N

N

Invariant sets computation for convex difference
inclusions systems

Mirko Fiacchini, Teodoro Alamo, Eduardo Camacho

» To cite this version:

Mirko Fiacchini, Teodoro Alamo, Eduardo Camacho. Invariant sets computation for con-
vex difference inclusions systems.  Systems and Control Letters, 2012, 61 (8), pp.819-826.
10.1016/j.sysconle.2012.04.012 . hal-00984646

HAL Id: hal-00984646
https://hal.science/hal-00984646
Submitted on 5 Jul 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00984646
https://hal.archives-ouvertes.fr

Invariant Sets Computation for
Convex Difference Inclusions Systems

M. Fiacchin?, T. Alamd, E.F. Camachb

3CRAN-ENSEM, 2 avenue de la foret de Haye, 54516 Vandoewle®,derance.
bDepartamento de Ingenir de Sistemas y Autditica. Universidad de Sevilla.
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Abstract

In this paper we introduce the Convex Difference InclusiGDI) systems as a
modelling framework useful to analyse set-theory and iavere-related issues
for nonlinear and uncertain systems. The dynamics of a CEtksy is given by a
set-valued map whose values are convex, compact subshesggdce and are de-
termined by convex bounding functions. Necessary and grifiboundary-type
conditions for invariance and contractiveness, charatieof the linear systems,
are given for the CDI systems. Lyapunov functions are prdedae induced by
contractive sets for CDI systems, as in the linear contextodputational proce-
dure for obtaining polytopic invariant and contractivessielr nonlinear systems,
based on the properties of the CDI systems, is presented.

Keywords: Invariance, difference inclusions, convex analysis, ma&ar systems.

1. Introduction

Invariance and contractiveness are fundamental in sysaealgsis and con-
trol, mainly due to the stability and robustness propeiethese regions of the
state space. A notable pioneering contribution on invagas [1]. Invariance and
related topics, mainly for linear systems, are treated jr8[2, 5], on the maxi-
mal invariant set, and in [6], on the minimal invariant setm®nograph on the
topic is [7]. Invariance is also employed to ensure convergeof model predic-
tive control, see [8, 9]. Few general results are availatenbnlinear systems.
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The problems of obtaining invariant ellipsoids, [10], aratgilelotopes, [11], for
nonlinear systems, are addressed using linear differevaasions (LDI). The
computation of invariant ellipsoids for linear systemshastatic nonlinear func-
tions in the feedback, as piecewise affine functions andat#in, are addressed
in [12, 13]. Methods to obtain invariant polytopes are pisgabfor saturated sys-
tems, [14] and for Lur'e systems, [15]. The computation e@mant polytopes
for general nonlinear systems is discussed in [16], usiteyval arithmetic, and
in [17, 18], employing properties of DC functions. The wofl®] proposes ap-
proximations of the minimal invariant set for quantizedteyss.

In this paper we present and use CDI systems for represeaithgpproximat-
ing nonlinear and uncertain discrete-time systems. The §Blems are tightly
related to differential and difference inclusions. Seeg [2D, 22] for a deep and
exhaustive analysis of such models and of their propermiesertheless, and de-
spite their generality and mathematical rigor, the impgmesss that the results of
the cited works have still not found the central role theyedes, mainly in the
more practical and computation-oriented fields of control.

Our aim is to particularize the analysis posing convexéiated assumptions
on the set-valued maps and on the considered sets. Thigsgdis generality but
it also permits to exploit the properties of difference ustbns and convex anal-
ysis (see [23, 24, 25]), for computing invariant and contvacsets for nonlinear
and uncertain systems. From another point of view, CDI systare the result of
an abstraction process to generalize previous resultsafbicplar nonlinear sys-
tems, see [18] for instance. Necessary and sufficient baytgpe conditions for
invariance and contractiveness of convex sets for CDI systare stated. Such
results are employed to design an algorithm to obtain iamarand contractive
polytopes for CDI systems. Since many nonlinear systemstacini representa-
tions or extensions, the results apply to a wide class oeayst

The paper is organized as follows: Section Il introduces@ie systems.
Section Il presents invariance and contractiveness for §Stems. In Section
IV the algorithm is illustrated and then applied to a numarexample in Section
V. The paper ends with a section of conclusions.

