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ABSTRACT: MOISE is a knowledge engineering methodology which includes a knowledge specification stage which
separates static knowledge from dynamic knowledge. This stage integrates a graphical knowledge specification language
(KRL) that combines a static specification language (semantic networks) and a dynamic specification language (task
language). The modelling language KRL is the source language describing knowledge which becomes available for
consultation. Some additional tools transform source graphical knowledge descriptions into different target languages: textual
descriptions (word), hypertextual descriptions (html) and executable descriptions (SPIRAL). The paper deals with the latter
tool. It presents the KRL itself (knowledge-level) and sketches the design model (symbol-level) that corresponds to its
executable form and that is implemented in the SPIRAL object-oriented language.
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1. Introduction

What is MOISE?

MOISE is a knowledge engineering methodology developed by J-L. Ermine [Ermi93]. It was created around
1989 for a research use whereas KOD [Voge89] or KADS [Breu94] methodologies are intended for industrial
applications. Nevertheless it has been successfully applied in about 30 industrial projects, in a large variety of
fields such as technical diagnosis [Ermi91] or power plant systems [Benz95]. Some software tools (not
commercialized) were also developed to support the methodology. MOISE is now evolving to be integrated in a
more general knowledge engineering methodology whose issue goes past and includes the cognitive approach
[Brun94].

Knowledge-level versus symbol-level

MOISE includes a knowledge specification phase that aims at building a formalized model of the whole
knowledge contributing to the problem at hand. This is a modelling phase at the knowledge-level, as well as the
conceptual model construction of KADS methodology is [Wiel92]. In respect of Newel statements, knowledge-
level and symbol-level are distinguished [Newe82].

Knowledge-level for a better understanding of expert system knowledge? Or of human expert knowledge?

Two motivations underlie the knowledge level theory [Stee89]. First, it offers "better ways to understand the
knowledge contained in expert systems and hence understand why they work or not work." Secondly, it proposes
"ways to explicate knowledge engineering skills so that we can teach them". These are not contradictory;
nevertheless we favour the last one. That is why a graphical language which is simple and intuitive was chosen
to obtain knowledge descriptions that are used as descriptions of reference.

A graphical knowledge representation language

This knowledge specification (or conceptual modelling) is the more often used phase of the method. It
separates static knowledge that describes domain knowledge, from dynamic knowledge that describes the expert
strategy by identifying the tasks manipulating domain knowledge objects. Semantic links are defined between
those objects, between those tasks and between each others. On one hand an object is represented by a semantic
networks language which defines what we call a concept, on the other hand a task is represented by a task



language with a graphical representation. Now we shall refer to the Knowledge Representation Language (KRL)
as the combination of the semantic networks language and the task language.

KRL descriptions: the descriptions of reference!

The KRL modelling language is the source language describing knowledge which becomes available for
consultation. In addition some soft tools, combined with the methodology, transform source graphical knowledge
descriptions into different target languages (Figure 1): textual descriptions (word), hypertextual descriptions
(html) and executable descriptions. The first transformation leads to report-like document that is a very useful
form as it is showed by the report-centred expert system KNACK [Derm88]. The second one is being studied
and will allow a hypertextual navigation among graphical knowledge models [Chai95] and can therefore produce
a very attractive means of consultation. The latter research direction (operationalization) could help us in
prototyping, validating and verifying conceptual models and is the paper centre of interest.

report-like hypertextual and
descriptions graphic descriptions
for consultation for navigation
graphic knowledge
descriptions

for execution

v

executable
descriptions

Figure 1: KRL descriptions: central descriptions

Section 2 presents the graphical KRL used to specify static and dynamic knowledge and section 3 details the
design model that permits the transformation from graphical knowledge descriptions to executable descriptions.
Along the paper and as much as possible our explanations are illustrated by applying them to the Sisyphus II
example. For memory Sisyphus II problem [Yost92] is an elevator system configuring problem derived from the
source code for the VT elevator configuration expert system [Marc88]. This project aims at comparing different
approaches to aspects of knowledge engineering and is complete and complex enough to avoid toy examples.

