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Abstract

In this paper we introduce the Convex Difference Inclusion (CDI) systems as a
modelling framework useful to analyse set-theory and invariance-related issues
for nonlinear and uncertain systems. The dynamics of a CDI system is given by a
set-valued map whose values are convex, compact subsets of the space and are de-
termined by convex bounding functions. Necessary and sufficient boundary-type
conditions for invariance and contractiveness, characteristic of the linear systems,
are given for the CDI systems. Lyapunov functions are provedto be induced by
contractive sets for CDI systems, as in the linear context. Acomputational proce-
dure for obtaining polytopic invariant and contractive sets for nonlinear systems,
based on the properties of the CDI systems, is presented.

Keywords: Invariance, difference inclusions, convex analysis, nonlinear systems.

1. Introduction

Invariance and contractiveness are fundamental in systemsanalysis and con-
trol, mainly due to the stability and robustness propertiesof these regions of the
state space. A notable pioneering contribution on invariance is [1]. Invariance and
related topics, mainly for linear systems, are treated in [2, 3, 4, 5], on the maxi-
mal invariant set, and in [6], on the minimal invariant set. Amonograph on the
topic is [7]. Invariance is also employed to ensure convergence of model predic-
tive control, see [8, 9]. Few general results are available for nonlinear systems.
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The problems of obtaining invariant ellipsoids, [10], and parallelotopes, [11], for
nonlinear systems, are addressed using linear difference inclusions (LDI). The
computation of invariant ellipsoids for linear systems with static nonlinear func-
tions in the feedback, as piecewise affine functions and saturation, are addressed
in [12, 13]. Methods to obtain invariant polytopes are proposed for saturated sys-
tems, [14] and for Lur’e systems, [15]. The computation of invariant polytopes
for general nonlinear systems is discussed in [16], using interval arithmetic, and
in [17, 18], employing properties of DC functions. The work [19] proposes ap-
proximations of the minimal invariant set for quantized systems.

In this paper we present and use CDI systems for representingand approximat-
ing nonlinear and uncertain discrete-time systems. The CDIsystems are tightly
related to differential and difference inclusions. See [20, 21, 22] for a deep and
exhaustive analysis of such models and of their properties.Nevertheless, and de-
spite their generality and mathematical rigor, the impression is that the results of
the cited works have still not found the central role they deserve, mainly in the
more practical and computation-oriented fields of control.

Our aim is to particularize the analysis posing convexity-related assumptions
on the set-valued maps and on the considered sets. This implies less generality but
it also permits to exploit the properties of difference inclusions and convex anal-
ysis (see [23, 24, 25]), for computing invariant and contractive sets for nonlinear
and uncertain systems. From another point of view, CDI systems are the result of
an abstraction process to generalize previous results for particular nonlinear sys-
tems, see [18] for instance. Necessary and sufficient boundary-type conditions for
invariance and contractiveness of convex sets for CDI systems are stated. Such
results are employed to design an algorithm to obtain invariant and contractive
polytopes for CDI systems. Since many nonlinear systems admit CDI representa-
tions or extensions, the results apply to a wide class of systems.

The paper is organized as follows: Section II introduces theCDI systems.
Section III presents invariance and contractiveness for CDI systems. In Section
IV the algorithm is illustrated and then applied to a numerical example in Section
V. The paper ends with a section of conclusions.

Notation: The set of positive integers smaller than or equal ton ∈ N is Nn.
GivenA ∈ R

n×m, Ai with i ∈ Nn, is its i-th row. Given a setD ⊆ R
n, co(D) is

the convex hull ofD, int(D) its interior,∂D its boundary,S(D) are the subsets of
D,K(D) are the convex compact subsets ofD andK0(D) are the convex compact
setsC ⊆ D with 0 ∈ int(C). GivenD,E ⊆ R

n andα ≥ 0, defineD⊕E = {z =
x+ y ∈ R

n : x ∈ D, y ∈ E} andαD = {αx ∈ R
n : x ∈ D}. Given a set-valued

mapF : Rn → S(Rm), define graph(F ) = {(x, y) ∈ R
n × R

m : y ∈ F (x)}.
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2. Convex difference inclusions: CDI systems

Consider the system given by the difference inclusions

x+ ∈ F(x), (1)

wherex ∈ R
n is the state,x+ is the successor andF : Rn → S(Rn) is a set-valued

map onRn, that is a function which relates a set to every pointx ∈ R
n.

Assumption 1. The set-valued mapF : Rn → K(Rn) determining the system
dynamics (1) is such that

F(αx1 + (1− α)x2) ⊆ αF(x1)⊕ (1− α)F(x2), (2)

for everyα ∈ [0, 1] and everyx1, x2 ∈ R
n, andF(0) = {0}.

Notice that Assumption 1 implies also thatF(x) is convex and compact for
everyx ∈ R

n. The dynamical systems (1) for which Assumption 1 holds are
referred to as Convex Difference Inclusions (CDI) systems.Consider the system

x+ ∈ F(x)⊕W, (3)

wherex ∈ R
n is the state,x+ is the successor,F(·) is a set-valued map onRn and

W is the additive uncertainty bounding set satisfying the following assumption:

Assumption 2. The setW ⊆ R
n is compact and0 ∈ int (co (W )).

