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. In this paper, we study simple planar graphs which need only ∆(G) colors for an acyclic edge coloring. We show that a planar graph with girth g and maximum degree ∆ admits such acyclic edge coloring if g ≥ 12, or g ≥ 8 and ∆ ≥ 4, or g ≥ 7 and ∆ ≥ 5, or g ≥ 6 and ∆ ≥ 6, or g ≥ 5 and ∆ ≥ 10. Our results improve some previously known bounds.

Introduction

An acyclic edge coloring of a graph G is a proper edge coloring with an additional condition that any pair of colors induces a linear forest (an acyclic graph with maximum degree two); in other words, there are no bichromatic cycles in G. The least number χ ′ a (G) of colors for which G admits an acyclic edge coloring is called acyclic chromatic index. Since graphs with parallel edges do not admit acyclic edge colorings, in this paper we consider only simple graphs.

The acyclic coloring was first introduced for vertices of graphs by Grünbaum [START_REF] Grünbaum | Acyclic coloring of planar graphs[END_REF] and has been later extended to edges. Since acyclic edge coloring is also proper, we have the inequality χ(G) ′ ≤ χ ′ a (G) for every graph G. It is well known that the chromatic index of graphs is at least ∆(G) and at most ∆(G) + 1, what was proved by Vizing [START_REF] Vizing | Critical graphs with a given chromatic number[END_REF]. For an acyclic chromatic index a similar bound is believed to be true.

Conjecture 1 ([6, 1]). For every graph G it holds that

∆(G) ≤ χ ′ a ≤ ∆(G) + 2 .
An analysis of cycles in graphs is a hard task, thus it is not surprising that the best known upper bound for an acyclic chromatic index is 16∆(G), which has been proved by Molloy and Reed [START_REF] Molloy | Further algorithmic aspects of the local lemma[END_REF]. However, Conjecture 1 has been verified for several classes of graphs. The first result is due to Burnstein [START_REF] Burnstein | Every 4-valent graph has an acyclic five-coloring[END_REF], who proved that every graph with maximum degree 4 has an acyclic vertex coloring with 5 colors. Since the maximum degree of a line graph L(G) of a subcubic graph G is at most 4, and since an acyclic edge coloring of a graph G is in fact an acyclic vertex coloring of L(G), it follows that for every subcubic graph G, we have χ ′ a (G) ≤ 5 = ∆ + 2. Note that χ ′ a (G) ≤ 3 if ∆(G) = 2. Furthermore, in [START_REF] Alon | Acyclic edge colorings of graphs[END_REF] Conjecture 1 has been proved for almost all d-regular graphs and for all d-regular graphs with girth at least c∆(G) log ∆(G), where c is a constant. Recently, Basavaraju and Chandran [START_REF] Basavaraju | A note on acyclic edge coloring of complete bipartite graphs[END_REF] proved that the conjecture also holds for complete bipartite graphs K p,p , where p is an odd prime.

Since 2008, the acyclic edge coloring of planar graphs has received a lot of attention. Fiedorowicz, Ha luszczak, and Narayanan [START_REF] Fiedorowicz | About acyclic edge colourings of planar graphs[END_REF] proved that χ ′ a (G) ≤ 2∆(G) + 29 for every planar graph G, and if the girth of G is at least 4, the bound reduces to ∆ + 6. In the same year, Sun and Wu [START_REF] Sun | Acyclic edge colorings of planar graphs without short cycles[END_REF] verified Conjecture 1 for planar graphs without k-cycles, where k ∈ {4, 5, 6, 7, 8}, and planar graphs without 4-and 5-cycles in which no two 3-cycles share a vertex. In 2009, Hou et al. [START_REF] Hou | Acyclic edge colorings of planar graphs and series-parallel graphs[END_REF] improved the bound for planar graphs to max{2∆(G) -2, ∆ + 22}. They also studied planar graphs with specified girth and maximum degree. They showed the following theorem.

Theorem 1 ([9]). Let G be a planar graph with maximum degree ∆ and girth g. Then

1. χ ′ a (G) ≤ ∆ + 2 if g ≥ 5; 2. χ ′ a (G) ≤ ∆ + 1 if g ≥ 7; 3. χ ′ a (G) = ∆ if g ≥ 16 and ∆ ≥ 3.
Moreover, they proved that ∆ + 1 color suffice for an acyclic edge coloring of a series-parallel graph G.

Cohen, Havet, and Müller [START_REF] Cohen | Acyclic edge-colouring of planar graphs[END_REF] proved another bound for acyclic chromatic index of planar graphs. They showed that χ ′ a (G) ≤ ∆(G) + 25. They also posed the following conjecture.

Conjecture 2 ([11]

). There exists an integer ∆ for which every planar graph G with maximum degree ∆(G) ≥ ∆ admits an acyclic edge coloring with ∆(G) colors. This is an analogue to the conjecture of Vizing [START_REF] Vizing | Critical graphs with a given chromatic number[END_REF] which says that all planar graphs with maximum degree at least 6 are ∆-edge colorable.

The upper bound for acyclic chromatic index of planar graphs has been recently improved by Basavaraju and Chandran [START_REF] Basavaraju | A note on acyclic edge coloring of complete bipartite graphs[END_REF]. They proved that χ ′ a (G) ≤ ∆ + 12 for every planar graph G.

Furthermore, the bounds for planar graphs with specified girth were improved by Yu, Hou, Liu, Liu, and Xu [START_REF] Yu | Acyclic edge coloring of planar graphs with large girth[END_REF]. They proved the two theorems below.

Theorem 2 ([14]

). Let G be a planar graph with girth g and maximum degree ∆. Finally, in 2010 Borowiecki and Fiedorowicz [START_REF] Borowiecki | Acyclic edge colouring of planar graphs without short cycles[END_REF] verified Conjecture 1 for planar graphs with girth at least 5. They also showed that χ ′ a (G) ≤ ∆(G) + 1 for every planar graph G with girth at least 6, which improves the previous result of Hou et al. [START_REF] Hou | Acyclic edge colorings of planar graphs and series-parallel graphs[END_REF].

