
HAL Id: hal-00984675
https://hal.science/hal-00984675

Submitted on 28 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagram, a Learning Environment for Initiation to
Object-Oriented Modeling with UML Class Diagrams

Dominique Py, Ludovic Auxepaules, Mathilde Alonso

To cite this version:
Dominique Py, Ludovic Auxepaules, Mathilde Alonso. Diagram, a Learning Environment for Initiation
to Object-Oriented Modeling with UML Class Diagrams. Journal of Interactive Learning Research,
2013, 24 (4), pp.425-446. �hal-00984675�

https://hal.science/hal-00984675
https://hal.archives-ouvertes.fr


Jl. of Interactive Learning Research (2013) 24(4), 425-446

Diagram, a Learning Environment for Initiation to 
Object-Oriented Modeling with UML Class Diagrams

DOMINIQUE PY, LUDOVIC AUXEPAULES, 

AND MATHILDE ALONSO

LIUM, France

Dominique.Py@lium.univ-lemans.fr

Ludovic.Auxepaules@lium.univ-lemans.fr

Mathilde.Alonso@lium.univ-lemans.fr

Learning environments for object-oriented modelling in 

UML which offer a rich interaction usually impose, in return, 

strong restrictions on the range of exercises they can address. 

We propose to overcome this limit by including a diagnostic 

module that compares the student diagram with a reference 

diagram. This approach enables to combine the advantages of 

an open environment (in which the teacher can add new exer-

cises without constraints on the vocabulary or the size of the 

diagram) with a sophisticated interaction that offers method-

ological help, encourages self-correcting and self-monitoring, 

and provides the learner with specific graphic tools. These 

principles have been developed and implemented through a 

learning environment for UML class diagrams. Experiments 

have been conducted in ecological context and show that this 

approach is achievable and quite effective.

INTRODUCTION

Nowadays, modeling is a core topic in most Computer Science and 

Software Engineering curricula, especially since the object-oriented mod-

eling language UML (Unified Modeling Language) has been accepted as 

the standard graphical language for specifying software systems. Recent 

research works have focussed on the design of computer-supported learn-



426 Py, Auxepaules, and Alonso

ing environments for modeling, especially for object-oriented modeling 

(Baghaei, 2007; Moritz, 2008) and database modeling (Suraweera & Mitro-

vic, 2004). In these environments, the relevance of the feedbacks relies on 

the system’s ability to evaluate the correctness of the student’s work. Due to 

the lack of deterministic methods for checking the consistency of a model, 

performing this evaluation is still a difficult task. To make it easier, design-

ers can impose different restrictions on the interaction, but this also restricts 

the learner’s ways of expression and the problem range of the environment.

We have tried to overcome these limits by exploring a new approach 

that aims at designing an open learning environment. This approach relies 

on a specific interaction model and a diagnostic method that evaluates a dia-

gram and enables the system to provide the learner with textual feedbacks 

that take into account the correctness of his/her diagram. 

In section 2 we describe the context of this work and present the state 

of the art. Section 3 specifies the objectives and approach adopted in Dia-

gram. The model of interaction is described in section 4, the diagnostic 

method and its results in section 5 and the pedagogical feedbacks in section 

6. Lastly, section 7 describes an experiment of the environment and discuss-

es its results.

LEARNING OBJECT-ORIENTED MODELING

Since the development of OOM languages, many empirical studies, 

pedagogical tools and books have been devoted to OOM teaching. In this 

section, we present a brief survey of these studies and the limits of these ap-

proaches.

UML

UML is a language standardized in 1997 by the Object Modeling 

Group (OMG) which facilitates the design of programs (OMG UML, 2010). 

However, UML does not include a complete methodology for analysing and 

designing OO programs.

The current version of UML 2.1 consists of thirteen types of diagrams, 

representing different aspects of a software system. Among these diagrams, 

the class diagram is the core of the modeling process. It is used during the 

phases of analysis and design and can represent information at various lev-

els of abstraction and precision. For that reason, it is often the first type of 

diagram taught in the OOM courses. This is why we chose to focus our 



Diagram, a Learning Environment for Initiation 427

study on the class diagram and its main elements: classes, relationships and 

attributes.

Difficulties of OOM Learning

Empirical research works have studied the difficulties that students face 

when they learn OOM (Moisan & Rigault, 2009). These studies show that 

theoretical knowledge of UML syntax and semantics is not enough: high 

level skills, like problem analysis and abstraction, are essential and can only 

be acquired by practice. Thus, Habra and Noben (2001) stress that no uni-

versal rule applies for the creation of a model, and note that learners need 

methodological help to guide their creativity. This point of view is shared by 

Frosch-Wilke (2003) who estimates that modeling is acquired by practice 

and recommends to provide learners with processes or steps to build their 

diagram.

Learning Environments for OOM

Different approaches to computer-supported learning environments for 

object-oriented modeling have been explored so far, mainly the constraint-

based approach, illustrated by Collect-UML (Baghaei, Mitrovic & Irwin, 

2006), and the curriculum-based approach, used in DesignFirst-ITS (Moritz, 

2008).