2. Knowledge representation language

MOISE approach covers all steps from initial knowledge acquisition to design and implementation.
Acquisition activity or expert interview techniques are not the paper centre of interest which just focuses on the
KRL integrating both static and dynamic languages.

When a KRL is provided to a human expert who initially doesn’t know it, it implies it must rapidly fit in with
him. It must be easy and quick to understand. It must own the sufficient and necessary modelling primitives that
are useful and suitable for an expert. The model of expertise constructed by the expert should constitute an
important means of communication; therefore the KRL should get expressiveness and preciseness properties.
According to these reasons a graphical KRL was defined. It combines a semantic networks language to represent
static knowledge and a task language to represent dynamic knowledge.

2.1 Semantic networks

Semantic networks are a well known language used to represent static knowledge since they were used by the
scholastic logicians in the middle ages. Nets are useful for representing and structuring domain knowledge and
more simply for « making our ideas clear » [Peir78]. They are more understandable than first-order predicate
calculus [Sowa91] [Blds89]. Semantic networks terminology and notation vary widely and our version is now
presented. A net is a pattern of interconnected nodes and arcs. Nodes represent concepts of entities and terminal
nodes may be value sets (Real, Integer, Boolean, Characters). Different kinds of oriented arc are distinguished
(Figure 2). Three arcs represents the general domain model and two others instantiate the domain model
according to a specific problem. The general structuring arcs are:

-the att arc links a concept and an attribute concept of which the first one is composed,




-the val arc links two concepts where the first one takes its values in the second one

-the spec arc links two concepts where the first one is specialized (in the hierarchy sense) by the second one.
This arc enables taxonomic hierarchy representation.

The instance description arcs are:

-the elt arc which links an element and its concept

-the = arc fixes the result value or entity of an attribute relationship.

Figure 2:The semantic network arcs
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Figure 3: The elevator system net
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Figure 4: The buffer system net

After analyzing the Sisyphus II report, the elevator system composition can be deduced and represented in
Figure 3 in an expressive manner. At first sight, it is understandable that an elevator system consists of five
subsystem attributes: the hoistway, the car assembly, the counterweight assembly, the suspension and the cables
systems. Sisyphus II problem counts about 250 concepts.

We focus on the buffer system (Figure 4) which is a subsystem of the car and counterweight assemblies. A
buffer model takes its values in the enumerated set {OH-1, OM-14} whereas a buffer height takes its ones in the
real set. A buffer counts two subspecies, the OH-1 buffer and the OM-14 buffer, that are described by a specific
model value (OH-1, res. OM-14), a specific stroke value (8.25, res. 14), a specific height value (28.75, res. 38.5),
a specific load limit minimum (both 2900) and a specific load limit maximum (both 11000).




2.2 Task language

The task language is used to graphically represent dynamic knowledge. It has been defined taking into
account some cognitive psychology studies applied to ergonomics [Scap89]. That is why a task, in MOISE, does
not cover the same characteristics as a task in expert system studies [Chan86] and is much more elementary. A
MOISE task offers no dynamic way to map data to roles and it owns a single predefined method. Two kinds of
task are distinguished: specific task and generic task. A specific task is completely domain-dependent. It consists
of input/output parameters (roles) and embodies subtasks (task structure) controlled by a generic task (structure
control). A generic task is domain-independent. It only defines a generic control that may be used in the structure
control description of specific tasks that share the same strategic control.

__ required configured
information configure elevator elevator

start ) inl .
___ required fiouri mainly co:]g":u?]ed ﬁnlsh'
information configuring configured \ vgm ‘ configuring configured
elevator elevator clevato! elevator elevator
Figure 5: The configure elevator specific task
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Figure 6: The start configuring specific task

The configure elevator specific task (Figure 5) consists of the input parameter named required information,
the output parameter named configured elevator and the two subtasks start configuring elevator and finish
configuring elevator. This indicates that to configure an elevator from the required information two steps are
necessary (because of the data flow): you start configuring its components and then you finish configuring them.
The configure elevator is the higher coarse-grained task and the more abstract one.