In this paper we studied the acyclic edge colorings of planar graphs with ∆(G) colors and improved several previous results. Our results are the following. In Table 1 we present the best known bounds for planar graphs. Our results are marked with an asterisk. In the paper we use the standard notation. The degree of a vertex v (the size of a face f ) is denoted by

∆(G)

d(v) (resp. d(f )). A vertex with degree k (at least k, at most k) is called a k-vertex (a ≥ k-vertex, a ≤ k-vertex, respectively). The neighbor u of degree k of a vertex v is called a k-neighbor of v.
Given an edge coloring ϕ of G, we say that the color a is free at the vertex v if there is no edge incident to v colored with color a. On the other hand, a color a is used at v if there is some edge incident with v which is colored by a. A path induced by colors a and b is called an {a, b}-path.

Proof of Theorem 4.

We prove each claim of Theorem 4 separately. In all proofs we assume that there exists a minimal counterexample G to the claim and show that it cannot exist by studying its properties. First, we show that certain configurations cannot occur in the minimal counterexample. Then we assign charge to the vertices and faces of G. Using Euler's formula we compute that the total charge is negative. However, by redistributing the charge among vertices and faces, we show that it is nonnegative, reaching a contradiction. Hence, the minimal counterexample G does not exist. This approach is the well known discharging method which remains the only technique for proving the Four Color Theorem.

Reducible configurations

First, we prove some general properties of the minimal counterexample G. Throughout this section, we assume that the girth of G is at least 5 and the maximum degree of G is ∆ ≥ 3.

Claim 1. Minimum degree of G is at least 2.
Proof. Let v be a vertex of degree 1 in G. Then the graph G ′ = G -v is not a counterexample, thus it has an acyclic edge coloring using at most ∆ colors. This coloring can obviously be extended to a desired coloring of G, what is a contradiction with the assumption of G being a counterexample.

From now on we may assume that there are no 1-vertices in G. 

d i ≥ ∆ + k. Proof. Let v be a k-vertex in G with neighbors v 1 , v 2 ,. . . , v k of degrees d 1 , d 2 ,. . . , d k such that d 1 + d 2 + • • • + d k ≤ ∆ + k -1.
Let ϕ be an acyclic edge coloring of G -v using at most ∆ colors. There are

d i -1 colors used at v i , i = 1, 2, . . . , k. Since (d 1 -1) + (d 2 -1) + • • • + (d k -1) ≤ ∆ -1,
there is a color, say c 1 , which is not used at any v i , i = 1, 2, . . . , k. We color the edge vv 1 with this color. For the edge vv i (2 ≤ i ≤ k) we use any color c i which does not appear on edges vv 1 , vv 2 ,. . . ,vv i-1 and which is not used at v i , v i+1 ,. . . ,v k . There are at most

i -1 + (d i -1) + • • • + (d k -1) ≤ k j=1 (d j -1) ≤ ∆ -1
forbidden colors, hence, such color c i exists. It is clear that we obtained a proper coloring of G using at most ∆ colors. To conclude the proof it suffices to prove that no bichromatic cycle could have arisen. Let vv i and vv j be a part of a cycle colored with colors c i and c j , 1 ≤ i < j ≤ k. Then the color c i must be used at v j , a contradiction with the choice of c i .

As a special case of Claim 2 we get the following statement:

Claim 3. There is no 2-vertex v in G incident with vertices v 1 and v 2 such that d(v 1 ) + d(v 2 ) ≤ ∆ + 1.
Consider the graph H induced by 2-vertices of G. Let vertices isolated in H be white, let the other 2-vertices be black. The previous claim immediately implies: Claim 4. There is no path of at least 3 black vertices in G. Moreover, each black 2-vertex is adjacent to a ∆-vertex.

It means that H consists of (isolated) white vertices and (isolated) pairs of black vertices. More detailed analysis yields: Let ϕ be an acyclic edge coloring of G ′ = G -f 1 using at most ∆ colors. We may assume that ϕ(e 1 ) = 1 and ϕ(e 2 ) = 2. If ϕ(f ′ 1 ) = 1, we can extend ϕ to an acyclic edge coloring of G easily. Hence, we may assume ϕ(f ′ 1 ) = 1. We may set ϕ(f 1 ) = 2, unless there is a {1, 2}-path in G ′ from v 1 to u 1 . If this is the case, we have ϕ(f 2 ) = 1 and ϕ(f ′ 2 ) = 2. Now we recolor the edges in the following way: we set ϕ(f 1 ) = 3, ϕ(e 1 ) = 2, ϕ(e 2 ) = 1, ϕ(f 2 ) = 3. It can be easily checked that no bichromatic cycle has been created.

Claim 5. Every vertex in G has at most one black 2-neighbor. Proof. Suppose a vertex v has two black 2-neighbors v 1 and v 2 in G. Let u i be the neighbor of v i distinct from v; let e i = vv i , f i = v i u i , i = 1, 2. Let f ′ i be the edge incident with u i distinct from f i , i = 1, 2. See Figure 1 for illustration. v v 1 v 2 u 1 u 2 f ′ 1 f ′ 2 f 1 e 1 e 2 f 2 1 1 2 1 2 -→ v v 1 v 2 u 1 u 2 f ′ 1 f ′ 2 f 1 e 1 e 2 f 2 1 3 2 1 3 2

Neighborhood of ∆-vertices

We say that vertices u and v are subadjacent, if there is a 2-vertex adjacent to both u and v.