If Assumptions 1 and 2 hold forF(·) in (3) the system is denoted as uncertain
CDI system. We recall here the concept of support function.

Definition 1. Given a setD ⊆ R
n, the support function ofD evaluated atη ∈ R

n

is φD(η) = sup
x∈D

ηTx.

Among the properties of support function, see [23, 24], we have that set inclu-
sion conditions can be given in terms of support functions.

Property 1. Given a closed, convex setD ⊆ R
n, thenx ∈ D if and only if

ηTx ≤ φD(η), for all η ∈ R
n. Given alsoC ⊆ R

n, thenC ⊆ D if and only if
φC(η) ≤ φD(η), for all η ∈ R

n.

Assumption 1 can be posed also in terms of support functions,see below.
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Proposition 1. The set-valued mapF : Rn → K(Rn) determining the system
dynamics (1) satisfies Assumption 1 if and only ifF̌ : Rn × R

n → R defined as

F̌ (x, η) = sup
z∈F(x)

ηTz, (4)

is such thatF̌ (·, η) is convex onRn andF̌ (0, η) = 0, for all η ∈ R
n.

Proof: The proposition, suggested to us by a reviewer we would like to ac-
knowledge, stems from properties of support functions. Notice that the value
F̌ (x, η) is the support function atη ∈ R

n of the setF(x), for everyx ∈ R
n. From

F(x) ∈ K(Rn) and properties of support function, see [23, 24], the relation (2)
holds for everyη ∈ R

n, everyα ∈ [0, 1] and everyx1, x2 ∈ R
n, if and only if

F̌ (αx1 + (1− α)x2, η) = φF(αx1+(1−α)x2)(η) ≤ φαF(x1)⊕(1−α)F(x2)(η) =
= αφF(x1)(η) + (1− α)φF(x2)(η) = αF̌ (x1, η) + (1− α)F̌ (x2, η),

which means thaťF (x, η) is convex inx, for everyη ∈ R
n. Finally,F(0) = {0}

if and only if F̌ (0, η) = 0 for all η ∈ R
n.

The functionF̌ (·, ·) is referred to as convex bounding function.

Remark 1. The functionF̌ (·, η) is continuous on the relative interior of its effec-
tive domain, for everyη ∈ R

n, from its convexity, see Th.10.1 in [23]. This and the
fact thatF(x) is assumed convex and compact for everyx ∈ R

n imply thatF is
continuous onRn and is a particular case of Marchaud maps, often considered in
works concerning viability theory and set-valued dynamical systems, [20, 21, 22].

By convexity and compactness ofF(x) for everyx ∈ R
n, we have that

F(x) = {z ∈ R
n : ηTz ≤ F̌ (x, η), ∀η ∈ R

n}. (5)

Given two set-valued mapsG,F : Rn → S(Rn), we say thatG is an extension
of F , and writeF ⊆ G, if and only if graph(F ) ⊆ graph(G). A system is an
extension of another if the graph of the former is an extension of the graph of the
latter. The CDI systems contain a large class of nonlinear and uncertain systems
and can be used to approximate many others, see Proposition 2below and [26].

Proposition 2. Consider the systemx+ = f(x) with f : Rn → R
n twice differ-

entiable inD={x∈R
n :‖x−x0‖2<r}, with r > 0, andρ ∈ R

n such that
∣

∣

∣

1

2
(x− x0)

THj(x̃)(x− x0)
∣

∣

∣
≤ ρj(x− x0)

T (x− x0), (6)
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for all x, x̃ ∈ D, with j ∈ Nn, whereH(fj)(·) = Hj(·), is the Hessian offj(·).
Then the CDI system defined by (5) with the convex bounding functions

F̌ (x−x0, η)=
n
∑

j=1

{

ηj(fj(x0)+(x−x0)
T∇fj(x0))+ρj|ηj|(x−x0)

T (x−x0)
}

, (7)

for everyη ∈ R
n, is an extension of the nonlinear one, onD.

Proof: By hypothesis, the gradient∇fj(·) and the Hessian offj(·) exist at
everyx ∈ D, for all j ∈ Nn. Exploiting the Lagrange form of the remainders of
the Taylor series expansion, we have that givenx0 ∈ D, for everyx ∈ D there
existsx̃(x) = x̃ ∈ D such that the following equality holds

fj(x) = fj(x0) + (x− x0)
T∇fj(x0) +

1

2
(x− x0)

THj(x̃)(x− x0),

for everyj ∈ Nn. From (6), for allx ∈ D and everyη ∈ R
n, we have that

ηTf(x)=
n
∑

j=1

ηj(fj(x0) + (x− x0)
T∇fj(x0) +

1
2
(x− x0)

THj(x̃j)(x− x0))≤

≤
n
∑

j=1

ηj(fj(x0)+(x−x0)
T∇fj(x0))+|ηj|

∣

∣

1
2
(x−x0)

THj(x̃j)(x−x0)
∣

∣≤F̌(x−x0,η)

which means thatf ⊆ F , whereF(·) is defined by (5) and (7).
A possible choice ofρj is the maximum onD of the spectral norm of0.5Hj(x̃).