Figure 6 shows that, in order to start configuring an elevator system, you sequentially start configuring
elevator subparts (Figure 3): you first configure the hoistway (completely), secondly the car (partly), thirdly the
control cable (completely), fourthly the counterweight (partly), fifthly the suspension (partly) and sixly the
cables (partly). At end you obtain the mainly configured elevator. If it is not indicated whether a task is specific
or generic, the term fask implicitly denotes a specific task, else the contrary is indicated.

For us, the fact is emphasized that dynamic knowledge specifications must map as accurately as possible to
the proper reasoning way of the human expert. We could try to determine a generic task suitable for the expert
by analyzing the Sisyphus II report. G.R. Yost writes to describe the derivation of a constrained value: « When
deriving values for the design variables [...], process constraints as soon as possible. [...] The first step in
processing a constraint is to see whether it is violated. If it is not, no further processing is needed for that




constraint, and you can continue deriving values for design parameters or processing other constraints. If the
constraint is violated, however, you should immediately try to find design modifications that remedy the
violation. » We could sum up this fine-grained reasoning in the following manner (Figure 8). To derive a
constrained value, a value is first proposed then a constraint is verified to see whether or not it is violated. If it is
let’s modify the right design parameters and do the different steps again (propose, verify, modify). Else let’s
stop.

SEQUENCE ALTERNATIVE LOOP

| | (P
&&&&&m

WHEN

Figure 7: Three primitive generic tasks

A few primitive generic tasks are proposed Figure 7 such as sequence, alternative or loop...exit when generic
tasks. These are so basic samples that the terminology generic task may seem too strong and control task should
be more appropriate. But these very general control tasks may define the control of more precise generic tasks
which get obvious generic features such as applicability and reusability features. For example the loop...exit
when generic task is used to define the control of the derive a constrained value generic task which can then be
refined in a specific task such as the derive a car buffer load value specific task (Figure 9).

derive a
constrained
value

\
EXIT WHEN

not
PROPOSE VERIFY @ MODIFY
Propose a | proposed verlfy.a violated?— modify a
value value constraint parameter

derived
value

Figure 8: The derive a constrained value generic task

Graphical knowledge specifications are later converted in a textual form (Word document). This language
keeps readability and understandability properties and proposes another way to describe specifications.
Moreover its textual form implies that formal specifications are interpretable and computable by a syntactic
analyzer that makes it easier to convert specifications in any programming language.

You can add to the formal specifications some new constraints you couldn’t graphically represent. For
example the following constraint mentioned in the Sisyphus II document : « Both car and counterweight
assemblies are composed of several buffers and the buffer model must be the same for both car and
counterweight assemblies in an elevator system » is written in the textual form:

elevator system att car assembly att buffer att model = elevator system att counterweight assembly att buffer att model
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Figure 9: The derive a car buffer load value specific task
3. Object programming language

The last step (but not the least) to fulfil the operationalization purpose is to transform specifications from
knowledge-level to symbol-level. We chose the high level programming language SPIRAL [Lorr92] [Lorr93]
which is a logic object PL used for knowledge-based system development. SPIRAL is a meta-circular object-
oriented language too [Coin89]. The design model that customizes the SPIRAL object model and enables static
and dynamic knowledge transformation is described in this section.

3.1 Static objects

The predefined SPIRAL class model is nearly complete enough to describe net attributes and net constraints.
A standard attribute class (std_attribute) is defined which consists of the following facets:

-the domain facet used to describe enumerated sets,

-the value facet used to fix a value,

-the attribute facet indicates if the attribute is monovalue or multivalue.

A concept is described with a class. Any class is created by the meta-class class and is a subclass of the class
object.

3.2 dynamic objects

Three abstraction levels are available in SPIRAL model, they are the meta-class level, the class level and the
instance level. A meta-class is a class that can create classes (meta-class instances are classes), and a simple class
creates instances. These three levels are used to define task concept: meta-tasks at meta-class level, fask
abstractions (in short tasks) at class level and fask applications at instance level are introduced:

meta-class meta-task
class task abstraction
instance task application

Two meta-tasks are defined at the meta-class level : meta-task (or specific meta-task) and generic meta-task.
The first meta-task consists of input and output parameters. The second meta-task inherits from the first one and
consists of task parameters (plus inherited I/O parameters). These meta-tasks can be represented graphically with
the net formalism in Figure 10.