Notation: The set of positive integers smaller than or equabte N is N,,.
GivenA € R™™, A; with i € N,,, is itsi-th row. Given a seD C R", co(D) is
the convex hull oD, int(D) its interior,0D its boundaryS(D) are the subsets of
D, K(D) are the convex compact subsetdbéndk®(D) are the convex compact
setsC' C Dwith 0 € int(C). GivenD, E C R" anda > 0, defineD @ E = {z =
r+yeR":xz €D, ye E}andaD = {ax € R" : z € D}. Given a set-valued
mapF : R — S(R™), define graptt’) = {(z,y) € R" x R™ : y € F(z)}.
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2. Convex difference inclusions: CDI systems
Consider the system given by the difference inclusions
e F(x), (1)

wherer € R" is the statey™ is the successor al : R* — S(R™) is a set-valued
map onR™, that is a function which relates a set to every paiat R".

Assumption 1. The set-valued mag : R" — KC(R") determining the system
dynamics (1) is such that

Flaz' + (1 — a)2?) C aF (') @ (1 — a)F(2?), (2)
for everya € [0, 1] and every:!, 22 € R™, and F(0) = {0}.

Notice that Assumption 1 implies also tha{x) is convex and compact for
everyx € R". The dynamical systems (1) for which Assumption 1 holds are
referred to as Convex Difference Inclusions (CDI) syste@mnsider the system

e Flx)o W, (3)

wherex € R™ is the statez™ is the successoF (+) is a set-valued map dR" and
W is the additive uncertainty bounding set satisfying théofeing assumption:

Assumption 2. The sefV C R"™ is compact and € int (co (W)).

If Assumptions 1 and 2 hold foF(+) in (3) the system is denoted as uncertain
CDI system. We recall here the concept of support function.

Definition 1. Given a setD C R", the support function ab evaluated at) € R"
is op(n) = sup n'=.
zeD
Among the properties of support function, see [23, 24], weehihat set inclu-
sion conditions can be given in terms of support functions.

Property 1. Given a closed, convex sét C R", thenz € D if and only if
nTz < ¢p(n), for all n € R™. Given alsoC C R, thenC C D if and only if
¢c(n) < ép(n), foralln € R™.

Assumption 1 can be posed also in terms of support functgeesbelow.
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Proposition 1. The set-valued mag : R" — K(R"™) determining the system
dynamics (1) satisfies Assumption 1 if and only if R* x R" — R defined as

F(z,n) = sup 0"z (4)
z€F(z)

is such that'(-, 1) is convex orR" and (0, ) = 0, for all € R".

Proof: The proposition, suggested to us by a reviewer we would tkact
knowledge, stems from properties of support functions. idéothat the value
F(x,n) is the support function at € R” of the setF(x), for everyz € R". From
F(z) € K(R™) and properties of support function, see [23, 24], the rete(R)

holds for every; € R", everya € [0, 1] and everyr!, 22 € R”, if and only if

Flaz' + (1 = 2)2?,1) = ¢raur+(1-a)e2) (1) < Gar@)oi-are2)(n) =

= a¢]—'(x1)(77) + (1 - Oé)%f(ﬂ)(ﬁ) = OzF(:L’l,n) + (1 - CY)F(932>77)>

which meansvthaf?(x, n) is convex inx, for everyn € R". Finally, 7(0) = {0}
if and only if F(0,7) = 0 for all n € R™. |
The functionZ'(-, ) is referred to as convex bounding function.

Remark 1. The functionf'(-, ) is continuous on the relative interior of its effec-
tive domain, for every € R”, from its convexity, see Th.10.1in [23]. This and the
fact thatF(z) is assumed convex and compact for every R" imply that.F is
continuous orR™ and is a particular case of Marchaud maps, often considemned i
works concerning viability theory and set-valued dynarsgatems, [20, 21, 22].

By convexity and compactness 87 x) for everyz € R", we have that
Flz)={z€eR": nT2 < F(x,n), Vn € R"}. (5)

Given two set-valued mags, F' : R* — S(R™), we say thatF is an extension
of F, and write’ C G, if and only if grapli#’) C grapHG). A system is an
extension of another if the graph of the former is an extensidhe graph of the
latter. The CDI systems contain a large class of nonlinednatertain systems
and can be used to approximate many others, see Proposhieini and [26].