Claim 6. Let v be a ∆-vertex subadjacent to a vertex u in G. Then the number of 2-neighbors of v is at most d(u).
Proof. If d(u) = ∆ there is nothing to prove, so we may assume that d

(u) = k < ∆. Suppose the number of 2-neighbors of v is at least k + 1. Let v 1 , v 2 ,. . . , v k+1 be 2- neighbors of v; let u i be the neighbor of v i different from v, let e i = vv i and f i = v i u i , i = 1, 2, . . . , k + 1. Assume u = u 1 . See Figure 2 for illustration.
Let ϕ be an acyclic edge coloring of G ′ = G -f 1 using at most ∆ colors. Let 1, 2, . . . , k -1 be the colors used at u. If ϕ(e 1 ) / ∈ {1, 2, . . . , k -1}, we color f 1 with any color free at u distinct from ϕ(e 1 ). This is always possible, since u has only k -1 < ∆-1 colored edges. It is clear that we obtain an acyclic edge coloring of G using at most ∆ colors. Hence, we may assume that ϕ(e 1 ) = 1. Consider now the colors of e 2 , . . . , e k+1 . At most k-1 of them are from {2, . . . , k -1}, hence, there are (at least) two edges colored with colors free at u. Without loss of generality we may assume that ϕ(e k ) = k and ϕ(e k+1 ) = k + 1.

v u v 1 v 2 v k v k+1 e 1 f 1 e 2 f 2 e k f k e k+1 f k+1 1 k 1 k + 1 1 1 k -1 -→ v u v 1 v 2 v k v k+1 e 1 f 1 e 2 f 2 e k f k e k+1 f k+1 1 k k + 1 1 k 1 1 k -1
If ϕ(f k ) = 1, then we set ϕ(f 1 ) = k and no bichromatic cycle arises. Similarly if ϕ(f k+1 ) = 1, then we set ϕ(f 1 ) = k + 1. Hence we may assume ϕ(f k ) = ϕ(f k+1 ) = 1. Moreover, we may assume that in the subgraph G ′ 1k of G ′ induced by the edges of colors 1 and k the vertices v 1 and u are the endvertices of the same {1, k}-path, another such path starts in v k . In this case we set ϕ(e k ) = k + 1 and ϕ(e k+1 ) = k. Clearly, we obtain an acyclic edge coloring of G ′ . Now, in G ′ 1k the {1, k}-path from u ends in v k , hence, we can set ϕ(f 1 ) = k without introducing a bichromatic cycle. Let ϕ be an acyclic edge coloring of G ′ = G -f 1 using at most ∆ colors. Let 1, 2, . . . , k -1 be the colors used at u. If ϕ(e 1 ) / ∈ {1, 2, . . . , k -1}, then we find a color c which is free at v (this is always possible since d(v) < ∆) and we set ϕ(f 1 ) = ϕ(e 1 ) and ϕ(e 1 ) = c. It is easy to see that we obtain an acyclic edge coloring of G.

Neighborhood of other vertices

f i = v i u i for i = 1, 2, . . . , ℓ. Assume u = u 1 . See Figure 3 for illustration. v u v 1 v 2 v ℓ-1 v ℓ e 1 f 1 e 2 f 2 e ℓ-1 f ℓ-1 e ℓ f ℓ 1 k 1 1 k -1 -→ v u v 1 v 2 v ℓ-1 v ℓ e 1 f 1 e 2 f 2 e ℓ-1 f ℓ-1 e ℓ f ℓ 1 k c 1 1 k -1
Hence, without loss of generality we may assume that ϕ(e 1 ) = 1. The colors k, k + 1, . . . , ∆ are free at u. If at least one of them is also free at v, we use this color on f 1 to extend ϕ to an acyclic edge coloring of G. Therefore, we may assume all the colors k, k + 1, . . . , ∆ are used at v. Since v has at most ∆ -k neighbors of degree greater than 2, one of the edges e 2 , . . . , e ℓ is colored with one of the colors k, k + 1 . . . , ∆. Without loss of generality assume that ϕ(e 2 ) = k.

Consider the color of f 2 . If ϕ(f 2 ) = 1, then we set ϕ(f 1 ) = k and we are done. If ϕ(f 2 ) = 1, then we find a color c which is free at v (recall that d(v) < ∆), and set ϕ(e 2 ) = c and ϕ(f 1 ) = k. It is clear that no bichromatic cycle was created.

As a corollary we get the following property of G:

Claim 8. There is no vertex v in G with d(v) < ∆ adjacent only to 2-vertices.
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Let us reformulate the first statement of Theorem 4.

Lemma 5. Let ∆ ≥ 10. Every planar graph with girth at least 5 and maximum degree at most ∆ admits an acyclic edge coloring with ∆ colors.

Let G be a minimal counterexample to Lemma 5 with respect to the number of edges.

Discharging rules

Let the initial charge be set as follows:

• w(v) = 3d(v) -10 for each vertex v of G; • w(f ) = 2d(f ) -10 for each face f of G.
Using Euler's formula and handshaking lemma we can derive that the sum of the charge in whole graph is negative:

v∈V w(v) + f ∈F w(f ) = 3 • v∈V d(v) -10 • |V | + 2 • f ∈F d(f ) -10 • |F | = = 3 • 2 • |E| -10 • |V | + 2 • 2 • |E| -10 • |F | = 10 • (|E| -|V | -|F |) = -20.
It is clear that all the faces have nonnegative charge since g ≥ 5. Vertices of degree at least 4 have positive charge, 3-vertices have charge -1 and 2-vertices have charge -4.

