Nexp(x). As this simulation is

possible by an Universal non-deterministic Turing Machine which runs Nexp

with x and halts when is obtained the configuration config − 1(x) on Nexp,

then ASIALexp
∈ FNP for any language Lexp ∈ EXP − complete.

Theorem 4.6. For each language Lexp ∈ EXP−complete the function prob-

lem of finding the configuration config− 1(x) which belongs to the accepting

computation of some input x ∈ Lexp on the deterministic Turing Machine

8

Mexp of Lemma 4.1 is in FEXP − complete. We will denote this problem

as FURONESLexp
.

FURONESLexp
∈ FEXP because if we could find the configuration

config−1(x) which belongs to the accepting computation of some input x ∈

Lexp in polynomial time, then we could compute Mexp(x) in polynomial time

due to we could do it by reaching config−1(x) in polynomial time, accepting

in the following ⌊log2 | x |⌋ steps and checking if the final configuration is

(“yes”,⊲, x). Hence, as we showed in the Theory section this execution

is impossible in polynomial time. Moreover, FURONESLexp
∈ FEXP −

complete because we could decide Lexp which is in EXP − complete using

FURONESLexp
as we showed above, and therefore, it would be feasible the

reduction of any function problems in FEXP to FURONESLexp
, because

they are associated to problems in EXP and Lexp ∈ EXP − complete.

Theorem 4.7. For each language Lexp ∈ EXP − complete the function

problem FURONESLexp
is solved by some solution that contains ASIALexp

for the same input x when x ∈ Lexp.

The polynomially balanced relation of ASIALexp
has a least one certifi-

cate config − 1(x) which belongs to the accepting computation of the input

x ∈ Lexp. Indeed, the related function problem in FNP could have several

solutions for the same input and only one of them is equal to the solution of

the FEXP − complete function problem. This event is not necessarily true

when x does not belong to Lexp.

Theorem 4.8. P 6= NP

9

We found some function problems in FEXP − complete and FNP , such

that each of these function problems in FEXP − complete could be solved

by some solution that has the corresponding function problem in FNP for

the same input, when the solution for this input in the FEXP − complete

function problem exists, which is a direct consequence of the Theorem above

and Theorem 4.5. The existence of FURONESLexp
and ASIALexp

function

problems for each language Lexp ∈ EXP − complete proves this conclusion.

This event is not necessary true when the solution for the input in the

FEXP−complete function problem does not exist, that is, the corresponding

function problem in FNP could not answer “no” when the input does not

have a solution in the respective function problem in FEXP − complete.

In this way, if FP = FNP , then we might find the solutions by a poly-

nomial time algorithm when those solutions exist for the inputs in some

FEXP − complete function problem, but this is not possible by the time

hierarchy theorem. The idea is simple: if ASIALexp
for each language Lexp ∈

EXP −complete has a chance to find the solution of FURONESLexp
for the

same input x ∈ Lexp, then if FP = FNP , the equivalent function problem

of ASIALexp
in FP might find it too, but this is impossible. Therefore, by

reductio ad absurdum, P 6= NP .

5. Discussion

In this section, we are going to discuss some common misunderstanding

which has provoke this work between the reviewers of some journals that

could be the same confusion that you might have now as a reader.

Many reviewers of some journals have believed that we are trying to

10

prove that EXP is in NP and they have rejected this paper thinking this

would lead us to a relativizing proof. But, this is not true: we are not

proving here that EXP is in NP . It is impossible the reduction between the

function problems FURONESLexp
and ASIALexp

for each language Lexp ∈

EXP−complete, because there is not any computable function in logarithmic

space that related which is the correct certificate output config − 1(x) in

ASIALexp
for some input x ∈ Lexp that is the corresponding correct output

configuration of FURONESLexp
with x ∈ Lexp. Indeed, the searching of the

corresponding correct output configuration of FURONESLexp
with x ∈ Lexp

between many possible outputs config−1(x) in ASIALexp
for the same input

is a clear exponential problem that can be deduced by the self definition of

FURONESLexp
.

Another reason of rejection of this paper has been that many reviewers

have thought in the Theorem 4.5 that ASIALexp
is not in NP , because

the execution of Nexp(x) is exponential and not logarithmic. But, I have

tried to explain in a clear way that we interrupt the exponential execution

in the running of Nexp(x) until the configuration config − 1(x) making a

simple simulation that halts just in the first ⌊log2 | x |⌋ steps after the initial

configuration (s,⊲, x).

Finally, some reviewers has misunderstood the Definition 4.3, because

they have assumed that we tried to represent config − 1(x) as the configu-

ration of the accepting computation of x ∈ Lexp on the deterministic Turing

Machine Mexp of Lemma 4.1 for a language Lexp ∈ EXP − complete. But,

this is not exactly true, because as we explained two lines below of the Def-

inition 4.3, the configuration config − 1(x) could correspond to a string x

11

that does not belong to Lexp.

6. Conclusions

This result removed the practical computational benefits of a proof that

P = NP , but would nevertheless represent a very significant advance in

computational complexity theory and provide guidance for future research. It

shows in a formal way that many currently mathematically problems cannot

be solved efficiently, so that the attention of researchers can be focused on

partial solutions or solutions to other problems. In addition, it proves that

could be safe many of the encryption and authentication methods such as

the public-key cryptography. On the other hand, we will not be able to find

a formal proof for every theorem which has a proof of a reasonable length in

polynomial time by a feasible algorithm.

Many computer scientists have believed that P 6= NP . A key reason for

this belief is that after decades of studying these problems no one has been

able to find a polynomial time algorithm for any of more than 3000 important

known NP − complete problems. Furthermore, the result P = NP would

imply many other startling results that are currently believed to be false.

This work shows the belief of almost all computer scientists was a truly

supposition.

Acknowledgement

I thank my mother Iris Delgado for her support and confidence.

12

References

[1] S. A. Cook, The complexity of theorem proving procedures, in: Proceed-

ings of the 3rd Annual ACM Symposium on the Theory of Computing

(STOC’71), ACM Press, 1971, pp. 151–158.

[2] L. Fortnow, The status of the P versus NP problem, Communications of

the ACM 52 (9) (2009) 78–86.

[3] M. Sipser, Introduction to the Theory of Computation, International

Thomson Publishing, 1996.

[4] A. M. Turing, On computable numbers, with an application to the

entscheidungsproblem, Proceedings of the London Mathematical Society

42 (1936) 230–265.

[5] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[6] H. R. Lewis, C. H. Papadimitriou, Elements of the theory of computation

(2. ed.), Prentice Hall, 1998.

[7] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness (Series of Books in the Mathematical

Sciences), first edition Edition, W. H. Freeman, 1979.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to

Algorithms, Second Edition, MIT Press, 2001.

13

Vitae

Frank Vega is graduated as Bachelor of Computer Science in the Univer-

sity of Havana since 2007. His area of interest is computational complexity.

14

	Introduction
	Methods
	Theory
	Results
	Discussion
	Conclusions

