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Fast Update of Conditional Simulation
Ensembles

Clément Chevalier, Xavier Emery, and David Ginsbourger

Abstract Gaussian random fields (GRF) conditional simulation is a key ingredi-

ent in many spatial statistics problems for computing Monte-Carlo estimators and

quantifying uncertainties on non-linear functionals of GRFs conditional on data.

Conditional simulations are known to often be computer intensive, especially when

appealing to matrix decomposition approaches with a large number of simulation

points. Here we study the settings where conditioning observations are assimilated

batch-sequentially, i.e. one point or batch of points at each stage. Assuming that

conditional simulations have been performed at a previous stage, we aim at taking

advantage of already available sample paths and by-products in order to produce

updated conditional simulations at minimal cost. We provide explicit formulas al-

lowing to update an ensemble of sample paths conditioned on n ≥ 0 observations to

an ensemble conditioned on n+q observations, for arbitrary q ≥ 1. Compared to di-

rect approaches, the proposed formulas prove to substantially reduce computational

complexity. Moreover, these formulas enable explicitly exhibiting how the q “new”

observations are updating the “old” sample paths. Detailed complexity calculations

highlighting the benefits of our approach with respect to state-of-the-art algorithms

are provided and are complemented by numerical experiments.
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1 Introduction

Throughout the paper, Z = (Z(x))x∈X is a random field defined on a probability

space (Ω ,B,P), with index x lying in a bounded set X ⊂ R
d (d ≥ 1). The random

field Z is assumed to be evaluated sequentially, first at n points Xn := (x1, . . . ,xn) ∈
X

n (n ≥ 0), and then at q additional points Xq := (xn+1, . . . ,xn+q) ∈ X
q (q ≥ 1).

A crucial assumption here concerning the random field Z is that its distribution at

stage n be Gaussian. This includes of course the case when Z is a Gaussian Random

Field (GRF), but also the case of intrinsic random fields with Gaussian generalized

increments (Matheron, 1973) and the Bayesian settings (Omre and Halvorsen, 1989;

Handcock and Stein, 1993) where Z is Gaussian conditionally on some linear trend

parameters with improper uniform distribution, and n ≥ 1 pointwise evaluations of

Z are already available at stage n.

Assuming that M simulations of Z have been performed at stage n, we investigate

procedures to “update” them when a vector of new observations, Z(Xq), is assim-

ilated. More precisely, the goal is to get a fast algorithm that generates M sample

paths, rigorously drawn from the distribution of Z conditional on all n+ q evalua-

tions, by recycling previous simulations and calculations as much as possible.

Fig. 1 GRF simulations conditioned on n = 6 observations (black curves) and n+ q = 9 obser-

vations (red curves). The black circles stand for n = 6 initial observations and the blue triangles

represent q = 3 additional observations.

The main contribution of this paper is illustrated on Fig. 1. An ensemble of 50

simulations of a GRF Z are performed conditionally on n = 6 observations (black

curves). Our fast simulation update procedure (the “FOXY algorithm”) is then ap-
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plied to this ensemble in order to condition it on q = 3 additional observations at

points Xq = (0.25,0.3,0.8) (red curves). Z is here assumed centred, possessing a

non-conditional Matérn covariance with regularity parameter ν = 3/2.

The motivations for developing such a procedure come from problems in differ-

ent application fields. While GRF conditional simulations constitute a standard and

important topic in the literature of geostatistics (Chilès and Delfiner, 2012) with a

variety of applications in geosciences and natural resources characterization (Del-

homme, 1979; Chilès and Allard, 2005; Deutsch, 2002; Dimitrakopoulos, 2011;

Journel and Kyriakidis, 2004), they have been increasingly used in engineering and

related areas, where Gaussian random field models have been used as prior distri-

butions on expensive-to-evaluation functions (Hoshiya, 1995; Santner et al., 2003;

Villemonteix et al., 2009; Roustant et al., 2012; Binois et al., 2014).