Constraint-Based Modeling, as defined by Ohlsson (1994), consists 

in defining the domain rules in terms of constraints, then checking that the 

learner’s answer satisfies these constraints. This approach was used for da-

tabases learning in Kermit (Suraweera & Mitrovic, 2004) and OOM learn-

ing in Collect-UML (Baghaei, 2007). In Collect-UML, the learner builds 

a class diagram starting from a textual description of the problem. He/she 

selects an expression in the text to model the corresponding object. Collect-

UML includes a diagnostic tool, based upon domain-specific constraints, 

that checks whether the learner’s diagram satisfies these requirements. Each 

constraint is composed of a relevance condition and a satisfaction condition. 

When the former is satisfied and the latter is not, the constraint is violated 

and an error message is displayed. Usually, the constraint-based approach 

is well suited for open domains. However, few general constraints exist in 

UML, so that the semantic constraints in Collect-UML do not actually ex-

press domain constraints, but differences that can be accepted between the 



428 Py, Auxepaules, and Alonso

learner’s diagram and a correct diagram, provided by an expert. For ex-

ample, a constraint is: “if the ideal solution contains a subclass C, and the 

learner’s solution contains a class C, then C must also be a subclass in the 

learner’s diagram”. This has strong consequences on the interaction, be-

cause the learner is forced to pick up the class and relation names from the 

text problem, he/she is not allowed to create elements freely, nor to choose 

their name. As a consequence, Collect-UML is restricted to problems that 

do not contain implicit elements. The constraint-based approach, as imple-

mented in Collect-UML, is quite close to the “bug catalogue” approach, be-

cause it can only recognize the bugs that have been foreseen by the design-

ers.

The intelligent tutoring system DesignFirst-ITS (Moritz, 2008) is based 

on a “design-first” curriculum that introduces object-oriented design (using 

elements of UML) before coding. An author module enables the teacher to 

create new exercises and automatically generates the solution diagram. An 

evaluation module compares the learner’s diagram to the solution and typi-

cal bugs, and a pedagogical agent provides help and explanations. Design-

First-ITS is quite sophisticated, but the system is restricted to the very first 

steps of learning, due to the current limits of the expert module. When the 

teacher creates a new problem, he has to use declarative sentences with ba-

sic syntactic structure and active voice. The problem statement must contain 

all the details about the classes, attributes and methods. Implicit elements 

and useless details are proscribed. At last, the diagram should not comprise 

more than five classes. Consequently, the range of problems that can be 

solved with DesignFirst-ITS is quite small, and the learners have few ways 

of expressing their creativity when solving a problem.

DIAGRAM’S GENERAL FRAMEWORK

Before presenting more precisely the Diagram environment, we expose 

in this section the general approach that we adopted, the base of exercises 

we used to evaluate the environment, and present an example of problem 

that will be used throughout the article.

Research Motivation and Objectives

The teachers use a great variety of exercises during the first steps of 

learning, and this diversity is necessary to organize the course and introduce 



Diagram, a Learning Environment for Initiation 429

gradually new concepts. Thus, our first objective was to design an open en-

vironment, in which the teacher can add new exercises without constraints 

on the vocabulary or the size of the diagram. Such constraints strongly limit 

the expressive power and the range of exercises tackled by environments 

like Collect-UML or DesignFirst-ITS. In Diagram, the problem statement 

can include useless details and implicit classes or relations, like problems 

used in real university courses. The creation of an exercise only requires the 

teacher to type the statement and to give a correct diagram.

The studies mentioned in section 2 show that two points of interaction 

design are crucial: first, methodological guidance, in order to mitigate the 

absence of modeling method, and second, graphic tools for creating the dia-

gram. Our second objective was to design an interface that includes meth-

odological help, encourages self-correcting and self-monitoring, and pro-

vides the learner with various and relevant graphic tools. We set up a simple 

methodological guidance: the learner must follow several steps to create a 

diagram. We chose to display the statement of the problem on the screen, as 

the other environments do, but we more largely exploited the possibilities of 

the graphical interface to reinforce the link between text and diagram (sec-

tion 4). At last, we provided the learner with contextual assistance to sup-

port self-correcting.

Besides these generic helps, some systems also propose specific help 

messages by comparing the learner’s diagram with a solution. DesignFirst-

ITS automatically generates this solution, but the constraints that result 

from this approach (small diagrams, short problem statement, very simple 

sentences, no implicit elements) do not seem compatible with an open envi-

ronment. Collect-UML uses a solution provided by the teacher, and so can 

handle more complex problems, but its constraint-based approach also re-

stricts the learner’s creativity. In particular, the names of classes, attributes 

and methods are imposed, and the problem statement cannot contain implic-

it elements. Our third objective was to overcome these limits by exploring a 

new approach, also based on diagram comparison, but without a predefined 

list of constraints or bugs catalogue. Indeed, we consider that the differenc-

es between the learner diagram and the expert diagram are not necessarily 

mistakes; they sometimes express different modeling choices. The analysis 

of the differences between diagrams can be performed separately from the 

interpretation of these differences in a pedagogical objective. We adopted 

a modular approach, by separately developing a tool that compares the dia-

grams and enumerates their differences (section 5) and a tool that interprets 

these differences to provide pedagogical feedbacks (section 6). We make the 

assumption that this architecture should enable a diagnostic more robust and 

more relevant than the previous approaches.