We move the negative charge from 2-vertices and 3-vertices according to the following rules:

(R1) Let v be a 2-vertex with neighbors v 1 and v 2 . Let d = d(v 1 ) ≤ d(v 2 ). (R1a) If d ≤ 3, then v sends no charge to v 1 and -4 of charge to v 2 . (R1b) If d = 4, then v sends -1 2 of charge to v 1 and -7 2 of charge to v 2 . (R1c) If 5 ≤ d < 9, then v sends -3d-11 d-1 of charge to v 1 and -d+7 d-1 of charge to v 2 . (R1d) If d ≥ 9, then v sends -2 of charge both to v 1 and v 2 . (R2) Let v be a 3-vertex with neighbors v 1 , v 2 , and v 3 . Let d(v 1 ) ≤ d(v 2 ) ≤ d(v 3 ). Then v sends -1 of charge to v 3 .
Notice that for 5 ≤ d < 9 we have 3d-11 d-1 < 2 < d+7 d-1 and that for d = 9 rules (R1c) and (R1d) coincide. Observe that by Claim 3 in (R1a) we have

d(v 2 ) ≥ ∆-1 ≥ 9 > 3 ≥ d(v 1 ) and in (R1b) we have d(v 2 ) ≥ ∆ -2 ≥ 8 > 4 = d(v 2 ). In (R1c), if d(v 1 ) = d(v 2 ), we choose v 1 arbitrarily.
To make the proof complete we need to show that after the discharging rules are applied, the charge of all vertices is nonnegative. Observe that all 2-vertices send all their negative charge to their neighbors, moreover, only vertices of degree at least 4 receive some negative charge from 2-vertices.

Similarly, all 3-vertices send all their negative charge to some of their neighbors. By Claim 2 for each 3-vertex v with neighbors v 1 , v 2 , and

v 3 such that d(v 1 ) ≤ d(v 2 ) ≤ d(v 3 ) we have d 1 + d 2 + d 3 ≥ ∆ + 3 ≥ 13.
Therefore, d(v 3 ) ≥ 5 and only vertices of degree at least 5 receive some negative charge from 3-vertices.

Let v be a 4-vertex. Its initial charge is 2. By (R1b) it only receives -1 2 of charge from each 2-neighbor, hence, its charge is at least 2 -4 • 1 2 ≥ 0.

Vertices of degree ∆

Let v be a ∆-vertex. Its initial charge is 3∆ -10. It receives at most -1 of charge from each 3-neighbor, thus if it has no 2-neighbor its charge is at least 3∆ -10 -∆, which is clearly positive. Assume v has some 2-neighbors. It means it is subadjacent to some vertices; let k be the minimum degree of a vertex subadjacent to v. Then by Claim 6 the number of 2-neighbors of v is at most k.

Let k ≤ 3. Then v has at most three 2-neighbors which send at most -4 of charge to v by (R1a)-(R1d). The charge of v is at least 3∆ -10

-3 • 4 -(∆ -3) = 2∆ -19 which is positive since ∆ ≥ 10.
Let k = 4. Then v has at most four 2-neighbors which send at most -7 2 of charge to v by (R1b)-(R1d). The charge of v is at least 3∆ -10 -4 • 7 2 -(∆ -4) = 2∆ -20 which is nonnegative since ∆ ≥ 10.

Let 5 ≤ k ≤ 9. Then each 2-neighbor of v sends at most -k+7 k-1 of charge to v by (R1c) or (R1d). The number of 2-neighbors of v is at most k, thus the charge of v is at least

3∆ -10 -k • k + 7 k -1 -(∆ -k) = 2∆ -10 - 8k k -1 = 2∆ -18 - 8 k -1 .
This is nonnegative since k -1 ≥ 4 and ∆ ≥ 10. Let k ≥ 10. Then each 2-neighbor of v sends -2 of charge to v. Then the charge of

v is at least 3∆ -10 -k • 2 -(∆ -k) = 2∆ -10 -k.
This is nonnegative since ∆ ≥ 10 and k ≤ ∆.

Other vertices of degree at least 5

Let v be a d-vertex, 5 ≤ d < ∆. Its initial charge is 3d -10. It receives at most -1 of charge from each 3-neighbor, thus if it has no 2-neighbor its charge is at least 3d-10-d, which is clearly nonnegative for d ≥ 5. Assume v has some 2-neighbors. It means it is subadjacent to some vertices; let k be the minimum degree of a vertex subadjacent to v. By Claim 4 we have k ≥ 3. By Claim 3 for each subadjacent vertex u i we have

d(u i ) ≥ ∆ + 2 -d. Therefore, k ≥ ∆ + 2 -d, thus, d ≥ ∆ + 2 -k. Recall that by Claim 7 the number of 2-neighbors of v is at most d + k -∆ -1 = k -1 -(∆ -d) ≤ k -2.
Now, consider several cases regarding k: k-1 of charge to v by (R1c) or (R1d). So the charge of v is at least

If k = 3, then d ≥ ∆ -1 ≥ 9,
3d -10 -(d + k -∆ -1) • k + 7 k -1 -(∆ + 1 -k) = 2(kd -9k -5d + 4∆ + 9) k -1 ≥ ≥ 2(kd -9k -5d + 49) k -1 = 2[(k -5)(d -9) + 4] k -1 .
This is nonnegative since k -5 ≥ 0 and d -9 ≥ -4. If 9 ≤ k and k ≤ d, then each 2-neighbor of v sends -2 of charge to v by (R1d). Then the charge of v is at least 

3d -10 -(d + k -∆ -1) • 2 -(∆ + 1 -k) = d -9 + ∆ -k.
-10 -(d -1) • 3d -11 d -1 -1 = 0.
Since all the vertices of G have nonnegative charge, we obtain a contradiction which completes the proof.
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Lemma 6. Let ∆ ≥ 6. Every planar graph with girth at least 6 and maximum degree at most ∆ admits an acyclic edge coloring with ∆ colors.

Suppose G is a minimal counterexample to Lemma 6.

Discharging rules

Let the initial charge be set as follows:

• w(v) = 2d(v) -6 for each vertex v of G; • w(f ) = d(f ) -6 for each face f of G.
By Euler's formula we have that the sum of charges of vertices and faces is -12.

It is clear that since g ≥ 6 all the faces have nonnegative charge. Vertices of degree at least 4 have positive charge, 3-vertices have no charge and 2-vertices have charge -2.

We redistribute the charge among vertices by the following rules: It is easy to see that 2-vertices send all their negative charge to their neighbors. Since ∆ ≥ 6, by Claim 3 for each 2-vertex with neighbors with degrees d 1 and d 2 we have d 1 + d 2 ≥ ∆ + 2 ≥ 8, therefore, only vertices of degree at least 4 can receive negative charge. Hence, 3-vertices neither send nor receive any charge, so they retain chargeless.