Proposition 2. Consider the system™ = f(z) with f : R* — R" twice differ-
entiable inD={z eR": ||z —xy||2 <r}, withr > 0, andp € R"™ such that

%b: — 20) " H? (&) (2 — w0)| < pj(w — w0)" (& — o), (6)
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forall z,z € D, withj € N,,, whereH(f;)(-) = H’(-), is the Hessian of;(-).
Then the CDI system defined by (5) with the convex boundirg das

F(fﬁ—xo,n)ZjZZ)l{m(fj(xo)Jr(fc—xo)Tij(xo))+pj|m|(f€—fﬂo)T(fﬂ—xo)}, (7)

for everyn € R”, is an extension of the nonlinear one, bn

Proof: By hypothesis, the gradieit f;(-) and the Hessian of;(-) exist at
everyx € D, for all j € N,,. Exploiting the Lagrange form of the remainders of
the Taylor series expansion, we have that givgre D, for everyx € D there
existsz(z) = & € D such that the following equality holds

Lo - w0 TH@E)(x — o),

fi(@) = fi(wo) + (& — 20) "V f(0) + 5

for every;j € N,,. From (6), for allz € D and every, € R", we have that
@)= L Utn) + (= )"V an) + o~ )@ ) <
SE i(f5 (o)

,7:

+(z—20) "V (20)) —Hn]H r—x0)THI (77) (2 — 0 ‘<Fx xo,n)

which means that C F, whereF(+) is defined by (5) and (7). |
A possible choice 0, is the maximum orD of the spectral norm df.5 H/ ().

Remark 2. For a nonlinear system™ = f(z), a finite number of convex bound-
ing functions can be sufficient to determine a CDI extenskamn.instance, if for
everyi € N, there exist two functiong, f; : R* — R, convex and concave, re-
spectively, such thaf(z) < fi(z) < fi(z), forall z € R", and f;(0) = £;(0) =

0, then a CDI system extension of the nonlinear one can berdeted.

The convexity of the bounding functions, implied by Assuioptl (see Propo-
sition 1), permits to characterize invariant sets in terfnsoovex constraints and
then to pose efficiently solvable problems for their compata see [25].

2.1. LDI systems

A popular way of approximating nonlinear and uncertaineyst is given by
Linear Difference Inclusion (LDI) systems, see [27, 28].witl be shown that
the LDI systems form a subclass of the CDI ones, in particolahose whose
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convex bounding functions are piecewise linear. Henceéyguan LDI system to
approximate a nonlinear one is a way of generating a CDI skian
An LDI system in terms of difference inclusions is given by {th

F(x)=A(x)={Az e R": Aec A},

where, with a slight abuse of notation, we uédor denoting both the set-valued
map and the setlt C R"*". If A is a polytope inRR"*", the LDI is said polytopic.

Remark 3. Notice that the set-valued mag(-) satisfies the Assumption 1 if
A(z) € K(R™) for all x € R™ (then also polytopic LDIs do). In fact, the function

F(z,n) = sup n'z = maxnT Az

( ) z€A(x) AcA

withn € R", is convex inr, being the pointwise maximum of a family of convex
functions, see [25]. Moreovet(0,n) = {0} for all n € R™. Then the LDI sys-
tems are a particular subclass of the CDI systems and hererg easult valid for
the latters applies also to the formers. Nonetheless CD¥iges a more general
modelling framework, as not every CDI system admits an LPpiagentation.

Remark 4. Important results, valid for linear systems, are valid afeo LDI
systems (more generally, for positively homogeneous orfas)example is the
boundary-type condition for invariance and contractivesiesee Sec. 4.2.4 in
[7]. The underlying idea is that, if the extremal realizat®of the LDI, which
are linear systems, satisfy a condition (invariance fortamge), then the whole
LDI system fulfils it, see [27, 28, 29]. Such results are saslly based on
linearity. The key idea of the CDI approach is that the fundatal ingredient for
the desired invariance-related properties to hold is comtyerather than linearity.
Thus the results for the CDI systems improve and contairetfayghe LDI ones.

2.2. Generalized saturated systems

Generalized saturated systems, introduced in [30], arendyfaf systems
including many common static nonlinearities (saturatid®ad-zone, hysteresis,
etc.) and are easily extendible by CDI systems. We introdineedefinition of
generalized saturated function in its scalar version (3@Efpr the vectorial one).

Definition 2. The functionp : R x N — R is said to be a generalized saturated
function with saturation level, € R, y, > 0, dead-zone&r € R" , o0 > 0, and
linear slopeu € R, > 0, if

—T(=y) <oy, k) <T(y), VyeR, VkeN, (8)
wherel'(y) = max{u(y + o), —yo} andk € N is the discrete-time instant.
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The generalized saturated functions can represent comtatiao sonlinear
functions as saturation plus dead-zone, hysteresis (geee-l) and saturation.

Figure 1: Examples: saturation plus dead-zdeft)(and hysteresigight).