430 Py, Auxepaules, and Alonso

Base of Exercises

At the beginning of the project, UML exercises have been collected in 

order to analyze them and characterize the difficulties encountered by learn-

ers. This base includes about thirty exercises. It has been used us to develop 

Diagram and to carry out the experiments in ecological context. Most of 

the exercises have been provided by a teacher of the university of Le Mans 

(France) who took part in the project. He uses these exercises in his OOM 

courses, with students of second year in computer science. Some exercises 

found in books or on the Web have also been included. The exercises of the 

base relate to various fields, the concepts and the vocabulary employed are 

very diverse. Their size varies from a few sentences to one page. The dia-

grams comprise four to twenty-seven classes.

This base has been analysed to produce a classification of the exercises 

according to their difficulty. Several criteria were retained: the length of the 

text, the simplicity of the vocabulary, the presence of implicit or superfluous 

information, the presence of clues, the number of information to be mod-

elled. A combination of these criteria provided a scale of difficulty going 

from one (for “very easy”) to five (for “very difficult”). A similar analysis 

was made to evaluate the degree of difficulty of the diagrams. These two 

classifications were then used to plan the experiments and propose exercises 

of increasing complexity.

Example

The functionalities of Diagram are illustrated throughout this paper 

with an exercise of the base, called “Pen and felt-pen”. Figure 1 presents a 

diagram that will be used thereafter as the expert diagram for this exercise.

“A pen and felt-pen are two concepts with common attributes: color, 

brand name, etc. A felt-pen has a top. Both pen and felt-pen have a 

body with some properties. Pen and felt-pen are used by a person 

and belong to a person. There is a specific felt-pen that is an eraser 

felt-pen.”



Diagram, a Learning Environment for Initiation 431

Figure 1. Class diagram for the “pelt and felt-pen” problem.

According to our classification, this exercise is considered as easy (lev-

el 2) regarding the statement but difficult (level 4) regarding the diagram be-

cause it requires many different UML notions. The statement is short, uses 

a simple vocabulary and familiar concepts. However, the diagram is not so 

simple for novices. First, one class is implicit: the word “pencil” does not 

appear in the text. Some students do not represent this class, but duplicate 

all the attributes and relations that refer to it. Another difficulty is the pres-

ence of two distinct relations between the classes “pencil” and “anybody”, 

which is not common in simple exercises. In addition, this diagram com-

prises four types of relations: association, composition, aggregation and in-

heritance. Many novice students cannot make the difference between these 

relations and often confuse them. At last, classical errors can appear in this 

exercise, for example an attribute used instead of a class, wrong orientation 

of relations, or incorrect multiplicities.

This exercise is a classical one, nevertheless it could not be solved with 

environments like Collect-UML or DesignFirst-ITS, because the concept 

“pencil” is implicit in the text, so that the corresponding class could not be 

created in these environments.

Figure 2. A student’s class diagram.



432 Py, Auxepaules, and Alonso

Figure 2 presents a student diagram that contains typical errors. It will 

be used throughout the article as an example of learner diagram. In this ex-

ample, the learner has noticed the presence of an implicit class, that he/she 

named “writing tool”. But he/she duplicated the composition “have” and ap-

plied it both to “pen” and “felt-pen”, instead of applying it only to “writing 

tool”. He/she represented the concept of “person” as an attribute, instead of 

a class. The relations between a person and a pencil are thus missing. The 

direction of certain relations is reversed: the inheritance between “felt-pen” 

and “eraser”, the composition between “felt-pen” and “a top”. Lastly, there 

are some small errors, like the attribute “color, mark, etc” or the insertion of 

an attribute “properties” into the “body” class.

THE INTERACTION IN DIAGRAM

Introducing some kind of methodological guidance in the environment 

can contribute to mitigate the lack of formal method for building a class 

diagram. The starting point is the method used by the teacher who partici-

pated in the design of Diagram. He recommends to its students to follow 

a three steps method: (1) carefully reading the statement, (2) working out 

the diagram, (3) reading again the statement and checking the correctness 

of the diagram. This method is simple and consistent with the recommenda-

tions that can be found in books about modeling. It has been transposed into 

Diagram and enriched it with graphic tools. A fourth stage has been added 

(which will be developed in section 6), in which the system evaluates the 

diagram and produces feedbacks to help the student to correct it (Alonso, 

2009).

During the reading step, the student discovers the problem statement. 

Some students use a pencil or a highlighter to mark the important words. 

To offer the same functionality in the computer environment, Diagram in-

tegrates the possibility of underlining words of the statement. A constraint 

is imposed before the student can start the modeling step: he/she must have 

underlined the important concepts of the statement (defined by the teacher 

when he/she creates the exercise).



Diagram, a Learning Environment for Initiation 433

Figure 3. The interface during the modelling step.