As conditional simulation methods are known to be generally computer intensive,

an important challenge is the reduction of computation time through efficient algo-

rithms. We consider the practically often encountered setting where observations are

assimilated sequentially. In such case, when both new observations and previously

simulated sample paths are available, it is obviously tempting to take advantage of

the latter for obtaining sample paths conditioned on all observations without having

to restart everything from scratch. A well-known algorithm which may apply to our

settings is the residual substitution Z approach (Chilès and Delfiner, 2012; de Fou-

quet, 1994), also called conditioning kriging, or kriging residual algorithm. This

method is used to post-process simulations obtained by using algorithms such as the

circulant-embedding, spectral or turning bands (Chilès and Delfiner, 2012; Emery

and Lantuéjoul, 2006). In this case, one only needs to construct non-conditional

simulations and the assimilation of data is achieved through the conditioning krig-

ing step (Hernández and Emery, 2009).

In the present paper, we provide efficient formulas allowing a fast “update” of

GRF sample paths, together with a detailed algorithm, FOXY, the complexity of

which is studied in detail to justify the improvement with respect to the kriging

residual algorithm. The new formulas have the advantage of analytically exhibiting

the dependence between the updated GRF sample path and the newly assimilated

observations Znew := (Z(xn+1), . . . ,Z(xn+q)) = Z(Xq). One of the key ingredient

to obtain the formulas and set up the algorithm happens to be the batch-sequential

kriging update formulas of Emery (2009); Chevalier et al. (2014), as detailed next.

The paper is organized as follows: in Sect. 2 we revisit two already well-established

approaches, namely the kriging residual algorithm and the kriging update formulas,

and we then build upon them to derive our proposed fast update of conditional sim-

ulation ensemble (“FOXY”) formula. Related algorithms and their complexity are

presented in Sect. 3. Subsequent numerical experiments illustrating the efficiency of

the FOXY algorithm are finally given in Sect. 4. For brevity and self-containedness,

basics of kriging and more detailed versions of the algorithms are given in appendix.
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2 Theory: from residual kriging to the FOXY algorithm

This section gives the main result of the paper. Sects. 2.1 and 2.2 detail two crucial

ingredients which are used to obtain a new update formula in Sect. 2.3.

2.1 Kriging residual algorithm: old and new

In the simple kriging settings, the kriging residual algorithm or residual substitution

approach (Chilès and Delfiner, 2012) is known to provide a simple and efficient way

to produce simulations of a Gaussian Random Field Z conditional on observations

at Xq (q ≥ 1) relying both on non-conditional simulations of Z and some replicates

of it, and on simple kriging means of Z and these replicates given their respective

values at Xq. Denoting by z(xi) (1 ≤ i ≤ q) the values of Z observed at Xq, by z(i)

(1 ≤ i ≤ M) the non-conditional realizations of Z, and by Ep := {e1, . . . ,ep} ⊂ X

a considered set of simulation points (now assumed to be a finite subset of X, for

simplicity) the procedure consists of the following Algorithm 1.

Algorithm 1 Standard kriging residual algorithm

Require: The distribution of the Gaussian random field Z

Require: Evaluation points Xq = {x1, . . . ,xq} ⊂ X

Require: Evaluation results z(xi) (1 ≤ i ≤ q)

Require: Simulation points Ep = {e1, . . . ,ep} ⊂ X

Step 1. Simulate M replicates of Z at Xq ∪{e1, . . . ,ep}, denoted z(i) (1 ≤ i ≤ M)

Step 2. Calculate the kriging mean function m of Z knowing z(xi) (1 ≤ i ≤ q), and evaluate it at

the simulation points Ep, delivering the vector m(Ep).

Step 3.

for j = 1 → M do

- Calculate the kriging mean function m(i) of Z knowing z(i)(Xq), and evaluate it at the sim-

ulation points Ep, delivering the vector m(i)(Ep). The kriging weights are the same as that

calculated at Step 2.

- Set r(i)(Ep) = z(i)(Ep)−m(i)(Ep)

- Set z⋆(i) = m(Ep)+ r(i)(Ep)
end for

Return z⋆(1), . . . ,z⋆(M) as conditional simulations of Z at Ep knowing Z(Xq) = z(Xq).

While this algorithm seems to be common knowledge in geosciences, it is hard

to find more than a few lines of expedited mathematical justifications of it across the

geostatistics literature (Chilès and Delfiner, 2012; de Fouquet, 1994). Actually, this

procedure turns out to be valid in more generality than the framework in which it is

usually presented, as we prove below.

