
HAL Id: hal-00984866
https://hal.science/hal-00984866v2

Preprint submitted on 9 Jun 2014 (v2), last revised 18 Aug 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P versus NP
Frank Vega

To cite this version:

Frank Vega. P versus NP. 2014. �hal-00984866v2�

https://hal.science/hal-00984866v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

P versus NP

Frank Vega

the date of receipt and acceptance should be inserted later

Abstract There are some function problems in FEXP−complete, which has
a corresponding function problem in FNP , such that each of these function
problems in FEXP − complete could be solved by some solution that has the
corresponding function problem in FNP for the same input, when the solution
for this input in the FEXP − complete function problem exists. This event is
not necessarily true when the solution does not exist for the inputs in these
function problems in FEXP − complete.

In the first case, when the solution exists in some input of one of these
function problem in FEXP −complete, the related function problem in FNP

could have several solutions for the same input and only one of them coincide
with the solution of the FEXP − complete function problem.

In this way, if FP = FNP , then we might have the possibility of resolve the
solutions of the inputs in some of these function problems in FEXP−complete

by a polynomial time algorithm and this would happen only when the solutions
exist, but this is not possible by the time hierarchy theorem. Therefore, P 6=
NP .

Keywords Complexity classes · Turing Machines · P · NP · EXP

Mathematics Subject Classification (2000) MSC 68-XX · MSC 68Qxx ·
MSC 68Q15

1 Introduction

The P versus NP problem is the major unsolved problem in computer science.
It was introduced in 1971 by Stephen Cook [1]. Today is considered by many

Frank Vega
Datys, 1ra y 4, Playa, Havana, Cuba
Tel.: +53-53457956
E-mail: vega.frank@gmail.com

2 Frank Vega

scientists as the most important open problem in this field [3]. A solution to
this problem will have a great impact in other fields such as mathematics and
biology.

During the first half of the twentieth century many investigations were fo-
cused on formalizes the knowledge about the algorithms using the theoretical
model described by Turing Machines. On this time appeared the first comput-
ers and the mathematicians were able to model the capabilities and limitations
of such devices appearing precisely what is now known as the science of com-
putational complexity theory.

Since the beginning of computation, many tasks that man could not do,
were done by computers, but sometimes some difficult and slow to resolve were
not feasible for even the fastest computers. The only way to avoid the delay
was to find a possible method that cannot do the exhaustive search that was
accompanied by “brute force”. Even today, there are problems which have not
a known method to solve easily yet.

If P 6= NP , then it would ensure that there are hundreds of problems that
have no a feasible solution. This is largely derived from this result that there
will be a huge amount of problems that can be checked easily but without
some feasible solution [7]. It will remain the best option to use brute force or
a heuristic algorithm in many cases.

2 Theory

The argument made by Alan Turing in the twentieth century proves mathe-
matically that for any computer program we can create an equivalent Turing
Machine [8]. A Turing Machine M has a finite set of states K and a finite set
of symbols A called the alphabet of M . The set of states has a special state
s which is known as the initial state. The alphabet contains special symbols
such as the start symbol ⊲ and the blank symbol $.

The operations of a Turing Machine are based on a transition function δ,
which takes the initial state with a string of symbols of the alphabet that is
known as the input. Then, it proceeds to reading the symbols on the cells
contained in a tape, through a head or cursor. At the same time, the symbols
on each step are erased and written by the transition function, and later moved
to the left ←−, right −→ or remain in the same place − for each cell. Finally,
this process is interrupted if it halts in a final state: the state of acceptance
“yes”, the rejection “no” or halting h [6].

A Turing Machine halts if it reaches a final state. If a Turing Machine
M accepts or rejects a string x, then M(x) = “yes” or “no” is respectively
written. If it reaches the halting state h , we write M(x) = y, where the string
y is considered as the output string, i.e., the string remaining in M when this
halts [6].

A transition function δ is also called the “program” of the Turing Machine
and is represented as the triple δ(q, σ) = (p, ρ,D). For each current state q and
current symbol σ of the alphabet, the Turing Machine will move to the next

P versus NP 3

state p, overwriting the symbol σ by ρ, and moving the cursor in the direction
D ∈ {←−,−→,−} [6]. When there is more than one tape, δ remains deciding
the next state, but it can overwrite different symbols and move in different
directions over each tape.

Operations by a Turing Machine are defined using a configuration that
contains a complete description of the current state of the Machine. A config-
uration is a triple (q, w, u) where q is the current state and w, u are strings
over the alphabet showing the string to the left of the cursor including the
scanned symbol and the string to the right of the cursor respectively, during
any instant in which there is a transition on δ [6]. The configuration definition
can be extended to multiple tapes using the corresponding cursors.

A deterministic Turing Machine is a Turing Machine that has only one
next action for each step defined in the transition function [5], [4]. However, a
non-deterministic Turing Machine can contain more than one action defined
for each step of the program, where this program was no longer a function but
a relation [5], [4].