(R3) Let v be a 2-vertex with neighbors v 1 and v 2 such that d(v 1 ) ≤ d(v 2 ). (R3a) If d(v 1 ) ≤ 3, then v sends -2 of charge to v 2 . ( R3b 

4-vertices

Let v be a 4-vertex in G. Its initial charge is 2. If it has no 2-neighbors, its charge does not change. By Claim 3 it cannot be subadjacent to a 3-vertex. If it is subadjacent to a 4-vertex, by Claim 7 the number of 2-neighbors of v is at most 4+ 4-∆ -1 = 7-∆ ≤ 1, hence, it has only one 2-neighbor from which it receives -1 of charge by (R3b). Its final charge is (at least) 2 -1 = 1.

If it is only subadjacent to vertices of degree at least five, it can have at most three 2-neighbors by Claim 8. By (R3c) it receives -2 3 of charge from each 2-neighbor, hence, its charge is at least 2 -3 • 2 3 = 0.

5-vertices

Let v be a 5-vertex in G. 

Its

Other vertices

Let v be a d-vertex, where d ≥ 6. Its initial charge is 2d -6 ≥ 6. If it has no 2neighbors, it does not receive any negative charge. Suppose v has some 2-neighbors; let k be a minimum degree of a vertex subadjacent to v.

If k ≤ 3, then by Claims 6 and 7 the vertex v has at most three 2-neighbors, and each has sent at most -2 of charge. Hence, the charge of v is nonnegative.

If k = 4, then v has at most four 2-neighbors, and each has sent at most -4 3 of charge. Hence, the charge of v is at least 6 -4

• 4 3 = 2 3 > 0. If k ≥ 5, then v receives at most -1 of charge from each neighbor, hence its charge is at least 2d -6 -d = d -6 ≥ 0.
All the vertices of G have nonnegative charge, a contradiction which establishes the lemma.
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Lemma 7. Let ∆ ≥ 5. Every planar graph with girth at least 7 and maximum degree at most ∆ admits an acyclic edge coloring with ∆ colors.

If ∆ ≥ 6, then the statement follows from Lemma 6. Therefore, we may assume that ∆ = 5 and ∆(G) ≤ 5. Suppose G is a minimal counterexample to Lemma 7.
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Lemma 8. Let ∆ ≥ 4. Every planar graph with girth at least 8 and maximum degree at most ∆ admits an acyclic edge coloring with ∆ colors.

If ∆ ≥ 5, then the statement follows from Lemma 7. Therefore, we may assume that ∆ = 4 and ∆(G) ≤ 4. Suppose G is a minimal counterexample to Lemma 8.

Before setting discharging rules, we prove several additional properties of G.

More reducible configurations

Let a 3-vertex with two 2-neighbors be blue. We focus on the neighborhood of blue vertices.

Claim 9. Each blue 3-vertex is subadjacent to two 4-vertices.

Proof. Let v be a blue 3-vertex with 2-neighbors v 1 and v 2 ; let u i be the neighbor of v i distinct from v, i = 1, 2. If d(u i ) ≤ 3, then by Claim 7 there are at most

d(v) + d(u i ) -∆ -1 ≤ 3 3 -4 -1 = 1
2-vertices adjacent to v in G, however, both v 1 and v 2 are 2-vertices, a contradiction.

Claim 10. Each blue 3-vertex is adjacent to a 4-vertex.

Proof. Let v be a blue 3-vertex with neighbors

v 1 , v 2 , v 3 . Let d(v 1 ) = 2, d(v 2 ) = 2, d(v 3 ) = 3; let e i = vv i , i = 1, 2, 3. Let f i be the edge incident with v i different from e i , i = 1, 2. Let f 3 , f 4 be edges incident with v 3 different from e 3 .
Let G ′ be the graph obtained from G by deletion of the edges e 1 , e 2 , and e 3 . Let ϕ be an acyclic edge coloring of G ′ using at most 4 colors. Consider the colors of f 1 , f 2 , f 3 , and f 4 . We distinguish all possible cases up to symmetry and permutation of colors. See Figure 4 for illustration. Let ϕ(f 1 ) = ϕ(f 2 ) = 1. If 1 / ∈ {ϕ(f 3 ), ϕ(f 4 )}, then we set ϕ(e 1 ) = ϕ(f 3 ) and ϕ(e 2 ) = ϕ(f 4 ); for the edge e 3 we use the fourth color. If 1 = ϕ(f 3 ), then we set ϕ(e 1 ) = ϕ(f 4 ); for the edges e 2 and e 3 we use the othe two colors. Now, we may assume that ϕ(f 1 ) = 1 and ϕ(f 2 ) = 2. Let the four edges f 1 , f 2 , f 3 , and f 4 be colored by four colors, say ϕ(f 3 ) = 3, ϕ(f 4 ) = 4. Then we set ϕ(e 1 ) = 2, ϕ(e 2 ) = 3, and ϕ(e 3 ) = 1.

Let the four edges f 1 , f 2 , f 3 , and f 4 be colored by three colors, say ϕ(f 3 ) = 1, ϕ(f 4 ) = 3. Then we set ϕ(e 1 ) = 2, ϕ(e 2 ) = 3, and ϕ(e 3 ) = 4.