Proposition 1 (A generalization of the kriging residual algorithm) Let q≥ 1, Xq =
{x1, . . . ,xq} ⊂ X, Z be a random field such that Z|Z(Xq) is Gaussian with condi-
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tional expectation Mq := E(Z|Z(Xq)), and Z(1), . . . ,Z(M) (M ≥ 1) be independent

replicates of Z with M
(i)
q := E(Z(i)|Z(i)(Xq)) (1 ≤ i ≤ M). Then, the random fields

Z⋆(i) = Mq +Z(i)−M
(i)
q (1 ≤ i ≤ M)

are equal to Z in distribution, so that conditional on the event Z(Xq) = zq (for

arbitrary zq ∈ R
q) and denoting by mq the corresponding realization of Mq,

(Z|Z(Xq) = zq)
L
=mq +Z(i)−M

(i)
q (1)

holds for all 1≤ i≤M. Furthermore, the random fields mq+Z(i)−M
(i)
q are stochas-

tically independent.

Proof. By definition of the conditional expectation, we have the decomposition

Z = Mq +Rq, (2)

where Mq =E(Z|Z(Xq)) depends on Z only through its values at Xq (technically, Mq

is σ(Z(Xq))-measurable) and Rq := (Z −Mq) is independent of Z(Xq). The same

straightforwardly applies to the replicates Z(1), . . . ,Z(M), and we use the similar no-

tation Z(i) = M
(i)
q +R

(i)
q , where the M

(i)
q ’s are σ(Z(i)(Xq))-measurable and the R

(i)
q ’s

are respectively independent of Z(i)(Xq) (1 ≤ i ≤ M). Defining

Z⋆(i) = Mq +Z(i)−M
(i)
q = Mq +R

(i)
q (1 ≤ i ≤ M)

and using the fact that R
(i)
q and Rq have same distribution and are both independent of

Mq, we easily obtain that Z⋆(i) L
=Z. Besides, by independence between the residuals

and the values of the respective random fields at points Xq, we get

(Z⋆(i)|Z(Xq) = zq)
L
=(mq +R

(i)
q )

L
=(mq +Rq)

L
=(Z|Z(Xq) = zq) (3)

Finally, the Z⋆(i)’s are indeed independent conditionally on Z(Xq) by indepen-

dence of the R
(i)
q ’s. �

An example of application of Proposition 1 in a non-standard set up is given in

Fig. 2. A Universal Kriging model is assumed, in which Z has already been evalu-

ated at n (not represented) points prior to the evaluation at the q conditioning points,

so that Z’s distribution at stage n is indeed Gaussian but with non-stationary mean

and covariance kernel given by the Universal Kriging equations (recalled in ap-

pendix).

From that perspective, the conditional expectation of Z when q = 3 new obser-

vations are available can be obtained using simple kriging with the previous non-

stationary mean and covariance kernel. Let us stress here that computing simple

kriging means with a non-conditional covariance function being the universal krig-

ing covariance function based on n past observations is not necessarily sensible from
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Fig. 2 Left: kriging residual r(i) = z(i)−m
(i)
q obtained by non-conditional simulation of a replicate

Z(i) of a non-stationary GRF Z (black solid line) and its simple kriging mean (blue dashed line)

based on q = 3 observations (blue triangles) at a design Xq. Right: conditional simulation of Z

(solid black line) obtained by summing Z’s simple kriging mean (blue dashed line) based on its

values at the same design Xq (red triangles) and the kriging residual r(i) simulated on the left graph.

a computational point of view, but that having this particular approach in mind will

facilitate understanding forthcoming ideas. It will appear in the next section on up-

date, though, that such non-stationary simple kriging mean actually coincides with

the usual Universal Kriging mean relying on all n+q observations.

2.2 Kriging update framework

Keeping in mind the overall set up of a random field whose distribution at stage n

is Gaussian with mean Mn (the realization of which is denoted mn) and covariance

kn, let us now focus on the situation where a batch of evaluations at q > 0 additional

points Xq := {xn+1, . . . ,xn+q} is assimilated.