The second step consists in creating the class diagram (figure 3). Di-

agram offers two different ways of creating an UML element (class, attri-

bute or relationship): either from a phrase of the text (« assisted mode ») or 

freely (« free mode »). In the former case, the element and the expression 

are displayed in the same color, in order to facilitate visual control and re-

inforce the link between the statement and the diagram. In the free mode, 

the learner only selects the kind of element that he/she wants to create. The 

element is displayed in black and the learner chooses its name. This mode 

enables to create elements that are not explicitly mentioned in the text, and 

elements without name, like inheritance relationships. Any free element or 

free expression in the text can later be linked to another expression, and will 

take on the same color as the expression to which it is linked. The student 

remains free to modify the name of any element throughout the session. The 

free mode is an original concept in Diagram that gives a strong expressive 

power to the interface and allows the learner to be more creative than in the 

other environments.

During the last step, the student must read again the text problem and 

compare it to his/her class diagram in order to check the diagram correct-

ness and completeness. At the beginning of this step, the diagram is hidden 

and the text alone is displayed in black and white on the interface. When 

the student moves the mouse over an expression linked to an element of the 

diagram, this expression recovers its color and at the same time, the corre-



434 Py, Auxepaules, and Alonso

sponding element in the diagram reappears on the interface. The learner can 

then turn back to the modelling step, if he/she wants to modify his diagram, 

or continue and validate the diagram.

THE DIAGNOSTIC METHOD

The assistance provided during the interaction described above is ge-

neric: it does not take into account the correctness of the diagram. To pro-

duce specific feedbacks, based on the analysis of the individual productions 

of the student, it is necessary to compare the diagram with a solution, as 

Collect-UML and DesignFirst-ITS do (Baghaei, 2007; Moritz, 2008). How-

ever, the diagnostic methods of these two environments impose strong re-

strictions on the statements and the diagrams. Another approach, which 

seemed more compatible with the open character of Diagram, has been ex-

plored here. It consists in finding all the differences existing between the 

two diagrams, by using a tool that compares the diagrams. These differences 

can then be used to produce feedbacks.

Thus, a specific matching method that takes two class diagrams as 

inputs and matches them (Auxepaules, 2009) has been defined and im-

plemented. The principles of the algorithm rely on the object-oriented 

metamodel (OMG MOF, 2010) and on graph matching methods and algo-

rithms (Sorlin, Solnon & Jolion 2007). It proceeds in three steps. First, the 

diagrams are schematized in characteristic structural patterns. Then, these 

structures are compared by using similarity functions, and similarity scores 

are computed for each couple of structures. Finally, the resulting matches 

are labelled with the differences that they express. This method is detailed 

in the following sections.

Characteristic Structural Patterns

Characteristic structures, called patterns, are introduced. They corre-

spond to different granularity levels in class diagrams. The simple patterns 

represent the basic elements of the object-oriented meta-model, they are 

organized and structured into complex patterns. The patterns have been in-

troduced because of their interesting structural and semantic properties that 

can be exploited by the matching algorithm in order to match diagram parts 

at a higher granularity level.



Diagram, a Learning Environment for Initiation 435

The main patterns for class diagrams are represented on figure 4.

Figure 4. Characteristic structural patterns in class diagrams.

The simple patterns of class diagrams are those defined by the Object 

Management Group (OMG MOF, 2010). The classifiers include classes, 

interfaces and objects. The relationships include associations (simple asso-

ciations, aggregations and compositions), generalizations and dependencies. 

The features include properties (attributes and association ends) and opera-

tions. The complex patterns, respectively Association sequence and Gener-

alization hierarchy, are built from several simple patterns and a relationship 

type, respectively association and generalization.

Comparison and Matching

In order to automate comparison and matching, class diagrams are con-

sidered as graphs, where the vertices are classifiers and the edges are rela-

tionships. In this way, the problem of diagram matching can be seen as a 

variant of graph matching, with graphs characterized by specific features.

Sorlin, Solnon and Jolion (2007) propose a generic similarity measure 

for graph matching. This measure is parameterized by similarity functions 

that express domain dependent similarity knowledge and constraints. The 

matches are either univalent or multivalent. A match is multivalent when 

a single vertex in one graph is matched with a set of vertices in the other 

graph.

The diagnostic algorithm in Diagram relies on the same principles. 

Similarity functions compute a score for each couple of patterns to be com-

pared. These functions are either general or specific to pattern types. They 

weight and normalize qualitative and quantitative criteria.

The similarity score is composed of two sub-scores. The simple score 

weights the criteria that do not depend on the other parts of the diagram, as 

for example name, visibility, aggregation kind, abstraction, nature, and so 



436 Py, Auxepaules, and Alonso

on. The complex score weights the scores of the neighbours (parents, chil-

dren, siblings and linked patterns).

The diagram matching algorithm proceeds top-down. Complex pat-

terns, then simple ones, are compared and the pairs are ordered by decreas-

ing score. A greedy algorithm tries to match complex patterns in an univa-

lent way: if this is unsuccessful, multivalent matches are performed. Once 

the complex patterns have been matched, univalent or multivalent matches 

are performed in the same way for each simple pattern of a complex one.