Let the four edges f 1 , f 2 , f 3 , and f 4 be colored by two colors, say ϕ(f 3 ) = 1, ϕ(f 4 ) = 2. Then we set ϕ(e 1 ) = 2, ϕ(e 2 ) = 3, and ϕ(e 3 ) = 4. It is easy to see that ϕ is now an acyclic edge coloring of G using at most 4 colors, a contradiction. Claim 11. Let v be a 4-vertex subadjacent to two 3-vertices. Then the number of 2neighbors of v is two.

v v 1 v 2 v 3 1 1 2 3 2 3 4 v v 1 v 2 v 3 1 1 1 2 2 3 4 v v 1 v 2 v 3 1 2 3 4 2 3 1 v v 1 v 2 v 3 1 2 1 3 2 3 4 v v 1 v 2 v 3
Proof. Let v be a 4-vertex subadjacent to u 1 , u 2 , u 3 such that d(u 1 ) = d(u 2 ) = 3. Let v i be the common neighbor of v and u i , i = 1, 2, 3. Let v 4 be the other neighbor of v. Let e i = vv i , i = 1, 2, 3, 4, f i = v i u i , i = 1, 2, 3. See Figure 5 for illustration.

Let ϕ be an acyclic edge coloring of G ′ = G -f 1 using at most 4 colors. Assume ϕ(e 1 ) = 1.

There are two colors free at u 1 . If 1 is free at u 1 , then we use the other free color for f 1 to extend ϕ to an acyclic edge coloring of G. Hence, we may assume that 1 is used at u 1 . Let 3 and 4 be the colors free at u 1 .

We can use the color 3 (or 4) for f 1 unless we introduce a bichromatic cycle. Therefore, we may assume that in G ′ , there is a {1, 3}-path from v 1 to u 1 and also a {1, 4}-path from v 1 from u 1 .

Consider the color of e 2 . Suppose first that ϕ(e 2 ) = 3. Since there is a {1, 3}-path from v 1 to u 1 , we have ϕ(f 2 ) = 1 and we know that 3 is used at u 2 . Hence, there is a color c ∈ {2, 4} free at u 2 . In this case we set ϕ(e 1 ) = 3, ϕ(f 1 ) = 4, ϕ(e 2 ) = 1, and ϕ(f 2 ) = c, see Figure 5(a). It is easy to see that no bichromatic cycle arises. We can use the same argument if ϕ(e 2 ) = 4. Hence, we may assume that ϕ(e 2 ) = 2; without loss of generality let ϕ(e 3 ) = 3 and ϕ(e 4 ) = 4. Then ϕ(f 3 ) = 1.

Consider the color of f 2 . Suppose first that ϕ(f 2 ) = 1. In this case, we set ϕ(f 1 ) = 3, ϕ(e 1 ) = 2, and ϕ(e 2 ) = 1. It is easy to see that no bichromatic cycle is created, since the {2, 3}-path containing v 1 ends at v 3 , the {1, 2}-path and {1, 3}-path containing v 2 ends at v 1 , and {1, 4}-path containing v 2 ends at u 1 , see Figure 5(b).

Finally, suppose that ϕ(f 2 ) = 1. Then there is a color, say c = 1, free at u 2 . In this case, we set ϕ(f 1 ) = 3, ϕ(e 1 ) = 2, ϕ(e 2 ) = 1, and ϕ(f 2 ) = c, see Figure 5(c). Again, no bichromatic cycle arises.

Discharging rules

Let the initial charge be set as follows:

• w(v) = 3d(v) -8 for each vertex v of G; • w(f ) = d(f ) -8 for each face f of G.
By Euler's formula we have that the sum of charges of vertices and faces is -16.

It is clear that since g ≥ 8 all the faces have nonnegative charge. Vertices of degree 4 have charge 4, vertices of degree 3 have charge 1, and vertices of degree 2 have charge -2.

We redistribute the charge among vertices by the following rules:

(R5a) Each white 2-vertex divides its charge (-2) equally among its two neighbors.

(R5b) Each black 2-vertex sends all its charge (-2) to the neighbor which is not a 2vertex.

After this phase all 2-vertices have charge 0. However, some other vertices can have become negative.

Consider a 3-vertex v in G. Its initial charge is 1. By Claim 3 it cannot have a black 2-neighbor. By Claim 8 it can have at most two (white) 2-neighbors. If v has at most one 2-neighbor, then it receives at most -1 of charge, so its charge is at least 0. Thus, only 3-vertices with precisely two 2-neighbors -blue 3-vertices -have negative charge. Let v be a blue 3-vertex. It is subadjacent to two vertices u 1 and u 2 via 2-vertices v 1 and v 2 . By Claim 9 both u 1 and u 2 are 4-vertices. Moreover, by Claim 10 the third neighbor v 3 of v is also a 4-vertex. The charge of v is now 1 + 2 • (-1) = -1.

a) u 1 v 1 v v 2 u 2 v 4 v 3 u 3 f 1 e 1 e 2 f 2 e 4 e 3 f 3 13 1 3 1 1 2 2 3 -→ u 1 v 1 v v 2 u 2 v 4 v 3 u 3 f 1 e 1 e 2 f 2 e 4 e 3 f 3 13 4 3 1 4 1 2 2 3 (b) u 1 v 1 v v 2 u 2 v 4 v 3 u 3 f 1 e 1 e 2 f 2 e 4 e 3 f 3 14 13 1 2 4 3 1 1 2 -→ u 1 v 1 v v 2 u 2 v 4 v 3 u 3 f 1 e 1 e 2 f 2 e 4 e 3 f 3 14 13 3 2 1 4 3 1 1 2 (c) u 1 v 1 v v 2 u 2 v 4 v 3 u 3 f 1 e 1 e 2 f 2 e 4 e 3 f 3 14 13 1 2 1 4 3 1 1 2 a b -→ u 1 v 1 v v 2 u 2 v 4 v 3 u 3 f 1 e 1 e 2 f 2
(R6) Each blue 3-vertex v with two 2-neighbors v 1 and v 2 sends -1 2 of charge to the face incident both with v 1 and v 2 ; it sends -1 4 of charge to the other two incident faces.

After this phase all 2-and 3-vertices have nonnegative charge. Some negative charge was sent to 4-vertices and faces.