Remark 2. For a nonlinear systemx+ = f(x), a finite number of convex bound-
ing functions can be sufficient to determine a CDI extension.For instance, if for
everyi ∈ Nn there exist two functionšfi, f̂i : Rn → R, convex and concave, re-
spectively, such that̂fi(x) ≤ fi(x) ≤ f̌i(x), for all x ∈ R

n, andf̌i(0) = f̂i(0) =
0, then a CDI system extension of the nonlinear one can be determined.

The convexity of the bounding functions, implied by Assumption 1 (see Propo-
sition 1), permits to characterize invariant sets in terms of convex constraints and
then to pose efficiently solvable problems for their computation, see [25].

2.1. LDI systems

A popular way of approximating nonlinear and uncertain systems is given by
Linear Difference Inclusion (LDI) systems, see [27, 28]. Itwill be shown that
the LDI systems form a subclass of the CDI ones, in particularof those whose
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convex bounding functions are piecewise linear. Hence, using an LDI system to
approximate a nonlinear one is a way of generating a CDI extension.

An LDI system in terms of difference inclusions is given by (1) with

F(x) = A(x) = {Ax ∈ R
n : A ∈ A},

where, with a slight abuse of notation, we useA for denoting both the set-valued
map and the setA ⊆ R

n×n. If A is a polytope inRn×n, the LDI is said polytopic.

Remark 3. Notice that the set-valued mapA(·) satisfies the Assumption 1 if
A(x) ∈ K(Rn) for all x ∈ R

n (then also polytopic LDIs do). In fact, the function

F̌ (x, η) = sup
z∈A(x)

ηTz = max
A∈A

ηTAx

with η ∈ R
n, is convex inx, being the pointwise maximum of a family of convex

functions, see [25]. Moreover,̌F (0, η) = {0} for all η ∈ R
n. Then the LDI sys-

tems are a particular subclass of the CDI systems and hence every result valid for
the latters applies also to the formers. Nonetheless CDI provides a more general
modelling framework, as not every CDI system admits an LDI representation.

Remark 4. Important results, valid for linear systems, are valid alsofor LDI
systems (more generally, for positively homogeneous ones). An example is the
boundary-type condition for invariance and contractiveness, see Sec. 4.2.4 in
[7]. The underlying idea is that, if the extremal realizations of the LDI, which
are linear systems, satisfy a condition (invariance for instance), then the whole
LDI system fulfils it, see [27, 28, 29]. Such results are substantially based on
linearity. The key idea of the CDI approach is that the fundamental ingredient for
the desired invariance-related properties to hold is convexity rather than linearity.
Thus the results for the CDI systems improve and contain those for the LDI ones.

2.2. Generalized saturated systems
Generalized saturated systems, introduced in [30], are a family of systems

including many common static nonlinearities (saturation,dead-zone, hysteresis,
etc.) and are easily extendible by CDI systems. We introducethe definition of
generalized saturated function in its scalar version (see [30] for the vectorial one).

Definition 2. The functionϕ : R × N → R is said to be a generalized saturated
function with saturation levely0 ∈ R, y0 > 0, dead-zoneσ ∈ R

n , σ ≥ 0, and
linear slopeµ ∈ R, µ > 0, if

−Γ(−y) ≤ ϕ(y, k) ≤ Γ(y), ∀y ∈ R, ∀k ∈ N, (8)

whereΓ(y) = max{µ(y + σ), −y0} andk ∈ N is the discrete-time instant.
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The generalized saturated functions can represent common static nonlinear
functions as saturation plus dead-zone, hysteresis (see Figure 1) and saturation.
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Figure 1: Examples: saturation plus dead-zone (left) and hysteresis (right).

Given the generalized saturated functionϕ(·, ·), the dynamical system

xk+1 = Axk +Bϕ(Fxk, k), (9)

whereF ∈ R
1×n, is called generalized saturated system. A CDI extension ofthe

generalized saturated system can be directly determined bythe following convex
bounding functions

F̌ (x, η) =

{

ηTAx+ ηTBΓ0(Fx), if ηTB ≥ 0,
ηTAx− ηTBΓ0(−Fx), if ηTB < 0,

(10)

for all η ∈ R
n and allx ∈ R

n with Γ0(y) = max{µy, −y0−µσ}. The system (3)
with F(·) determined by convex bounding functions (10) andW = {w = Bv :
−µσ ≤ v ≤ µσ}, is an uncertain CDI extension of the generalized saturatedone.

Remark 5. Notice that the generalized saturated systems do not admit LDI exten-
sions. Even for simple saturated systems, the LDI extensionis more conservative
than the CDI one. In fact, givenσ = 0, the graph of the LDI approximation of the
saturated system is obtained by replacingΓ0(y) with max{µy, 0} in (10). Thus
the graph of the CDI extension is strictly contained in the graph of the LDI one.

3. Invariance for CDI systems

Invariance and contractiveness of convex sets for CDI systems are character-
ized in this section. First, the standard definitions are recalled.
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Definition 3. A setΩ ⊆ R
n is a robust invariant set for the systemx+ = f(x, w)

and constraintsx ∈ X if Ω ⊆ X andf(x, w) ∈ Ω, for all x ∈ Ω and allw ∈ W .