Unlike graph vertices, the basic elements in a diagram (classes, attri-

butes, relationships) are usually given a name. The similarity functions must 

take this name into account. But, as these names refer to real world objects 

or concepts, the student may use many synonyms instead of the teacher’s 

names. Moreover, students often mistype words, or make spelling errors. 

This is why a specific string matcher has been designed and included in the 

system. It computes a score for each couple of names and selects the pair 

that matches best. Beforehand, names are filtered by case, gender, number 

and special characters.

Differences Between the Diagrams

The matching step, described above, produces pairs of fully or partially 

matched patterns. Then, partial matches are labelled with the kind of differ-

ence that they represent. These differences express gaps between structures 

or characteristics of the two diagrams. They are classified in eight catego-

ries:

• Omission of an element: an element of the reference diagram has 

been omitted by the learner.

• Addition of an element: the learner has added an element that does 

not appear in the reference diagram.

• Transfer of an element: an element has been transferred to another 

part of the diagram. For example, a relationship between two classes 

A and B in the reference diagram is shifted between classes A and C.

• Duplication of an element: an element of the reference diagram 

is replaced by several elements of the same type in the learner’s 

diagram.

• Merging elements: several elements of the same type are substituted 

by a single element.

• Misrepresentation: an element of the reference diagram is changed 

to another one, of a different type. For example, a class is replaced 

by an attribute or a composition is replaced by an association.



Diagram, a Learning Environment for Initiation 437

• Reversion of the direction of a relationship: an oriented relationship 

(inheritance, aggregation or composition) has been reversed by the 

learner.

• Wrong multiplicity: multiplicities of a relationship in the learner’s 

diagram are different from those in the reference diagram.

In students’ diagrams, some differences often go together. For example, 

a “class omission” usually implies a “relation omission” or a “relation trans-

fer”, because the relations supported by the missing class are themselves 

moved or omitted. When this situation happens, it is better to produce a 

single feedback covering the group of differences than to produce several 

feedbacks. Therefore, a set of fifteen compound differences, which can be 

treated as a whole, has been defined. A compound difference is made of a 

main difference and a set of secondary differences. For example, the com-

pound difference “relationship duplication and transfer” is composed of a 

main difference “relationship duplication” and one or several secondary dif-

ferences amongst “relationship transfer”, “direction reversion”, “wrong type 

of relationship” and “wrong multiplicity”.

Once all the single differences have been listed in a student’s diagram, 

the compound differences can be searched for. The compound differences 

have priority on simple differences and lead to specific feedback during the 

interaction. The simple differences that occur separately will produce the 

usual feedback.

Example

Table 1 presents the output of the diagnostic algorithm (i.e. the differ-

ences between the diagrams) on the example “pen and felt-pen”. Among all 

the differences, three subsets are recognized as compound differences (A, B 

and C) and the others are simple differences (D, E, F and G).

Implementation and evaluation

The diagnostic algorithm is implemented in Java. UML2 (an Eclipse 

Tools sub-project) of Eclipse modeling project has been used to represent 

the diagrams and realize the syntactic validation. An evaluation has been 

conducted with students’ diagrams in order to assess the robustness and 

speed of the diagnostic method (Auxepaules & Py, 2010). The results show 

that the diagnostic quality is quite good for simple and medium problems, 



438 Py, Auxepaules, and Alonso

and remains correct on complex problems. On the whole test base (n=82), 

90% of the matches are relevant at 85% or more. The calculus time depends 

on the diagram’s size: it varies between 0.2 and 4 seconds (on average: 2 

seconds), in function of the diagram complexity. This is fast enough to pro-

vide pedagogical feedbacks online.

Table 1
Compound and simple differences

Simple differences Compound differences

Wrong representation of class “Person” 

by an attribute “person” of class “Writing 

tool”

(A) Wrong representation of a class and 

omission of the related elements

Omission of relationship “belongs to” 

between classes “Person” and “Pencil”

Omission of relationship “uses” between 

classes “Person” et “Pencil”

Duplication of relationship “have” 

between classes “Pencil” et “Body”

(B) Duplication and transfer of a 

relationship

Transfer of relationship “have” from 

“Pencil” to “Pen”

Transfer of relationship “have” from 

“Pencil” to “Felt-pen”

Reversion of the direction of the relation-

ship “has” between “Felt-pen” and “Top”

(C) Wrong representation of a relation-

ship and direction reversion

Wrong type of relationship “has” 

between “Felt-pen” and “Top” 

Wrong multiplicity of “has” for “Felt-pen”

Wrong multiplicity of “has” for “Top”

(D) Reversion of the direction of 

inheritance between “Felt” and “Felt-pen”

(E) Representation of the abstract class 

“Pencil” by an ordinary class

(F) Merging of attributes “color” et “brand 

name”

(G) Addition of an attribute “properties” 

into class “Body”



Diagram, a Learning Environment for Initiation 439

PEDAGOGICAL FEEDBACKS

The output of the diagnostic algorithm is a flat list of differences be-

tween the student’s diagram and the reference diagram. However, these 

differences can have quite different meanings, from a pedagogical point of 

view. Some differences only express a minor variation of the solution while 

others represent a great mistake. The environment must provide a different 

response in each situation and the formulation of the feedback messages 

must vary, according to the degree of certainty about the presence of an er-

ror.