Given the generalized saturated functiap, -), the dynamical system
Tpr1 = Az + Bo(Fay, k), (9)

whereF’ € R, is called generalized saturated system. A CDI extensidheof
generalized saturated system can be directly determingebfpllowing convex
bounding functions

3 T T RTO TR
{ n' Az +n' BT (Fx), if n"B>0, (10)

F(x,n) = nT Az — nTBFO(—Fx), if n”7B <0,

for all » € R™ and allz € R™ with T%(y) = max{uy, —yo — po}. The system (3)
with F(-) determined by convex bounding functions (10) &id= {w = Bv :
—upo < v < uotl,is an uncertain CDI extension of the generalized saturated

Remark 5. Notice that the generalized saturated systems do not addhigxten-
sions. Even for simple saturated systems, the LDI extemsioiore conservative
than the CDI one. In fact, givem = 0, the graph of the LDI approximation of the
saturated system is obtained by replacirffy) with max{uy, 0} in (10). Thus
the graph of the CDI extension is strictly contained in thegr of the LDI one.

3. Invariance for CDI systems

Invariance and contractiveness of convex sets for CDI syst&re character-
ized in this section. First, the standard definitions aralfed.
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Definition 3. A set2? C R" is a robust invariant set for the syster = f(z, w)
and constraints € X if Q C X and f(z,w) € Q, forall z € Qand allw € W.

In the absence of the uncertainty the related set is callediant set.

Definition 4. A setQ) € K°(R") is a contractive set for the systerm = f(x, w)
and constraints: € X, with contracting factor\ € [0, 1], if @ € X and
flz,w) € A2, forallz € Qand allw € W.

Notice that contractiveness induces invariance, thus whdre following we
will guarantee contractiveness of a set, we will impliciélysure also invariance.
In what follows we prove that important results valid fordar systems, concern-
ing boundary-type conditions for invariance and set-irbicyapunov functions,
are valid also for CDI systems.

3.1. Necessary and sufficient condition for invariance foi €ystems

As invariance and set-theory are important to deal withrabint presence of
constraints, consider the state constraints X C R". The unconstrained case
is enclosed, given by = R".

Assumption 3. The state constraint seXx C R" is closed, convex and €
int(X).

A necessary and sufficient condition for contractivenesCiDI systems is
provided, see [5] for the linear case. Given the set-valuad #-), define the
mapMzx : S(R") — S(R™) as

Mz(Q) = | F(x), (11)

e

forall @ € S(R™), which is monotone, i.eM (C) C Mx(D)forallC,D C R"
such that” C D. Given a setX, € S(R"), the sequence of sel§;, for k € N,
generated by iterating

X1 = M#(Xy), (12)

with initial condition X, are the sets reachable frame X,.
Property 2. The condition for contractiveness of a $ete K°(X) for CDI sys-

tems isF(z) C X2 for everyz € Q or, equivalently M £(2) C A\, where
Mz(-) is defined in (11).



The contractiveness dd € K°(X) for a CDI system in terms of support
functions follows.

Proposition 3. Let Assumptions 1 and 3 hold for the set-valued #4p deter-
mining the system dynamics (1) and the state constrainX'sébiven\ € [0, 1],
a set) € K°(X) is a contractive set for system (1) if and only if

n'z < \oa(n), Vze F(z), VYxeQ, VneR"™ (13)

Proof: The condition for contractiveness can be expressed in tefsupport
functions aspz., () < A¢ga(n), for all z € Q andn € R", see Property 1, then
also as in (13). [ |

Condition (13) involves every € ). A boundary-type necessary and suffi-
cient condition for contractiveness for CDI systems andregrsets can be posed.
Given( € K°(R™), the Minkowski function of2 atz € R™ is defined as

Uq(x) = mggl{a eR:z € a2}
Theorem 1. Let Assumptions 1 and 3 hold for the set-valued thap determin-
ing the system dynamics (1) and the state constrainksesiven\ € [0, 1], a set
Q € K°(X) is a contractive set for system (1) if and only if

F(z,n) < Apa(n), YredQ, VneR" (14)

Proof: Condition (14) is equivalent t&(z) C A for x on the boundary of
2. We prove thatF(z) C A\ is satisfied for every: € 09 if and only if it is
satisfied for every: € ). Necessity is due t6Q2 C 2, sincef) is compact. To
prove sufficiency, consider € Q. Thenz = a~ 'z, with o = Uq(x) € [0,1],
is such thatr € 0f) andz is the convex combination of the origin amdthat is
r = ol + (1 — «)0. Assume tha (z) C \Q for all z € 09, as implied by (14)
and notice that, from Assumption 1, we ha¥¢0) = {0} C A{2. From this and
Assumption 1 we have th&fi(z) = F(az + (1 — a)0) C aF(Z) C aA C A\Q,
and thenF(z) C A for all « € Q. |
Theorem 1 provides a necessary and sufficient conditiondotractiveness
of Q € K°(X) for CDI systems, based on convex constraints concerningtbal
boundary of sef2. In general, the conditions for contractiveness for nadin
systems involve every in (), see [7]. The following propositions present the
relation between contractive sets and Lyapunov stabhigpty for CDI systems.