In the absence of the uncertainty the related set is called invariant set.

Definition 4. A setΩ ∈ K0(Rn) is a contractive set for the systemx+ = f(x, w)
and constraintsx ∈ X, with contracting factorλ ∈ [0, 1], if Ω ⊆ X and
f(x, w) ∈ λΩ, for all x ∈ Ω and allw ∈ W .

Notice that contractiveness induces invariance, thus whenin the following we
will guarantee contractiveness of a set, we will implicitlyensure also invariance.
In what follows we prove that important results valid for linear systems, concern-
ing boundary-type conditions for invariance and set-induced Lyapunov functions,
are valid also for CDI systems.

3.1. Necessary and sufficient condition for invariance for CDI systems

As invariance and set-theory are important to deal with control in presence of
constraints, consider the state constraintsx ∈ X ⊆ R

n. The unconstrained case
is enclosed, given byX = R

n.

Assumption 3. The state constraint setX ⊆ R
n is closed, convex and0 ∈

int(X).

A necessary and sufficient condition for contractiveness for CDI systems is
provided, see [5] for the linear case. Given the set-valued mapF(·), define the
mapMF : S(Rn) → S(Rn) as

MF(Ω) =
⋃

x∈Ω

F(x), (11)

for all Ω ∈ S(Rn), which is monotone, i.e.MF(C) ⊆ MF(D) for all C,D ⊆ R
n

such thatC ⊆ D. Given a setX0 ∈ S(Rn), the sequence of setsXk, for k ∈ N,
generated by iterating

Xk+1 = MF(Xk), (12)

with initial conditionX0 are the sets reachable fromx ∈ X0.

Property 2. The condition for contractiveness of a setΩ ∈ K0(X) for CDI sys-
tems isF(x) ⊆ λΩ for everyx ∈ Ω or, equivalently,MF(Ω) ⊆ λΩ, where
MF(·) is defined in (11).
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The contractiveness ofΩ ∈ K0(X) for a CDI system in terms of support
functions follows.

Proposition 3. Let Assumptions 1 and 3 hold for the set-valued mapF(·) deter-
mining the system dynamics (1) and the state constraint setX. Givenλ ∈ [0, 1],
a setΩ ∈ K0(X) is a contractive set for system (1) if and only if

ηTz ≤ λφΩ(η), ∀z ∈ F(x), ∀x ∈ Ω, ∀η ∈ R
n. (13)

Proof: The condition for contractiveness can be expressed in termsof support
functions asφF(x)(η) ≤ λφΩ(η), for all x ∈ Ω andη ∈ R

n, see Property 1, then
also as in (13).

Condition (13) involves everyx ∈ Ω. A boundary-type necessary and suffi-
cient condition for contractiveness for CDI systems and convex sets can be posed.
GivenΩ ∈ K0(Rn), the Minkowski function ofΩ atx ∈ R

n is defined as

ΨΩ(x) = min
α≥0

{α ∈ R : x ∈ αΩ}.

Theorem 1. Let Assumptions 1 and 3 hold for the set-valued mapF(·) determin-
ing the system dynamics (1) and the state constraint setX. Givenλ ∈ [0, 1], a set
Ω ∈ K0(X) is a contractive set for system (1) if and only if

F̌ (x, η) ≤ λφΩ(η), ∀x ∈ ∂Ω, ∀η ∈ R
n. (14)

Proof: Condition (14) is equivalent toF(x) ⊆ λΩ for x on the boundary of
Ω. We prove thatF(x) ⊆ λΩ is satisfied for everyx ∈ ∂Ω if and only if it is
satisfied for everyx ∈ Ω. Necessity is due to∂Ω ⊆ Ω, sinceΩ is compact. To
prove sufficiency, considerx ∈ Ω. Thenx̄ = α−1x, with α = ΨΩ(x) ∈ [0, 1],
is such that̄x ∈ ∂Ω andx is the convex combination of the origin andx̄, that is
x = αx̄+ (1 − α)0. Assume thatF(x̄) ⊆ λΩ for all x̄ ∈ ∂Ω, as implied by (14)
and notice that, from Assumption 1, we haveF(0) = {0} ⊆ λΩ. From this and
Assumption 1 we have thatF(x) = F(αx̄+ (1− α)0) ⊆ αF(x̄) ⊆ αλΩ ⊆ λΩ,
and thenF(x) ⊆ λΩ for all α ∈ Ω.

Theorem 1 provides a necessary and sufficient condition for contractiveness
of Ω ∈ K0(X) for CDI systems, based on convex constraints concerning only the
boundary of setΩ. In general, the conditions for contractiveness for nonlinear
systems involve everyx in Ω, see [7]. The following propositions present the
relation between contractive sets and Lyapunov stability theory for CDI systems.
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Proposition 4. Let Assumptions 1 and 3 hold for the set-valued mapF(·) deter-
mining the system dynamics (1) and the state constraint setX. For every contrac-
tive setΩ ∈ K0(X) for system (1) with contracting factorλ ∈ [0, 1], also the set
αΩ ⊆ X, withα ∈ [0, 1], is a convex, compact, contractive set for system (1) with
contracting factorλ.