The specific and generic meta-tasks can respectively create specific and generic tasks. From its input/output
parameter values, the specific meta-task creates the proper I/O attributes of specific tasks. For example if input
parameter names are (weight, capacity, quantity) and output parameter names are (proposed value), the specific
meta-task creates a task with fields named weight, capacity, quantity and proposed value. From its
input/output/task parameter values, the generic meta-task creates the proper I/O/T attributes of generic tasks.
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Figure 10: Meta-task net

3.3 Task taxonomy

The SPIRAL object-oriented language and its inheritance mechanism allow us to define object taxonomy.
Concepts are modelled by classes so concept taxonomies (see buffer net) expressed in semantic nets are easily
expressed in SPIRAL (superclasses field). Moreover tasks are modelled by classes so the SPIRAL inheritance
property can be applied to tasks in a practical and useful purpose although no task taxonomy is expressed in the
graphical task language. However task hierarchy definition presents a conceptual interest [Rech85] and tasks can
be organized in a hierarchy. A task T’ is more specific than a task T if T’ parameter value domain is more
restrictive than T one’s and if both of them solve the same problem [Will94]. A task is described by I/O/T
parameters and by a control defining how to execute the task. A task control is either a predefined algorithm or a
generic task application. In the first case the task is ferminal and in the second case it is composed. Six abstract
tasks can be defined at the top of the task hierarchy and they depend on their parameter and control types. We
therefore distinguish several tasks (Figure 11): specific task (task), generic task, terminal specific task (terminal
task), composed specific task (composed task), terminal generic task and composed generic task.

task

|
v v v

terminal task generic task composed task
TASK I I |1 ¢ TASK
control terminal generic task composed generic task control
expression generic task

Figure 11: Task hierarchy top

The task hierarchy of the derive a constrained value task can be represented Figure 12 showing the
conceptual interest of task hierarchy definition. The derive a car buffer load value task is more specific than the
derive a buffer load value task that is more specific than the derive a constrained value task and they all have the
same kind of goal.
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Figure 12: Derive a constrained value task hierarchy

Below are described in SPIRAL derive a constrained value composed generic task, and two different ways to
define derive a car buffer load value task. The first solution does not use inheritance properties and enumerates
the 4 input parameters (L1) and the 2 output parameters (L2) described on Figure 9. Its control applies directly
the derive a constrained value generic task (L3) that apply the propose a car buffer load value (B1), verify a car
buffer load constraint (B2), modify a car buffer quantity (B3) tasks through the propose (L4), verify (L6), modify
(L8) task parameters. The second solution refines the derive a buffer load value generic task (L10) that refines
the derive a constrained value generic task (L9). Because of inheritance properties, the derive a car buffer load
value definition just need to contain a part of the I/O parameters (capacity) and a part of the control through
propose, verify, modify task parameters (L11).

The description of the derive a car buffer load value task includes data flows that were not graphically
represented for clarity reasons. For example the phrase L5 describes the data flow from the proposed value
output parameter of the propose a car buffer load value subtask to the derived parameter output parameter of the
derive a car buffer load value task. The phrase L7 describes the data flow from the proposed value output
parameter of the propose a car buffer load value subtask to the load input parameter of the verify a car buffer
load constraint subtask.

ask(generic meta-task, task create, derive a constrained value
,(superclasses, composed generic task)
,(output parameter names, derived value)
,(output parameter types, real)
,(task parameter names, control ,propose, verify ,modify)
,(task parameter types, generic task, propose a value, verify a constraint, modify a parameter)
,(task parameter definitions
,(loop...exit when
,(exit condition, violated COND)
,(task list,(propose, verify, exit when, modify)))




L1

L2

L3
L4

L5

L6

L7

L8

FIRST SOLUTION
ask(meta-task, task create, derive a car buffer load value
,(superclasses, composed task)
,(input parameter names, weight, capacity, quantity, load limit)
,(input parameter types, real, real, real, load limit)
,(output parameter names, derived value, modified quantity)
,(output parameter types, real, real)
,(task parameter names, control)
,(task parameter types, generic task)
,(task parameter definitions
,(derive a constrained value
,(propose B1