Consider a 4-vertex v in G. Its initial charge is 4. If v has a black 2-neighbor, then by Claim 6 it has at most two 2-neighbors. Moreover, by Claim 5 at most one of them is black, thus, in this case it receives at most -3 units of charge, so its charge is at least 1. If v has only white 2-neighbors, its charge is at least 4 -4 • 1 ≥ 0. However, if has at most three white 2-neighbors, its charge is at least 1. Let 4-vertices with four 2-neighbors be called red. Observe that by Claim 6 a red 4-vertex cannot be subadjacent to a ≤ 3-vertex, hence, each red 4-vertex is subadjacent to four 4-vertices.

(R7) Each 4-vertex v divides all its charge equally to the four faces it is incident with. Now all vertices have nonnegative charge. Some of the negative charge can have been moved from blue 3-vertices to faces. On the other hand, observe that each face receives at least 1 4 of charge from each incident 4-vertex which is not red.

Big faces

Let f be a face of size k. Its initial charge is k -8; it receives - 
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 1 Figure 1: Reducing a vertex v with two black 2-neighbors.
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 2 Figure 2: Reducing a ∆-vertex v subadjacent to a k-vertex u and having at least k + 1 2-neighbors.
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 7 Let u and v be a pair of subadjacent vertices. If d(v) < ∆, then the number of 2-vertices adjacent to v is at most d(v) + d(u) -∆ -1. Proof. Let d(v) = d and d(u) = k. Suppose that v has at least d(v)+d(u)-∆ = d+k-∆ neighbors of degree 2. It means v has at most ∆ -k neighbors of degree greater than 2. Let v 1 , v 2 ,. . . , v ℓ be 2-neighbors of v, where ℓ = d + k -∆; let u i be the neighbor of v i different from v, let e i = vv i and
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 3 Figure 3: Reducing a d-vertex v subadjacent to a k-vertex u and having at least d + k -∆ 2-neighbors.

  moreover, v has one 2-neighbor. The charge of v is at least 3d -10 -4 -(d -1) = 2d -13 which is positive for d ≥ 9. If k = 4, then d ≥ ∆ -2 ≥ 8, moreover, v has at most two 2-neighbors. The charge of v is at least 3d -10 -2 • 7 2 -(d -2) = 2d -15 which is positive for d ≥ 8. If 5 ≤ k ≤ 8 and k ≤ d, then each 2-neighbor of v sends at most -k+7

  This is nonnegative since d ≥ 9 and k ≤ ∆. If 5 ≤ k and d < k, then each 2-neighbor of v sends -3d-11 d-1 of charge to v by (R1c). By Claim 8 the number of 2-neighbors of v is at most d -1. The charge of v is at least 3d

  ) If d(v 1 ) = 4 and d(v 2 ) = 4, then v sends -1 of charge to both v 1 and v 2 . (R3c) If d(v 1 ) = 4 and d(v 2 ) ≥ 5, then v sends -2 3 of charge to v 1 and -4 3 of charge to v 2 . (R3d) If d(v 1 ) ≥ 5, then v sends -1 of charge to both v 1 and v 2 .
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 4 Figure 4: Reducing a 3-vertex with neighbors of degrees 2, 2, 3, respectively.
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 5 Figure 5: Reducing a 4-vertex v subadjacent to two 3-vertices u 1 , u 2 and another vertex u 3 .

Figure 7 :• 2 3 -3d 5 • 1 = 2d 3 -

 7513 Figure 7: Reducing a path with degrees 2, 2, 3, 2, 3, 2, 2.
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Discharging rules

Let the initial charge be set as follows:

• w(v) = 5d(v) -14 for each vertex v of G;

• w(f ) = 2d(f ) -14 for each face f of G. By Euler's formula we have that the sum of charges of vertices and faces is -28.

It is clear that since g ≥ 7 all the faces have nonnegative charge. Vertices of degree 5 have charge 11, vertices of degree 4 have charge 6, vertices of degree 3 have charge 1, and vertices of degree 2 have charge -4.

We redistribute the charge among vertices by the following rules:

(R4) Let v be a 2-vertex with neighbors v 1 and v 2 such that d(v 1 ) ≤ d(v 2 ).

(R4a) If d(v 1 ) = 2, then v sends 0 of charge to v 1 and -4 of charge to

Since ∆ = 5, by Claim 3 for each 2-vertex with neighbors with degrees d 1 and d 2 we have d 1 + d 2 ≥ ∆ + 2 = 7. It is easy to see that 2-vertices send all their negative charge to their neighbors of degree at least 3.

3-vertices

Let v be a 3-vertex in G. Its initial charge is 1. By (R4b) it receives - 1 3 of charge from each its 2-neighbor, hence its charge is at least 1 -3 • 1 3 = 0.

4-vertices

Let v be a 4-vertex in G. Its initial charge is 6. If it has no 2-neighbors, its charge does not change. By Claim 3 it cannot be subadjacent to a 2-vertex. If it is subadjacent to a 3-vertex, by Claim 7 the number of 2-neighbors of v is at most 3 + 4 -∆ -1 = 1, hence, it has only one 2-neighbor from which it receives -11 3 of charge by (R4b). Its charge is clearly nonnegative.

If v is not subadjacent to any ≤ 3-vertex, then by Claim 8 it can have at most three 2-neighbors, from which it receives -2 of charge by (R4c). Its charge is (at least) 6 -3 • 2 = 0.

5-vertices

Let v be a 5-vertex in G. Its initial charge is 11. If it has no 2-neighbors, its charge does not change.

If v is subadjacent to a 2-vertex, then by Claim 6 it has at most two 2-neighbors, which send at most -4 of charge each. The charge of v is at least 11 -2 • 4 = 3 > 0.

If v is not subadjacent to any 2-vertex and v is subadjacent to a 3-vertex, by Claim 6 it has at most three 2-neighbors, which send at most - 11 3 of charge each. The charge of v is at least 11 -3

All the vertices of G have nonnegative charge, a contradiction which establishes the lemma. a cyclic order. Let v 1 be a blue 3-vertex which sends -1 4 of charge to f . According to (R6), we may assume d(v k ) = 4 and d(v 2 ) = 2, and d(u 1 ) = 2, where u 1 is the neighbor of v 1 not incident with f . By Claim 9 we have d(v 3 ) = 4. It means there is a facial path of length 3 beginning and ending in a 4-vertex, containing the blue 3-vertex v 1 .