Proof: Compactness and convexity ofαΩ for all α ∈ [0, 1] follow by defini-
tion. Suppose thatMF(Ω) ⊆ λΩ and considerα ∈ [0, 1]. By definition,x ∈ αΩ
is equivalent to the existence ofy ∈ Ω such thatx = αy. Then, from Assumption
1, we have

MF(αΩ) =
⋃

x∈αΩ

F(x) =
⋃

y∈Ω

F(αy) ⊆
⋃

y∈Ω

αF(y) ⊆
⋃

y∈Ω

αλΩ = αλΩ,

which means thatαΩ is a contractive set with contracting factorλ.
Proposition 4 implies that every contractive set for a CDI system induces a

local Lyapunov function, as shown below. Analogous resultsare valid for linear
and particular nonlinear systems, see [7].

Definition 5. GivenΩ ∈ K0(X), the functionVΩ : S(X) → R defined as

VΩ(D) = sup
x∈D

ΨΩ(x) = min
α≥0

{α ∈ R : D ⊆ αΩ}, (15)

is a local Lyapunov function inS(X) for the CDI system (1), ifVΩ(MF(D)) <
VΩ(D) for everyD ∈ S(X)\{0}.

Notice in fact that a functionVΩ(·) as in Definition 5 is positive definite in
S(X), VΩ(D) = 0 if and only if D = {0} and it decreases along the set-valued
trajectory generated by (12) withX0 ∈ S(X)\{0}.

Proposition 5. Let Assumptions 1 and 3 hold for the set-valued mapF(·) deter-
mining the system (1). The functionVΩ(·) defined as in (15) is a local Lyapunov
function inS(Ω) for the system (1), for every contractive setΩ ∈ K0(X) with
contracting factorλ ∈ [0, 1).

Proof: ConsiderD ∈ S(Ω) such thatVΩ(D) = α with α ∈ (0, 1], then
D ⊆ αΩ ⊆ Ω. From monotonicity ofMF(·) and Proposition 4, it follows that
MF(D) ⊆ MF(αΩ) ⊆ λαΩ, with α ∈ (0, 1], which implies

VΩ(MF(D)) ≤ VΩ(MF(αΩ)) ≤ VΩ(λαΩ) = λα < α = VΩ(D), (16)
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sinceVΩ(βΩ) = β, for all β ≥ 0, andVΩ(C) ≤ VΩ(E) for all C, E ∈ S(Rn)
such thatC ⊆ E. If α = 0, thenD = {0} and the inequalities in (16) become
equalities. Hence,VΩ(MF(D)) < VΩ(D), for all D ∈ S(Ω)\{0}.

Proposition 5 implies thatλ ∈ [0, 1) is a bound on the decreasing rate of the
Lyapunov function along the trajectories. That is, givenX0 ∈ S(Ω) (with X0 6=
{0}), we have thatVΩ(Xk+1) ≤ λVΩ(Xk) < VΩ(Xk), and thenVΩ(Xk) ≤ λk, for
all k ∈ N. Geometrically, it means thatX0 ⊆ Ω impliesXk ⊆ λkΩ for all k ∈ N.
Hence givenX0 ∈ S(Ω) as initial condition, the set-valued trajectory converges
to the set composed by the origin and the system is exponentially stable.

Proposition 6. Let Assumptions 1 and 3 hold for the set-valued mapF(·) deter-
mining the system (1). Given two contractive setsΛ ∈ K0(X) andΓ ∈ K0(X)
for the system (1) with contracting factorsλ ∈ [0, 1] and γ ∈ [0, 1], respec-
tively, the setΩ = co(Λ,Γ) ∈ K0(X) is a contractive set with contracting factor
ω = max{λ, γ}.

Proof: Compactness and convexity ofΩ and0 ∈ int(Ω) follow by definition
of convex hull. MoreoverΩ ⊆ X sinceX is convex,Λ ⊆ X andΓ ⊆ X,
which implies that any convex combination of elements ofΛ andΓ belongs to
X. Suppose thatF(x) ⊆ λΛ for all x ∈ Λ andF(x) ⊆ γΓ for all x ∈ Γ. For
everyx ∈ co(Λ,Γ) = Ω, there existy ∈ Λ, z ∈ Γ andα ∈ [0, 1] such that
x = αy + (1 − α)z. Then, from Assumption 1 and convexity ofΓ andΛ, and
properties of convex sets, see [23, 24], we have

F(x) = F(αy + (1− α)z) ⊆ αF(y)⊕ (1− α)F(z) ⊆ αλΛ⊕ (1− α)γΓ ⊆
⊆ αλΩ⊕ (1− α)γΩ = (αλ+ (1− α)γ)Ω ⊆ (αω + (1− α)ω)Ω = ωΩ,

for everyx ∈ Ω. ThenΩ is contractive with contracting factorω.
The following corollary shows that no loss of generality is induced by assum-

ing convexity of the invariant sets for CDI systems.