A complexity class is a set of problems, which are represented as a language,
grouped by measures such as the running time, memory, etc [2]. There are three
complexity classes that have a close relationship with the previous concepts
and are represented as P , EXP and NP . In computational complexity theory,
the class P contains the languages that are decided by a deterministic Turing
Machine in polynomial time [5]. The complexity class EXP is the set of all
decision problems solvable by a deterministic Turing machine in O(2p(n)) time,
where p(n) is a polynomial function of n. The class NP contains the languages
that are decided by a non-deterministic Turing Machines in polynomial time
[4]. Problems that are EXP − complete might be thought of as the hardest
problems in EXP . We do know that EXP − complete problems are not in P :
it has been proven that these problems cannot be solved in polynomial time,
by the time hierarchy theorem [6].

On the other hand, a language L ∈ NP if there is a polynomial-time
decidable, polynomially balanced relation RL such that for all strings x: there
is a string y with RL(x, y) if and only if x ∈ L [6]. The function problem
associated with L is the following computational problem: given x, find a
string y such that RL(x, y) if such a string exists; if no such string exists,
return “no” [6]. The class of all function problems associated as above with
languages in NP is called FNP [6].

The resulting class from FNP is the class FP which represents all function
problems that can be solved in polynomial time [6]. We also could define
FEXP and the completeness of this class in a similar way, but the relation
would not be polynomial-time decidable. The P versus NP problem is to know
whether P is equal to NP or not. This would be equivalent to prove whether
FP is equal to FNP or not

4 Frank Vega

3 Results

Lemma 1 Every language Lexp ∈ EXP − complete has a deterministic Tur-

ing Machine Mexp that has only one tape and always accepts in the configura-

tion (“yes”,⊲, x) when x ∈ Lexp.

Every Turing Machine could be transformed into another Turing Machine
of one tape which has a polynomial time in relation with the running time
of the original [6]. Therefore, the deterministic Turing Machine that decides
Lexp could be of one tape. This one-tape deterministic Turing Machine can
be transformed into two-tapes deterministic Turing Machine that receives the
input in the first tape. This new Turing Machine will copy the input in the
second tape and there, it will simulate the original Turing Machine of one tape.
When the simulation of the original Turing Machine accepts, it will delete the
content in the second tape. Finally, it will set the cursors in the start symbols
of each tape and halt in the state of acceptance. In case of rejection, the two-
tapes deterministic Turing Machine will reject too. This new Turing Machine
can be transformed into one-tape Turing Machine Mexp complying with the
Lemma 1.

Therefore, it will exist a language Lexp ∈ EXP − complete that it is de-
cided by a one-tape deterministic Turing Machine Mexp, such that for every
element x ∈ Lexp the Turing Machine Mexp will accept in the configuration
(“yes”,⊲, x). If Mexp will accept x ∈ Lexp in k steps where k would be dif-
ferent for each element, then it will exist a function fLexp

which receives the
configuration in the k − ⌊log2 | x |⌋ steps on Mexp, that is, the configuration
in the ⌊log2 | x |⌋ steps before Mexp accepts x and fLexp

returns x for that
configuration.

fLexp
is from strings to strings because the configurations could be repre-

sented as strings. The input x is at most polynomially longer or shorter than
the corresponding configuration in the k−⌊log2 | x |⌋ steps because from that
configuration we cannot add or delete more than ⌊log2 | x |⌋ symbols until the
state of acceptance in ⌊log2 | x |⌋ steps due to Mexp will accept in the config-
uration (“yes”,⊲, x). Moreover, fLexp

can be computed in polynomial time if
we simulate the execution of Mexp(x) in the configuration of k − ⌊log2 | x |⌋
steps until the state of acceptance with the string x using only ⌊log2 | x |⌋
steps.

Definition 1 We will call the configurations that receives fLexp
on the de-

terministic Turing Machine Mexp of Lemma 1 as config − 1(x) when fLexp

produces the string x in the state of acceptance with that configuration.

Notice that fLexp
could receive a configuration config−1(x) where x does

not belong to Lexp.

Definition 2 ASIALexp
will be the function problem defined by the inverse

function f−1
Lexp

for some language Lexp ∈ EXP−complete on the deterministic
Turing Machine Mexp of Lemma 1.

P versus NP 5

Theorem 1 ASIALexp
∈ FNP

We could invert the deterministic Turing Machine Mexp changing the state
of acceptance with the initial state and reversing the transition function of
Mexp and in this way, we would create a new non-deterministic Turing Machine
Nexp. We are going to define the rejection state in Nexp in the following way:
for every q state in the set of states of Nexp and every σ symbol of its alphabet,
then δ(q, σ) = (“no”, σ,−), where δ will be the program of Nexp. Indeed, the
non-deterministic Turing Machine Nexp will simulate the behavior of Mexp

moving backwards.
In this simulation, we are going to halt just in the first ⌊log2 | x |⌋ steps,

and thus, Nexp will execute from the initial configuration (s,⊲, x) until some
candidate configuration config − 1(x), where we are going to interrupt the
possible exponential execution of Nexp(x) in only ⌊log2 | x |⌋ steps. Then,
ASIALexp

∈ FNP for any language Lexp ∈ EXP − complete.