Proposition 4. Let Assumptions 1 and 3 hold for the set-valued /#4p deter-
mining the system dynamics (1) and the state constraint s€or every contrac-
tive set) € K°(X) for system (1) with contracting factor € [0, 1], also the set
af) C X, witha € [0, 1], is a convex, compact, contractive set for system (1) with
contracting factor\.

Proof: Compactness and convexity @f? for all « € [0, 1] follow by defini-
tion. Suppose thatt=(2) C X2 and considew € [0, 1]. By definition,z € af2
is equivalent to the existence gfc 2 such thatr = ay. Then, from Assumption
1, we have

Mz(af)) = U F(x) = Uf(ay) C Ua}"(y) C Ua)\Q:a)\Q,

zeaf) yeN yeQ yeN

which means thatf2 is a contractive set with contracting factor [ |

Proposition 4 implies that every contractive set for a CDdteyn induces a
local Lyapunov function, as shown below. Analogous resaiesvalid for linear
and particular nonlinear systems, see [7].

Definition 5. Given{) € K°(X), the function/, : S(X) — R defined as

Va(D) = sup Uo(z) = min{a € R: D C aQ}, (15)
zeD >0

is a local Lyapunov function i&(.X) for the CDI system (1), iPo(M£(D)) <
Vao(D) for everyD € S(X)\{0}.

Notice in fact that a function,(-) as in Definition 5 is positive definite in
S(X), Vo(D) = 0ifand only if D = {0} and it decreases along the set-valued
trajectory generated by (12) witki, € S(X)\{0}.

Proposition 5. Let Assumptions 1 and 3 hold for the set-valued #4p deter-
mining the system (1). The functidh(-) defined as in (15) is a local Lyapunov
function inS(Q2) for the system (1), for every contractive $ete K°(X) with
contracting factor\ € [0, 1).

Proof: ConsiderD € S(Q?) such thatVo(D) = « with a € (0, 1], then
D C af) C Q. From monotonicity ofM »(-) and Proposition 4, it follows that
Mz(D) € Mz(af2) C Xaf2, with a € (0, 1], which implies

Va(Mz(D)) < Vo(Mz(af2)) < Vao(Aaf2) = da < a = Vqo(D), (16)
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sinceVq(5Q2) = S, forall 5 > 0, andV,(C) < Vo(E) forall C, E € S(R™)
such thatC C E. If « = 0, thenD = {0} and the inequalities in (16) become
equalities. Hence/o(M £ (D)) < Vo(D), forall D € S(©2)\{0}. u
Proposition 5 implies that € [0, 1) is a bound on the decreasing rate of the
Lyapunov function along the trajectories. That is, givene S(2) (with X, #
{0}), we have thaVq (X1 1) < MWVa(X}) < Va(Xy), and theVo(X;) < ¥, for
all £ € N. Geometrically, it means thaf, C Q implies X;, C \*Q for all £ € N.
Hence givenX, € S(Q2) as initial condition, the set-valued trajectory converges
to the set composed by the origin and the system is expoligstiable.

Proposition 6. Let Assumptions 1 and 3 hold for the set-valued #4p deter-
mining the system (1). Given two contractive sets K°(X) andI' € K°(X)
for the system (1) with contracting factodss € [0,1] andy € [0, 1], respec-
tively, the sef2 = co(A, T') € K°(X) is a contractive set with contracting factor
w = max{\, v}.

Proof: Compactness and convexity @fand0 € int(2) follow by definition
of convex hull. Moreovef2? C X since X is convex,A C X andI" C X,
which implies that any convex combination of elements\cindI" belongs to
X. Suppose thaF(z) C M forall z € A andF(x) C ~I' forallz € I'. For
everyx € co(A,I') = (, there existy € A, z € I anda € [0, 1] such that
x = ay + (1 — a)z. Then, from Assumption 1 and convexity Bfand A, and
properties of convex sets, see [23, 24], we have

Fl)y=Flay+(1—a)z) CaF(y)d (1 —a)F(z) Cal @ (1 —a)yI' C
Cal2d(1—a)y2=(aA+ (1 —a)y)2 C (aw + (1 — a)w)Q2 = w,

for everyx € ). Then() is contractive with contracting factar. [ |
The following corollary shows that no loss of generalityridiiced by assum-
ing convexity of the invariant sets for CDI systems.