Corollary 1. Let Assumptions 1 and 3 hold for the set-valued mapF(·) determin-
ing the system (1). Given a compact invariant setΩ ⊆ X with 0 ∈ int (co(Ω)),
for the system (1), the setΩ̄ = co(Ω) is a convex, compact invariant set.

Proof: The proof is analogous to that one of Proposition 6.
Corollary 1 implies that the maximal invariant set inX ⊆ R

n is convex.

Corollary 2. Let Assumptions 1 and 3 hold for the set-valued mapF(·) determin-
ing the system (1) and the state constraint setX ⊆ R

n. The maximal invariant set
ΩM ⊆ X is convex.
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3.2. Robust invariance for uncertain CDI systems
The results presented in the previous section can be extended to the CDI sys-

tems of the form (3). GivenF(·) in (3), define the set-valued function

FW (x) = {z ∈ R
n : z ∈ F(x)⊕W}. (17)

A characterization of contractiveness for the uncertain CDI systems is provided.

Proposition 7. Let Assumptions 1, 2 and 3 hold for the set-valued mapF(·) and
the setW determining the uncertain CDI system (3) and the state constraint set
X. Givenλ ∈ [0, 1], a setΩ ∈ K0(X) is a robust contractive set for system (3) if
and only if

ηT z ≤ λφΩ(η)− φW (η), ∀z ∈ F(x), ∀x ∈ Ω, ∀η ∈ R
n. (18)

Proof: From properties of support functions we have thatF(x)⊕W ⊆ λΩ,
for all x ∈ Ω, condition for robust contractiveness ofΩ, is equivalent to (18).

A boundary-type necessary and sufficient condition robust contractiveness fol-
lows. The proof is avoided since analogous to that one of Theorem 1.

Corollary 3. Let Assumptions 1, 2 and 3 hold for the set-valued mapF(·) and
the setW determining the uncertain CDI system (3) and the state constraint set
X. Givenλ ∈ [0, 1], a setΩ ∈ K0(X) is a robust contractive set for system (3) if
and only if

F̌ (x, η) ≤ λφΩ(η)− φW (η), ∀x ∈ ∂Ω, ∀η ∈ R
n. (19)

4. Computation of a contractive polytope for CDI systems

Necessary and sufficient conditions stated in Theorems 1 andCorollary 3 are
boundary-type ones. However, checking such conditions is not computationally
affordable for genericΩ ∈ K0(Rn), as they involve an infinite number of con-
straints, one for everyx ∈ ∂Ω and for everyη ∈ R

n. On the contrary, for poly-
topicΩ ∈ K0(Rn), defined asΩ = {x ∈ R

n : Hx ≤ 1}, with H ∈ R
nh×n, the

number of constraints is equal tonv nh, wherenv is the numbers of vertices ofΩ.

Proposition 8. Let Assumptions 1 and 3 hold for the set-valued mapF(·) de-
termining the system dynamics (1) and the state constraint set X. A polytope
Ω = {x ∈ R

n : Hx ≤ 1}, with H ∈ R
nh×n and whose vertices arevj ∈ R

n for
j ∈ Nnv

, is a contractive set withλ ∈ [0, 1] if and only ifΩ ⊆ X and

F̌ (vj, HT
i ) ≤ λ, ∀j ∈ Nnv

, ∀i ∈ Nnh
. (20)
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Proof: Since (14) is a necessary and sufficient condition for a generic Ω ∈
K0(X) to be a contractive set for a CDI system, then the equivalencebetween (14)
and (20) proves the proposition. From properties of supportfunctions, condition
(14) for polytopicΩ is given by

F̌ (x,HT
i ) ≤ λ, ∀x ∈ ∂Ω, ∀i ∈ Nnh

. (21)

Moreover, from convexity ofF̌ (·, η), for all η ∈ R
n, condition (21), involving

x ∈ ∂Ω, holds if and only if (20), concerning the vertices ofΩ, is satisfied.
Proposition 8 provides a necessary and sufficient conditionfor a polytope to

be a contractive set for CDI systems, consisting ofnv nh convex constraints. The
following result is useful to obtain a contractive setΩ̂ = co(Ω∪{x̂}) by computing
x̂ ∈ X, provided thatΩ is a contractive polytope. ThenΩ ⊆ Ω̂ and the result
permits to design an enlarging method for a contractive polytope.

Proposition 9. Let Assumptions 1 and 3 hold. Consider a polytopeΩ = {x ∈
R

n : Hx ≤ 1} ⊆ X, withH ∈ R
nh×n, andλ ∈ [0, 1], such that the hypothesis of

Proposition 8 holds forΩ, and, given̂x ∈ X, define the set̂Ω = co(Ω ∪ {x̂}). If
x̂ ∈ X is such thatF̌ (x̂, HT

i ) ≤ λ, for everyi ∈ Nnh
, thenΩ̂ is a contractive set

for system (1) and the constraintsx ∈ X.