Feedbacks formulation

The classification proposed by (Lemeunier, 2000) identifies three main 

forms of dialogic intervention: notify, question, and propose. These three 

categories have been used to design the pedagogical feedbacks in Diagram, 

in a graded manner. “Notify” draws the student’s attention to some part of 

the diagram, or to the way he has modeled a particular concept. This modal-

ity is used for differences that are probably due to a slight variation in the 

students’ diagram. “Question” consists in asking the learner about the dia-

gram’s properties. The questions are on a binary mode (the answer is “yes” 

or “no”) and encourage the learner to mentally check whether the diagram 

satisfies a given property. “Propose”, the most direct modality, consists in 

suggesting how to correct the diagram. This kind of help is provided only 

when the presence of an error is near-certain. 

For each type of difference and each form of intervention, a sentence 

template can be filled with the name of the elements. For example, the tem-

plate associated with the “relationship omission” difference and the “notify” 

intervention is “A relationship is missing between classes C1 and C2”. The 

variables C1 and C2 are simply replaced with the effective names of the 

classes when the message is displayed.

The appropriate form of intervention only depends on the type of the 

difference. For example, adding or forgiving an element is not necessarily 

an error. In this case, the environment only displays the “notify” and “ques-

tion” messages. By contrast, when the direction of a relationship has been 

reversed, the “propose” message can be displayed, because the presence of 

an error is very likely.

During the interaction, feedback messages are graduated from the more 

general (notify) to the more precise (propose). For each difference, the most 



440 Py, Auxepaules, and Alonso

general message is displayed first, and the learner can ask for a more precise 

message if he/she wants to.

Example

For each of the seven differences mentioned in table 1, a feedback mes-

sage is produced following the modalities described in the previous para-

graph. Three examples are given below.

The first compound difference means that the student has represented a 

class by an attribute, and has omitted the associated relationships. The feed-

back messages focus on the wrong representation of “person” but do not 

mention the absence of the relationships, because they relate to a class that 

is missing.

Notify : You have represented person as an attribute of the class Writing tool.

Question : Can the attribute person have properties or a behaviour ?

Propose : If person has properties or a behaviour, it should be a class

The compound difference C is formed of a type error and an inversion of 

direction (the errors about multiplicities are considered as minor errors, 

compared to these errors, and are masked). The feedback message focuses 

on the inversion.

Notify : You say that a top is composed of felt-pen.

Question : Is a top composed of felt-pen ?

Propose : I would rather say that felt-pen is composed of a top.

The simple difference G indicates that the student has added an attribute 

“properties” into the class “body”. The feedback is composed of two 

sentences. As the insertion of an attribute is not necessarily an error, the 

“propose” sentence is absent.

Notify : Your class body has an attribute properties.

Question : Is properties an attribute of body ?

EXPERIMENTS

The experiments of the first versions of Diagram focussed on the con-

textual helps (Alonso, Py & Lemeunier, 2008), and the diagnostic module 



Diagram, a Learning Environment for Initiation 441

has been evaluated apart (Auxepaules & Py, 2010). This article only pres-

ents the experiment carried out after the integration of the diagnostic mod-

ule, which focussed on the relevance of the diagnostic performed in real 

situations and on the effects of the feedback messages on the students’ be-

haviour.

Sessions

The experiment involved eighteen students in second year of University 

Diploma for Science and Techniques (DEUST) working with Diagram dur-

ing four streams of three-hour practice session of UML modeling course. 

The experiment was conducted in an ecological context, i.e. during the nor-

mal schedule of the class. Prior to the session, the students were warned 

that Diagram’s feedbacks are related to one particular solution and that they 

could ignore some messages if they were convinced that their own solution 

was a correct alternative. The teacher advised them to read the messages 

and decide whether a modification was necessary or not. During a session, 

each student practiced between three and five exercises. For each session, 

actions on the interface have been recorded.

Results and discussion

All the exercises of the second and the third sessions have been anal-

ysed. The first session has not been analyzed because the students were still 

discovering Diagram. For each exercise, the number of diagnostic calls, the 

total number of messages and the number of messages read by the learner 

have been calculated. We consider that a message is read if the student con-

sults at least the first modality of the message (usually, the “notify” feed-

back). 

All in all, 86 exercises were analysed, for a total of 306 calls of the di-

agnostic, which means that the diagnostic was called 3.56 times per exercise 

and per student. It results in 1 924 messages, 836 of which (43.45%) have 

been read. Some students used to read only one or two messages, immedi-

ately modify the diagram and call the diagnostic again, which explains this 

low rate. In some cases, however, the students did not read the messages 

because they were too many, which probably discouraged them. When the 

number of messages in a whole session is less than 50, the reading rate is 

52.74% whereas if it goes past 50, the rate drops to 31.25%. To address this 



442 Py, Auxepaules, and Alonso

problem, a degree of priority could be assigned to each message so that, in a 

first step, only the most important messages would be displayed.