Corollary 1. Let Assumptions 1 and 3 hold for the set-valued @f) determin-
ing the system (1). Given a compact invariant@eC X with 0 € int (co((2)),
for the system (1), the s@t= co((2) is a convex, compact invariant set.

Proof: The proof is analogous to that one of Proposition 6. [ |
Corollary 1 implies that the maximal invariant set\nC R™ is convex.

Corollary 2. Let Assumptions 1 and 3 hold for the set-valued thgy determin-
ing the system (1) and the state constraintset R". The maximal invariant set
Qu € X is convex.
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3.2. Robust invariance for uncertain CDI systems

The results presented in the previous section can be extéadbe CDI sys-
tems of the form (3). GiverF () in (3), define the set-valued function

Fw(z)={z€eR": z€ F(z)d W}. (17)
A characterization of contractiveness for the uncertain §Btems is provided.

Proposition 7. Let Assumptions 1, 2 and 3 hold for the set-valued théap and
the setlV determining the uncertain CDI system (3) and the state caimstset
X. Given\ € [0,1], a set2 € K°(X) is a robust contractive set for system (3) if
and only if

"z < Mpa(n) — ow(n), Vze F(z), VreQ, VneR" (18)

Proof: From properties of support functions we have that) & W C \Q,
for all z € 2, condition for robust contractiveness(©f is equivalent to (18). m
A boundary-type necessary and sufficient condition robmistractiveness fol-
lows. The proof is avoided since analogous to that one of fiémed..

Corollary 3. Let Assumptions 1, 2 and 3 hold for the set-valued thap and
the setlV determining the uncertain CDI system (3) and the state camstset
X. Given)\ € [0,1], a setQ) € K°(X) is a robust contractive set for system (3) if
and only if

F(z,n) < Apa(n) — ¢w(n), VYred, VneR™ (19)

4. Computation of a contractive polytope for CDI systems

Necessary and sufficient conditions stated in Theorems Canallary 3 are
boundary-type ones. However, checking such conditioneticomputationally
affordable for generi§) € K°(R"), as they involve an infinite number of con-
straints, one for every € 02 and for everyp € R". On the contrary, for poly-
topic 2 € K°(R"), defined af2 = {z € R" : Hz < 1}, with H € R™*", the
number of constraints is equal #Q n;,, wheren, is the numbers of vertices 6f.

Proposition 8. Let Assumptions 1 and 3 hold for the set-valued nfdp de-
termining the system dynamics (1) and the state constraink's A polytope
Q= {reR": Hr < 1}, with H € R"™*" and whose vertices ar¢ € R" for
j € N,,, is a contractive set with € [0, 1] if and only if2 C X and

F(/, HY <)\, VjeN,,, VieN,,. (20)
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Proof: Since (14) is a necessary and sufficient condition for a geter
K°(X) to be a contractive set for a CDI system, then the equivaleeteeen (14)
and (20) proves the proposition. From properties of supjpoittions, condition
(14) for polytopict? is given by

F(x, HY <\, VYo ed, VieN,,. (21)

Moreover, from convexity oft'(-, ), for all € R", condition (21), involving
x € 01, holds if and only if (20), concerning the vertices(ofis satisfied. m®

Proposition 8 provides a necessary and sufficient conditioa polytope to
be a contractive set for CDI systems, consisting.of; convex constraints. The
following result is useful to obtain a contractive §et= co(QU{}) by computing
i € X, provided that is a contractive polytope. Thef C € and the result
permits to design an enlarging method for a contractivetppl.

Proposition 9. Let Assumptions 1 and 3 hold. Consider a polytépe- {z €
R™: Hxr <1} C X, with H € R™*" and\ € [0, 1], such that the hypothesis of
Proposition 8 holds fof2, and, giveni € X, define the se® = co(Q U {z}). If

i € X is such thatF'(i;, H') < A, for everyi € N,,,, then() is a contractive set
for system (1) and the constraints= X.