,(propose a car buffer load value
,(weight, (derive a car buffer load value, weight))
,(capacity,(derive a car buffer load value, capacity))
,(quantity
,(derive a car buffer load value, quantity)
,(modify a car buffer quantity, modified quantity))

L9

L10

L11

SECOND SOLUTION
ask(generic meta-task, task create, derive a buffer load value
,(superclasses, derive a constrained value)
,(input parameter names, weight ,quantity, load limit)
,(input parameter types, real, real, load limit)
,(output parameter names, modified quantity)
,(output parameter types, real));

ask(generic meta-task, task create, derive a car buffer load value
,(superclasses, derive a buffer load value)
,(input parameter names ,capacity)
,(input parameter types, real)
,(task parameter names, propose, verify ,modify)
,(task parameter types, propose a value, verify a constraint, modify a parameter)
,(task parameter definitions

,(proposed value, (derive a car buffer load value, derived value)) same as B1
)
,(verify B2
,(verify a car buffer load constraint
,(load, (propose a car buffer load value, proposed value))
,(load limit, (derive a car buffer load value, load limit))
) same as B2
,(modify B3
,(modify a car buffer quantity
,(quantity to modify
,(derive a car buffer load value, quantity)
,(modify a car buffer quantity, modified quantity))
,(load, (propose a car buffer load value, proposed value)) same as B3
,(load limit,(derive a car buffer load value, load limit))
,(modified quantity,(derive a car buffer load value, modified quantity))
)

D)

)




3.4 Task execution

Any composed or terminal task class owns an execution method (in the object-oriented language meaning).
The execution method running implies valuation of all task and output parameters. An execution running
produces task applications (Figure 13) and each task application creates and controls its subtask applications. For
example the derive a car buffer load value#0 task application creates the loop exit...when#0 task application that
creates and controls the n propose a car buffer load value#i, the n verify a car buffer load constraint#i, the n exit
when#i and the n-1 modify a car buffer quantity#i task applications. And so on.

A task application is an instance, so an execution is stored and will be eventually available for explanation
use. For example the YQOT elevator car may be configured many times but all the configure car task applications
store the different car configuration cases. An execution browser has been developed that provides a navigation
into task applications, that means into execution results.
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load value # 0 buffer load loo it when # 0
— value p...exit when
? application - T
( :
propose a car - pplication
buffer load value # 0 ‘ ‘ ‘ ‘
propose a car PROPOSE MODIFY
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buffer load value constraint | “wiolated?” | buffer quantity
. ‘]“3‘1:(\‘?1%1"*0@“11}’)/(1113““1}’/ load limit minimum applications
applications "~ <load < | ‘
load limit maximum / applications
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v

verify a car buffer
load constraint # 0

verify a car buffer
load constraint # n

exit when # 0

exit when #n

modify a car buffer

modify a car buffer

quantity # 0

quantity # n-1

4. Conclusion

Figure 13: applications resulting from an execution

The aim of MOISE specification stage is not only to lead to an expert system that can solve a problem
(configure an elevator system in Sisyphus example). It also aims at giving to an user an understandable
description of the problem solving (of what an elevator is (Figure 3), of how a human elevator expert configures
it (Figure 5, Figure 6) and therefore of how the expert system achieves the elevator configuration).

. . knowledge report-like executable
Specification . : . . . .
specification specification specification
graphic know.l edge textual Spiral
Language representation language laneuage
language guag guag
Editor I Visio WinWord6/Textedit Textedit
Platform I PC PC / SunStation SunStation
Development
tool I
00 Visual Basic Lex&Yacc

Figure 14: Operationalization steps

The main steps that lead to operationalize knowledge specifications are now defined and a design model,
implemented in the SPIRAL object-oriented language, allows a smooth transition from knowledge-level to




symbol-level. We are now working to automate the process of producing an executable specification from a
formal model (Figure 14). A first tool that transforms graphical specifications in textual specifications and a
second one that transforms textual specifications in SPIRAL specifications, are being developed. We are
working at the same time to improve ergonomic features of task interfaces drawing our inspiration from
ergonomic studies [Scap89]. We must notice that efficiency problems were not taken into account. We will keep
on referring to the Sisyphus II problem which is a good way to test and evaluate our further works.
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