Proof: From Proposition 8 we have thatF̌ (x,HT
i ) ≤ λ for all i ∈ Nnh

, either
if x = x̂ or if x is a vertex ofΩ. This implies, from convexity of̌F (·, η) for every
η ∈ R

n, that
F̌ (x,HT

i ) ≤ λ, ∀i ∈ Nnh
, (22)

for all x ∈ co(Ω∪{x̂}) = Ω̂. Condition (22) is equivalent toF(x) ⊆ λΩ, then, for
everyx ∈ Ω̂ we have thatF(x) ⊆ λΩ ⊆ λΩ̂ which means that̂Ω is a contractive
polytope for the system (1).

The results stated in Propositions 8 and 9 are extended to thecase of uncertain
CDI systems.

Corollary 4. Let Assumptions 1, 2 and 3 hold for the set-valued mapF(·) and
the setW determining the uncertain CDI system (3) and the state constraint set
X. A polytopeΩ = {x ∈ R

n : Hx ≤ 1}, with H ∈ R
nh×n and whose vertices

are vj ∈ R
n for j ∈ Nnv

, is a robust contractive set withλ ∈ [0, 1] if and only if
Ω ⊆ X and

F̌ (vj, HT
i ) ≤ λ− φW (HT

i ), ∀j ∈ Nnv
, ∀i ∈ Nnh

. (23)

Moreover, ifx̂ ∈ X is such thatF̌ (x̂, HT
i ) ≤ λ − φW (HT

i ), for everyi ∈ Nnh
,

thenΩ̂ = co(Ω ∪ {x̂}) is a robust contractive set for system (3).
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4.1. Algorithm

The proposed algorithm provides a sequence of polytopic robust contractive
sets for an uncertain CDI system with contracting factorλ. Assume thatΩL =
{x ∈ R

n : Hx ≤ 1}, with H ∈ R
nh×n, is an initial guess andvj are itsnv ver-

tices. A possibility to obtain the initial guess is to compute a contractive set for
a system which is a local approximation, possibly linear, ofthe CDI one. Given
a contractive setΩ for a linear approximation of the CDI (or nonlinear) system,
there existsβ > 0 such thatΩL = βΩ is contractive for the CDI one, under
certain differentiability assumptions (see [17] for an analogous result). Standard
algorithms can be employed, see for instance [3, 5] and [7], to obtainΩ. Alterna-
tively, an LDI system, local extension of the CDI one, can be computed. Every
contractive set for the LDI system is contractive also for the CDI one.

Algorithm 1. Computing a robust contractive set for a CDI system (3).

Given the CDI system (3) under Assumptions 1, 2 and 3 and the polytopeΩL:
Solve: α = max

γ>0
γ,

s.t. F̌ (γvj, HT
i ) ≤ λγ − φW (HT

i ), ∀j ∈ Nnv
, ∀i ∈ Nnh

. (24)

PoseΩ0 = αΩL = {x ∈ R
n : H0x ≤ 1} andk = 0.

for k = 0, · · · , kmax, randomly generateηk ∈ R
n and solve:

xk = argmax
x̂∈X

(ηk)T x̂,

s.t. F̌ (x̂, (Hk
i )

T ) ≤ λ− φW ((Hk
i )

T ), ∀i ∈ Nnk

h

, (25)

and poseΩk+1 = co(Ωk ∪ {xk}) = {x ∈ R
n : Hk+1x ≤ 1}.

end

The algorithm is based on Corollary 4. GivenΩL, the first step consists of
computing the maximalα > 0 such thatαΩL is contractive for the CDI system.
In fact γvj, with j ∈ Nnv

, are the vertices ofγΩL and then the condition (24)
implies thatγΩL is contractive. The following iteration generates a sequence of
nested contractive sets, i.e.Ωk ⊆ Ωk+1, for every selection criterion ofηk ∈ R

n.
In fact xk is such that eitherxk ∈ ∂Ωk or xk /∈ Ωk and satisfies the conditions
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of Corollary 4. Nevertheless it is desirable, in practice, to have a sequence con-
verging to the maximal contractive set. Consider, with no loss of generality, the
directions generated on the surface of the unitary ball inR

n, denotedBn, and
define

N(η̄, r) = {η ∈ ∂Bn : ‖η̄ − η‖2 < r},

for everyη̄ ∈ ∂Bn andr > 0. That is,N(η̄, r) are the non-empty intersections of
∂Bn and open balls inRn.

Proposition 10. If the randomly generated directionsηk ∈ ∂Bn in Algorithm 1
are such that the probability ofηk ∈ N(η̄, r) is positive for everȳη ∈ ∂Bn and
r > 0, then the sequenceΩk, with k ∈ N, convergences to the maximal convex
contractive set inX for the CDI system (3).

Proof: Suppose that forηk ∈ ∂Bn we havexk /∈ Ω. This implies the exis-
tence ofη̄ ∈ ∂Bn such that̄ηTxk > Φη̄(Ω), because of the separation theorem.
From continuity of the support function with respect toη, for every boundedΩ,
we have thatf(η) = ηTxk − Φη(Ω) is continuous and positive in̄η ∈ ∂Bn.
Then, there exists a neighborhood ofη̄ such thatf(η) is positive for everyη in
such a neighborhood. Thus, if there isxk /∈ Ω satisfying (25), which implies
F(xk)⊕W ⊆ Ω, then there is̄η ∈ ∂Bn andr > 0 such that

max
x̂∈X

{ηT x̂ : s.t. (25)} ≥ ηTxk > Φη(Ω),

for all η ∈ N(η̄, r). Thus ifΩk can be enlarged, an enlarging direction will be
found with non-zero probability. This implies that the sequence of nested con-
tractive sets converges to the maximal one.