Proof: From Proposition 8 we have tha(z, H!) < Aforalli € N,,, , either
if z = & orif z is a vertex of). This implies, from convexity of'(-, 7)) for every
n € R”, that

F(z, H'Y <\, VieN,,, (22)
forall z € co(QU{#}) = Q. Condition (22) is equivalent t& (z) C A\Q, then, for
everyz € () we have thafF(z) C AQ C AQ which means tha® is a contractive
polytope for the system (1). [ |

The results stated in Propositions 8 and 9 are extended ta#&eof uncertain
CDI systems.

Corollary 4. Let Assumptions 1, 2 and 3 hold for the set-valued thap and
the setlV determining the uncertain CDI system (3) and the state caimstset
X. A polytope = {x € R* : Hx < 1}, with H € R™*™ and whose vertices
arev’/ € R™ for j € N,,, is a robust contractive set with € [0, 1] if and only if
QC X and

F(',H)Y <X —oéw(H]), VjeN,,, VieN,,. (23)

Moreover, ifi € X is such thatf' (&, HI) < X\ — ¢w(HT), for everyi € N,,,
then(2 = co(2 U {z}) is a robust contractive set for system (3).

13



4.1. Algorithm

The proposed algorithm provides a sequence of polytopiasiotontractive
sets for an uncertain CDI system with contracting factorAssume thaf);, =
{zr € R": Hx < 1}, with H € R™*" is an initial guess and’ are itsn, ver-
tices. A possibility to obtain the initial guess is to comgat contractive set for
a system which is a local approximation, possibly lineathef CDI one. Given
a contractive sef2 for a linear approximation of the CDI (or nonlinear) system,
there exists? > 0 such that2, = [ is contractive for the CDI one, under
certain differentiability assumptions (see [17] for anlagaus result). Standard
algorithms can be employed, see for instance [3, 5] and¢bptain(2. Alterna-
tively, an LDI system, local extension of the CDI one, can beputed. Every
contractive set for the LDI system is contractive also fa @DI one.

Algorithm 1. Computing a robust contractive set for a CDI system (3).

Given the CDI system (3) under Assumptions 1, 2 and 3 and fywopef),:

Solve: o = max v,
>0
StE(y H) <Xy —¢w(H), VjeEN,, VieN,, (24)

Pose)y = aQr = {z € R": H% < 1} andk = 0.
for k=0, -, kna, randomly generate” ¢ R” and solve:

rF = arg max (n*)’'z,
2eX

St (&, (H)") < X =ow((Hf)"), VieNy, (25)

and pos€;, ., = co(Qy, U {z*}) = {z e R* : H*1p < 1},
end

The algorithm is based on Corollary 4. Given, the first step consists of
computing the maximak > 0 such that(2, is contractive for the CDI system.
In fact yv/, with ; € N, , are the vertices of{2; and then the condition (24)
implies thaty(2;, is contractive. The following iteration generates a seqaesf
nested contractive sets, i.8; C Q.. for every selection criterion of* € R".

In fact 2* is such that either* € 9Q, or 2* ¢ Q, and satisfies the conditions
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of Corollary 4. Nevertheless it is desirable, in practiceh&ve a sequence con-
verging to the maximal contractive set. Consider, with reslof generality, the
directions generated on the surface of the unitary baR’in denotedB™, and
define

N, r)={nedB": [[§—nl2<r},

for everyn € O0B™ andr > 0. Thatis,N(7, ) are the non-empty intersections of
0B™ and open balls ifR".

Proposition 10. If the randomly generated directiond € OB" in Algorithm 1
are such that the probability of* € N(#,r) is positive for every; € 9B™ and

r > 0, then the sequende;, with k£ € N, convergences to the maximal convex
contractive set inX for the CDI system (3).

Proof: Suppose that fon* € 0B" we haver* ¢ Q. This implies the exis-
tence ofij € 9B" such that;”z* > @,(Q), because of the separation theorem.
From continuity of the support function with respectitofor every bounded?,
we have thatf(n) = n’z" — ®,(Q2) is continuous and positive i € dB".
Then, there exists a neighborhoodip$uch thatf(n) is positive for everyy in
such a neighborhood. Thus, if therexi% ¢ Q satisfying (25), which implies
F(z*) & W C Q, then there i) € B™ andr > 0 such that

Iine%?({nTi st (25)) > Tk > @, (),

forall n € N(7,r). Thus if(2; can be enlarged, an enlarging direction will be
found with non-zero probability. This implies that the seqoe of nested con-
tractive sets converges to the maximal one. [ |

From Proposition 10, every criterion which selects a dicgcin any non-
empty setN (7, r) with non-zero probability satisfies the requirements fan-co
vergence of); to the maximal convex contractive set. A possible choicéés t
uniform distribution.