The same message can appear several times during a session (at the 

maximum, as many times as the diagnostic is called), so that among the 836 

read messages, only 565 are distinct. Among these 565 messages, it can be 

observed, in 11.6% of the cases, that the diagnostic module did not properly 

match the two diagrams. As a result, the feedback message is inappropriate. 

This occurs either when the student’s diagram is very different from the ref-

erence diagram, both in structure and in class/relation names, or when two 

classes (or more) have very similar names. The diagnostic algorithm relies 

on structure and names to compare the diagrams, so that its performances 

deteriorate in these situations, as it was already noticed in the pre-tests of 

the diagnostic tool (Auxepaules, Py & Lemeunier 2008). However, the dis-

turbance remained acceptable because the resulting messages were clearly 

irrelevant and the students ignored them most of the time.

The students’ reactions after the relevant messages can be classified into 

three categories:

• Correction: the student modifies the diagram in accordance with the 

message (49.7%).

• Modification: the student modifies the diagram in relation with the 

message but some difference with the reference diagram remains 

(3.8%).

• No Effect: the student does not take the message into account and 

does not modify the diagram in relation with the message (46.5%).

The “modification” case is rare, which suggests that the messages are 

clear: when the students modify their diagram to take into account a piece 

of advice, this advice is properly understood (49.7%). However, the rate 

of messages that do not cause any reaction is fairly high (46.49%). Several 

hypotheses can explain this result. As students were told they could ignore 

some messages, we can assume that a lot of them did. Moreover, several 

calls of the diagnostic occurred a few minutes before the end of the ses-

sions. In these cases, even if the students could read the messages, they had 

not enough time to make all the changes. It can also be assumed that a few 

messages have not been understood at all by students. 

In order to determine what kinds of messages were concerned, the cor-

rection rate was analysed more precisely according to the type of difference. 

Table 2 indicates the percentage of each difference among the messages, 

and the correction rate for each difference.



Diagram, a Learning Environment for Initiation 443

Table 2
Percentages Among Read Messages and Correction Rates

Difference % among read messages Correction rate

Misrepresentation 28.46 51.41 %

Wrong multiplicity 27.65 50.72 %

Omission 15.83 67.09 %

Addition 10.82 24.07 %

Duplication 8.42 21.43 %

Duplication and transfer 

(compound difference)

4.61 86.96 %

Merging 2.81 21.43 %

Reversion 1.20 100.00 %

Transfer 0.20 100.00 %

Total 100.00

The results show that Misrepresentation and Wrong Multiplicity are 

the most frequent differences (respectively 28.46% and 27.65%). The corre-

sponding messages are easy to understand and quite precise about the modi-

fication to perform. The correction rate shows that, in half of the cases, the 

students decided to follow the advice. Messages related to an Omission dif-

ference are most of the time suggestive and easy to follow, especially when 

the missing concept is present in the problem statement: this explains the 

quite good correction rate. By contrast, the correction rate corresponding to 

Addition difference is low: as alternative solutions often include additional 

items, learners usually chose to keep the extra element. The Duplication and 

Transfer compound difference often happens when elements of a mother-

class are duplicated in the children classes. The high correction rate sug-

gests that the messages are efficient and help the student to understand the 

process of generalization, an important concept of object-oriented model-

ing. At last, the messages related to Duplication and Merge differences seem 

to be too general and could be improved.

It sometimes happens that, after having read a message, a student per-

forms several corrections on neighboring objects, as if he/she was checking 

all similar objects in the diagram. This suggests that the messages efficiently 

solicit the checking metacognitive function. 

Overall, the time spent on Diagram after the first call of the diagnostic 

tool represents about one third of the total time. The students devoted much 

time checking and improving their diagrams, by using the feedback messag-



444 Py, Auxepaules, and Alonso

es. At the end of a session, the diagrams appeared more complete and more 

accurate than if students had not benefited from the feedback messages.

CONCLUSION

We have presented a new approach for the design of a learning envi-

ronment dedicated to class diagrams. The main contribution of this work is 

to overcome some limits of the existing systems. Diagram is an open envi-

ronment, which does not impose constraints or restrictions on the problem 

statement, and allows the learner to express his/her creativity through the 

graphical interface. As a result, the range and the complexity of the prob-

lems that can be solved with Diagram are bigger. Moreover, this flexibility 

is compatible with accurate feedback messages, as in sophisticated tutoring 

systems. These improvements were made possible by the integration of an 

original diagnostic algorithm – a diagram matcher – that produces the list 

of the differences between the learner’s diagram and the solution diagram. 

Several experiments in ecological context have shown that the interaction in 

Diagram encourages the learner’s regulation activities, by supporting check-

ing and self-correcting.

We have focussed on the first stages of UML learning, and that imposes 

limits on our work. The complete object-oriented modelling process relies 

on different types of diagrams, not only the class diagram. A first perspec-

tive is to extend this framework to other kinds of UML diagrams (object 

diagrams, component diagrams, and so on), that are required for more ad-

vanced students. The features of Diagram, like the task organization, the 

graphic tools and the help messages, could be adapted to that end.