Let v 1 be a blue 3-vertex which sends -1 2 of charge to f . According to (R6), we may assume d(v k ) = d(v 2 ) = 2. Again, by Claim 9 we have d(v k-1 ) = d(v 3 ) = 4. It means there is a facial path of length 4 beginning and ending in a 4-vertex, containing the blue vertex v 1 .

Altogether, there can be at most k 3 blue vertices incident with f . The charge of

, which is nonnegative for k ≥ 10.

9-faces

Let f be a 9-face. Its initial charge is 9 -8 = 1. If it is incident with at most two blue 3-vertices, its charge is at least 1-2• 1 2 = 0. Therefore we may assume it is incident with three blue 3-vertices. This can only happen if all the three blue 3-vertices are contained in paths of length 3. Hence, they send 3 • (-1 4 ) of charge to f , and so the final charge of f is clearly nonnegative.

8-faces

Let f be an 8-face. Its initial charge is 0. If it is incident with no blue 3-vertices, it does not receive negative charge.

Let f have received -1 4 of charge from a blue 3-vertex v 1 ; let v 8 be a 4-vertex, v 2 be a white 2-vertex and let v 3 be a 4-vertex. Since the 4-vertex v 8 is adjacent to a 3-vertex v 1 , it is not red; by (R7) it sends at least 1 4 of charge to f . The charge of f is at least

2 of charge from a blue 3-vertex v 1 ; let v 8 and v 2 be white 2-vertices and let v 7 and v 3 be 4-vertices. Since v 3 and v 7 are subadjacent to a 3-vertex v 1 , they are not red; by (R7) the vertices v 3 and v 7 send at least 1 4 of charge to f . The charge of f is at least -1 2 + 2 • 1 4 = 0. Let f have received -1 4 of charge from two blue 3-vertices. There are five possibilities for their position up to symmetry, see Figure 6, the first five images. In all thee cases there are at least two 4-vertices which are not red (recall that a red 4-vertex cannot be adjacent or subadjacent to a ≤ 3-vertex); hence they send at least 1 4 of charge to f each. It means the charge of f is nonnegative. Let f have received - 1 2 of charge from a blue 3-vertex v 1 and -1 4 of charge from another blue 3-vertex. There are two possibilities for its position up to symmetry, see Figure 6, the last two images. In both cases there are three 4-vertices which send at least 1 4 of charge to f , hence, its charge is nonnegative.

Let f have received -1 2 of charge from two blue 3-vertices v 1 and v 5 . Then v 2 , v 4 , v 6 , v 8 are white 2-vertices and v 3 and v 7 are 4-vertices. The 4-vertex v 3 is subadjacent to two 3-vertices v 1 and v 5 , thus by Claim 11 it is not subadjacent to any other vertex. Hence, it only receives -2 of charge from its 2-neighbors by (R5a), and then it sends 1 2 of charge to all incident faces by (R7). Since the same holds for v 7 , the face f receives 1 2 of charge from both v 3 and v 7 , thus its charge in nonnegative.

All the vertices and faces of G have nonnegative charge, a contradiction which establishes the lemma.

Planar graphs with girth 12

Lemma 9. Let ∆ ≥ 3. Every planar graph with girth at least 12 and maximum degree at most ∆ admits an acyclic edge coloring with ∆ colors.

If ∆ ≥ 4, then the statement follows from Lemma 8. Therefore, we may assume that ∆ = 3 and ∆(G) ≤ 3. Suppose G is a minimal counterexample to Lemma 9.

Before setting discharging rules, we prove one more structural property of G.

Claim 12. There is no path

; let e 0 be the edge incident with v 1 distinct from e 1 , let e 7 be the edge incident with v 7 distinct from e 6 ; let f 3 (resp. f 5 ) be the edge incident with v 3 (resp. v 5 ) distinct from e 2 and e 3 (resp. e 4 and e 5 ). Since we assume g ≥ 12 all considered edges are pairwise distinct. Let ϕ be an acyclic edge coloring of G ′ = G -e 1 using colors 1, 2, 3. Let ϕ(e 2 ) = 1, ϕ(e 3 ) = 2, ϕ(f 3 ) = 3. We may assume ϕ(e 0 ) = 1, otherwise we can extend the coloring easily. We also may assume ϕ(e 4 ) = 1, otherwise we can set ϕ(e 1 ) = 2. See Figure 7(a) for illustration.

Let G ij be a subgraph of G ′ induced by edges colored i and j, {i, j} ⊂ {1, 2, 3}. If v 1 and v 2 are not endvertices of the same path in G 13 , we set ϕ(e 1 ) = 3. Hence, we may assume there is a {1, 3}-path from v 1 to v 2 in G ′ . If v 1 and v 2 are not endvertices of one path in G 12 , we set ϕ(e 1 ) = 2. Hence, we may assume there is a {1, 2}-path from v 1 to v 2 in G ′ . We set ϕ(e 1 ) = 3, ϕ(e 2 ) = 2 and ϕ(e 3 ) = 1. Now the edges e 3 and e 4 both have color 1. We now look at the end of the {1, 2}-path from v 1 to v 2 :

• Let ϕ(e 5 ) = 2, ϕ(e 6 ) = 1, and ϕ(e 7 ) = 2. Then ϕ(f 5 ) = 3. In this case we recolor the path in the following way: ϕ(e 4 ) = 2, ϕ(e 5 ) = 1, and ϕ(e 6 ) = 3, see It can be checked easily that in all the cases no bichromatic cycle can arise.

Discharging rules

Let the initial charge be set as follows:

• w(v) = 4d(v) -10 for each vertex v of G;

• w(f ) = d(f ) -10 for each face f of G.