Remark 6. Concerning the computational complexity of the algorithine, first

step is efficiently solvable, consisting of a convex opétian problem in the vari-
abley € R. This implies that the computation of the contractive papg(2, can

be performed for high dimensional problems, provided thatand its vertices
are known. The iteration concerning the enlarging procegdon the other hand,
requires a high computational burden. In fact, although)(@% convex optimiza-
tion problem in the variablé, the computation o2, ,; consists of a convex hull
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operation and a simplification process to generate the mahifirepresentation
of the polytope. Both these two sub-procedures are compuogdly demanding.
Then the enlarging procedure should be performed only fiatikeely low dimen-
sional problems, as illustrated in the following example.

Example 1. To give an idea of which is the largest dimension for the pobto
be solved in reasonable time, we applied Algorithm 1 to a gedized saturated
system varying its dimension. Far= 6, the Matlab procedure requires some
minutes to compute the sequencépffor £,,.. = 9, with a non-optimized code
and using standard Matlab routines (for polytopes handliiog instance). Table
1 shows the evolution of the number of vertices and facets, &6r n = 6. The
increase of the number of vertices and facets yields thegin@aprocedure to be
more and more time-consuming as the algorithm proceeds.

Step o 1 2 3 4 5 6 7 8 9
Vertices| 65 66 67 68 69 70 71 72 73 74
Facets |28 44 59 75 105 128 164 191 246 300

Table 1: Vertices and facets 0f, C R", withn = 6.

Then, for relatively low dimensional systems, the choicéhefparticular ge-
ometry of the initial gues8);, is not crucial, as the enlarging process permits to
generate properly shaped contractive sets. On the coptinargelection of2; can
strongly influence the size of the contractive sets obtaioetigher dimensional
systems, as the enlarging iterations can result compuotdljounaffordable. On
the other hand, the problem of computing contractive setsdolinear systems is
rather complex by its nature. Hence, a trade-off betweesittesof the obtained
contractive sets and the required computational compléxitnavoidable, in our
opinion, for high dimensional systems.

5. Numerical example
Consider a generalized saturated system (9), see Secionith matrices
1.1 1 0.5
A= { 0 11 ] B= { L1 } , F=]-05236 —1.1264 ],

andI'(y) = max{u(y + o), —yo} with u = 1, 0 = 0.2 andy, = 1.8, as in Defi-
nition 2. The CDI extension of the generalized saturatetesys$s determined by
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convex bounding functions given by (10), witH(y) = max{uy, —yo — po} =
max{y, —2}, and byW = {w = Bv : —0.2 < v < 0.2}, see Section 2.2.
The state is assumed to be constrained in the refioa {r € R?> : —15 <

x1 < 15, —6 < x9 < 6}. Notice that in the region of the state space given by
D={zeR": |[Fo| <2 +o} ={z €R": [Fa| < 2}, the CDI system is
equal to the linear one given hy,.; = (A + BF)x; + wx, Whose eigenvalues
are0.3496 + 0.11334, lying in the unitary circle. Such linear system is used to
determine a local invariant s@t, using standard iterative methods. Since we are
interested in a robust invariant set for the uncertain CBtesy, we choosg = 1

and apply the algorithm.

Figure 2: Sequence of sets,. for the CDI system, fok € Ny ... 1, generated by Algorithm 1.

In Figure 2, the sequence of robust invariant sets genelgtede enlarging
process are depicted. The inner seflis= af); computed at first step of the
algorithm. The biggest robust invariant selis __, with k,,,,. = 100. Notice that
the state constraints are satisfied, §2¢.€ X.

6. Conclusions

In this paper the CDI modelling framework has been preseatetlused to
characterize invariance and contractiveness of convexfeenonlinear and un-
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certain systems. Conditions for invariance and contrao®gs are posed as a
set of constraints involving convex bounding functionsaiiks to the properties
of convexity, such constraints are boundary-type cona#iaunlike the case of
generic nonlinear systems. This led to the definition of &edore for computing
polytopic invariant sets based on convex constraintsfaatien for CDI systems.

One future research direction concerns further developse#nhe theoretical
aspects of the CDI systems, considering for instance thielgmres of design and
estimation. On the other hand, the particularization ofgtaperties of the CDI
systems to specific subclasses of nonlinear ones, sataatedeneralized satu-
rated for instance, could lead to extend and improve thdteefr common and
more practice-oriented models.
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