From Proposition 10, every criterion which selects a direction in any non-
empty setN(η̄, r) with non-zero probability satisfies the requirements for con-
vergence ofΩk to the maximal convex contractive set. A possible choice is the
uniform distribution.

Remark 6. Concerning the computational complexity of the algorithm,the first
step is efficiently solvable, consisting of a convex optimization problem in the vari-
ableγ ∈ R. This implies that the computation of the contractive polytopeΩ0 can
be performed for high dimensional problems, provided thatΩL and its vertices
are known. The iteration concerning the enlarging procedure, on the other hand,
requires a high computational burden. In fact, although (25) is a convex optimiza-
tion problem in the variablêx, the computation ofΩk+1 consists of a convex hull
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operation and a simplification process to generate the minimal H-representation
of the polytope. Both these two sub-procedures are computationally demanding.
Then the enlarging procedure should be performed only for relatively low dimen-
sional problems, as illustrated in the following example.

Example 1. To give an idea of which is the largest dimension for the problem to
be solved in reasonable time, we applied Algorithm 1 to a generalized saturated
system varying its dimension. Forn = 6, the Matlab procedure requires some
minutes to compute the sequence ofΩk for kmax = 9, with a non-optimized code
and using standard Matlab routines (for polytopes handling, for instance). Table
1 shows the evolution of the number of vertices and facets ofΩk for n = 6. The
increase of the number of vertices and facets yields the enlarging procedure to be
more and more time-consuming as the algorithm proceeds.

Step 0 1 2 3 4 5 6 7 8 9
Vertices 65 66 67 68 69 70 71 72 73 74
Facets 28 44 59 75 105 128 164 191 246 300

Table 1: Vertices and facets ofΩk ⊆ R
n, with n = 6.

Then, for relatively low dimensional systems, the choice ofthe particular ge-
ometry of the initial guessΩL is not crucial, as the enlarging process permits to
generate properly shaped contractive sets. On the contrary, the selection ofΩL can
strongly influence the size of the contractive sets obtainedfor higher dimensional
systems, as the enlarging iterations can result computationally unaffordable. On
the other hand, the problem of computing contractive sets for nonlinear systems is
rather complex by its nature. Hence, a trade-off between thesize of the obtained
contractive sets and the required computational complexity is unavoidable, in our
opinion, for high dimensional systems.

5. Numerical example

Consider a generalized saturated system (9), see Section 2.2, with matrices

A =

[

1.1 1
0 1.1

]

, B =

[

0.5
1.1

]

, F =
[

−0.5236 −1.1264
]

,

andΓ(y) = max{µ(y + σ), −y0} with µ = 1, σ = 0.2 andy0 = 1.8, as in Defi-
nition 2. The CDI extension of the generalized saturated system is determined by
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convex bounding functions given by (10), withΓ0(y) = max{µy, −y0 − µσ} =
max{y, −2}, and byW = {w = Bv : −0.2 ≤ v ≤ 0.2}, see Section 2.2.
The state is assumed to be constrained in the regionX = {x ∈ R

2 : −15 ≤
x1 ≤ 15, −6 ≤ x2 ≤ 6}. Notice that in the region of the state space given by
D = {x ∈ R

n : |Fx| ≤ y0
µ
+ σ} = {x ∈ R

n : |Fx| ≤ 2}, the CDI system is
equal to the linear one given byxk+1 = (A + BF )xk + wk, whose eigenvalues
are0.3496 ± 0.1133i, lying in the unitary circle. Such linear system is used to
determine a local invariant setΩL using standard iterative methods. Since we are
interested in a robust invariant set for the uncertain CDI system, we chooseλ = 1
and apply the algorithm.

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

8

x1

x
2

Figure 2: Sequence of setsΩk for the CDI system, fork ∈ N[0,kmax], generated by Algorithm 1.

In Figure 2, the sequence of robust invariant sets generatedby the enlarging
process are depicted. The inner set isΩ0 = αΩL computed at first step of the
algorithm. The biggest robust invariant set isΩkmax

, with kmax = 100. Notice that
the state constraints are satisfied, i.e.Ωk ∈ X.

6. Conclusions

In this paper the CDI modelling framework has been presentedand used to
characterize invariance and contractiveness of convex sets for nonlinear and un-
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certain systems. Conditions for invariance and contractiveness are posed as a
set of constraints involving convex bounding functions. Thanks to the properties
of convexity, such constraints are boundary-type conditions, unlike the case of
generic nonlinear systems. This led to the definition of a procedure for computing
polytopic invariant sets based on convex constraints satisfaction for CDI systems.

One future research direction concerns further developments of the theoretical
aspects of the CDI systems, considering for instance the problems of design and
estimation. On the other hand, the particularization of theproperties of the CDI
systems to specific subclasses of nonlinear ones, saturatedand generalized satu-
rated for instance, could lead to extend and improve the results for common and
more practice-oriented models.
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