The diagnostic module works with only one solution and is not able to 

recognize a correct alternative solution. To overcome this limit, it would be 

necessary to adapt the algorithm so that it could take into account different 

solutions. But this would require describing the relations between diagrams 

having common elements and then to merge the partial matching results, 

which is currently regarded as a very complex problem.

Lastly, a limit of the assistance is due to the fact that the feedbacks are 

produced in the same way, each time the diagnostic is performed. Another 

perspective is to memorize the successive diagnostic, in order to avoid re-

peating several times the same message, or, on the contrary, to insist if the 

learner repeats the same mistake for a long time.



Diagram, a Learning Environment for Initiation 445

References

Alonso M., Py D., Lemeunier T. (2008). A Learning Environment for Object-

Oriented Modeling, Supporting Metacognitive Regulations. In Proceedings 

of the Eighth IEEE International Conference on Advanced Learning Tech-

nologies (pp. 69-73). Santander, Cantabria, Spain.

Alonso M.. (2009). Conception de l’interaction dans un EIAH pour 

la modélisation orientée objet. Doctor thesis in Computer Sci-

ence, Université du Maine, France. http://cyberdoc.univ-lemans.fr/

theses/2009/2009LEMA1007.pdf 

Auxepaules L., Py D., Lemeunier T. (2008). A Diagnosis Method that Matches 

Class Diagrams in a Learning Environment for Object-Oriented Modeling. 

In Proceedings of the Eighth IEEE International Conference on Advanced 

Learning Technologies (pp. 26-30). Santander, Cantabria, Spain.

Auxepaules L. (2009). Analyse des diagrammes de l’apprenant dans un EIAH 

de la modélisation orientée objet. Doctor thesis in Computer Science, Uni-

versité du Maine, France. http://tel.archives-ouvertes.fr/tel-00455992/fr/ 

Auxepaules L., Py D. (2010). An Evaluation of Diagnosis in a Learning Envi-

ronment for Object-Oriented Modeling. In Jemni M., Kinshuk, Sampson D. 

& Spector J.M. (Eds.) Proceedings of the Tenth IEEE International Confer-

ence on Advanced Learning Technologies (pp 102-104). Sousse, Tunisia.

Baghaei N., Mitrovic A., Irwin W. (2006). Problem-Solving Support in a Con-

straint-based Tutor for UML Class Diagrams. Technology Instruction, Cog-

nition and Learning, 4(2), 113-137.

Baghaei N. (2007). A collaborative constraint-based intelligent system for learn-

ing object-oriented analysis and design using UML. Philosophiæ Doctor 

thesis in Computer Science, University of Canterbury, New Zealand, 2007.

Frosch-Wilke D. (2003). Using UML in Software Requirements Analysis - Ex-

periences from Practical Student Project Work. In InSITE- Informing Sci-

ence and IT Education Conference (pp. 175-183). Pori, Finland.

Habra N., Noben K. (2001). Teaching Object Orientation at the Design Level. 

In Proceedings of the 5th Workshop on Pedagogies and Tools for Assimila-

ting Object-Oriented Concepts, 16th Annual ACM Conference on Object-

Oriented Programming, Systems, Languages and Applications OOPSLA 

(October 2001).

Lemeunier T. (2000). L’intentionnalité communicative dans le dialogue homme-

machine en langue naturelle. Doctor thesis in Computer Science, Université 

du Maine, France.

Moisan S., Rigault J.-P. (2009). Teaching Object-Oriented Modeling and UML 

to Various Audiences. In Models in Software Engineering, Workshops and 

Symposia at MODELS 2009 (pp. 40-54). Lecture Notes in Computer Sci-

ence 6002, Springer-Verlag.

Moritz S. (2008). Generating and Evaluating Object-Oriented Designs in an 

Intelligent Tutoring System. Philosophiæ Doctor thesis in Computer Sci-

ence, Lehigh University, Pennsylvania, http://designfirst.cse.lehigh.edu/

MoritzDissertation.pdf



446 Py, Auxepaules, and Alonso

Ohlsson S. (1994). Constraint-Based Student Modeling. In Greer J.E. & McCal-

la G. (Eds.) Student Modelling : the Key to Individualized Knowledge-based 

Instruction (pp. 167-189). Berlin: Springer.

OMG MOF (2010). OMG’s MetaObject Facility. Retrieved November 26, 2010, 

from http://www.omg.org

OMG UML (2010). Unified Modeling Language™, UML® Resource Page. Re-

trieved November 26, 2010, from http://www.uml.org

Sorlin S., Solnon C., Jolion J.-M. (2007). A Generic Graph Distance Measure 

Based on Multivalent Matchings. Applied Graph Theory in Computer Vi-

sion and Pattern Recognition. Studies in Computational Intelligence, 52, 

151-182.

Suraweera P., Mitrovic A. (2004). An Intelligent Tutoring System for Entity Re-

lationship Modeling. The International Journal of Artificial Intelligence in 

Education, 14(3-4), 375-417.