Theorem 2 For each language Lexp ∈ EXP −complete the function problem

of finding the configuration config− 1(x) which belongs to the accepting com-

putation of some input x ∈ Lexp on the deterministic Turing Machine Mexp

is in FEXP − complete. We will denote this problem as FURONESLexp
.

FURONESLexp
∈ FEXP because if we could find the configuration

config − 1(x) which belongs to the accepting computation of some input
x ∈ Lexp in polynomial time, then we could compute Mexp(x) in polyno-
mial time due to we could do it by reaching config − 1(x) in polynomial
time, accepting in the following ⌊log2 | x |⌋ steps and checking if the fi-
nal configuration is (“yes”,⊲, x). Hence, as we showed in the Theory section
this execution is impossible in polynomial time. Moreover, FURONESLexp

∈
FEXP − complete because we could decide Lexp which is in EXP − complete

using FURONESLexp
as we showed above.

Theorem 3 For each language Lexp ∈ EXP −complete the function problem

FURONESLexp
is solved by some solution that contains ASIALexp

for the

same input x when x ∈ Lexp.

The polynomially balanced relation of ASIALexp
has a least one certificate

config − 1(x) which belongs to the accepting computation of the input x ∈
Lexp. This event is not necessarily true when x does not belong to Lexp.

Theorem 4 P 6= NP

We found some function problems in FEXP − complete and FNP , such
that each of these function problems in FEXP − complete could be solved
by some solution that has the corresponding function problem in FNP for
the same input, when the solution for this input in the FEXP − complete

function problem exists, which is a direct consequence of the Theorem above
and Theorem 1. The existence of FURONESLexp

and ASIALexp
function

problems for each language Lexp ∈ EXP − complete proves this conclusion.

6 Frank Vega

This event is not necessary true when the solution for the input in the
FEXP −complete function problem does not exist, that is, the corresponding
function problem in FNP could not answer “no” when the input does not have
a solution in the respective function problem in FEXP −complete. Moreover,
it is impossible the reduction between the function problems FURONESLexp

and ASIALexp
for each language Lexp ∈ EXP − complete, because there is

not any computable function in logarithmic space that searches which is the
correct certificate config − 1(x) in ASIALexp

for some input x ∈ Lexp that
is the corresponding output configuration of FURONESLexp

with x ∈ Lexp.
Indeed, we do not try to prove FEXP is in FNP in this paper, because this
would lead us to a relativizing proof.

In this way, if FP = FNP , then we might find the solutions by a poly-
nomial time algorithm when those solutions exist for the inputs in some
FEXP − complete function problem, but this is not possible by the time
hierarchy theorem. The idea is simple: if ASIALexp

for each language Lexp ∈
EXP − complete has a chance to find the solution of FURONESLexp

for the
same input x ∈ Lexp, then if FP = FNP , the equivalent function problem of
ASIALexp

in FP might find it too, but this is impossible. Therefore, P 6= NP .

4 Discussion

This result removed the practical computational benefits of a proof that P =
NP , but would nevertheless represent a very significant advance in computa-
tional complexity theory and provide guidance for future research. It shows in
a formal way that many currently mathematically problems cannot be solved
efficiently, so that the attention of researchers can be focused on partial solu-
tions or solutions to other problems. In addition, it proves that could be safe
many of the encryption and authentication methods such as the public-key
cryptography. On the other hand, we will not be able to find a formal proof
for every theorem which has a proof of a reasonable length in polynomial time
by a feasible algorithm.

5 Conclusions

Many computer scientists have believed that P 6= NP . A key reason for this
belief is that after decades of studying these problems no one has been able to
find a polynomial time algorithm for any of more than 3000 important known
NP −complete problems. Furthermore, the result P = NP would imply many
other startling results that are currently believed to be false. This work shows
the belief of almost all computer scientists was a truly supposition.

Acknowledgements I thank my mother Iris Delgado for her support and confidence.

P versus NP 7

References

1. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the 3rd
Annual ACM Symposium on the Theory of Computing (STOC’71), pp. 151–158. ACM
Press (1971)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Sec-
ond Edition. MIT Press (2001)

3. Fortnow, L.: The status of the P versus NP problem. Communications of the ACM 52(9),
78–86 (2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences), first edition edn. W.
H. Freeman (1979)

5. Lewis, H.R., Papadimitriou, C.H.: Elements of the theory of computation (2. ed.). Pren-
tice Hall (1998)

6. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
7. Sipser, M.: Introduction to the Theory of Computation. International Thomson Publish-

ing (1996)
8. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society 42, 230–265 (1936)