In the literature, a lot of effort has been paid to obtain update formulas for the

kriging predictors when observations are assimilated sequentially. Update formulas

are meant to enable a fast computation of the kriging mean Mn+q and the kriging co-

variance function kn+q in case Mn and kn are already available. Barnes and Watson

(1992) gave kriging update formulas for the kriging mean and covariance function

in Simple Kriging settings, with q = 1. Gao et al. (1996) generalized these formu-

las, still with q = 1, to Universal Kriging settings. Finally Emery (2009) obtained

Universal Kriging update formulas for the kriging mean for arbitrary q ≥ 1 and
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Chevalier et al. (2014) complemented them with update formulas for the kriging co-

variance function. These formulas, adapted to our settings and notations are recalled

below:

Mn+q(x) =Mn(x)+λn,q(x)
⊤(Z(Xq)−Mn(Xq)) (4)

kn+q(x,x
′) =kn(x,x

′)−λn,q(x)
⊤Kn,qλn,q(x

′) (5)

λn,q(x) =K−1
n,q kn(x,Xq) (6)

where λn,q(x) is a vector of q kriging weights of responses at Xq for predicting at

point x at time n, and Kn,q := (kn(xn+i,xn+ j))1≤i, j≤q. These formulas enable sig-

nificant computational savings as only q kriging weights λn,q (and not n+ q) need

to be computed for obtaining updated kriging mean and covariance functions. In

particular, a cumbersome (n+q)× (n+q) matrix inversion is avoided.

Note that the kriging update formulas (4),(5) corroborates the fact that in the

previous example (Fig. 2), performing simple kriging using Mn and kn as non-

conditional covariance functions and q new observations actually gave the same

result as if we had performed Universal Kriging based on the initial model, with

n+q observations.

Before going further and presenting our update formulas for conditional simu-

lations, let us briefly present a random field decomposition that enables easily re-

trieving update formulas (and extending them without difficulty to our conditionally

Gaussian framework), and that will be crucial for the main result.

Proposition 2 (Three-stage telescopic decomposition) Let Z be a random field

with Gaussian distribution conditionally on its observation at Xn, and Xq be ad-

ditional points. Then Z decomposes as

Z = Mn +λ⊤
n,qRn(Xq)+Rn+q, (7)

where Rn+q := Z−E(Z|Z(Xn),Z(Xq)) is a centred Gaussian random field indepen-

dent of Z(Xn) and Z(Xq), and λn,q is defined in Eq. 6.

Proof. From the previous section on the residual kriging algorithm, we already

know that Z = Mn +Rn with Mn = E(Z|Z(Xn)), and where Rn = Z−E(Z|Z(Xn)) is

a centred Gaussian random field independent of Z(Xn), with covariance kn. Apply-

ing a similar decomposition to Rn with respect to the two batches of observations,

Z(Xn) and Z(Xq), we obtain that

Z = Mn +E(Rn|Z(Xq),Z(Xn))+Rn+q,

where Rn+q := Rn − E(Rn|Z(Xq)) = Z − E(Z|Z(Xn),Z(Xq)) is a centred Gaus-

sian random field, independent of Z(Xn) and Z(Xq) by fundamental property of

the conditional expectation. There remains to notice that E(Rn|Z(Xq),Z(Xn)) =
E(Rn|Rn(Xq),Z(Xn)) = E(Rn|Rn(Xq)) by independence between the field Rn and

the random vector Z(Xn), and finally that E(Rn|Rn(Xq)) = λ⊤
n,qRn(Xq) precisely

because Rn is a centred Gaussian field with covariance kernel kn. �
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Let us mention as evocated earlier that taking conditional expectations on both

sides (with respect to Z(Xn),Z(Xq)) in Eq. 7 directly delivers Eq. 4 while taking

conditional covariances leads to Eq. 5 without much effort.

2.3 FOXY: Fast Update of Conditional Simulation Ensembles

We now have the ingredients to detail a new update formula which will serve as a

basis to our method for fast updating ensembles of conditional simulations, referred

to as the FOXY algorithm. Let us now state a central result of the paper, all notations

being kept as in the previous sections unless precised otherwise.

Proposition 3 (Conditional simulation update formula) Let Z(1), . . . ,Z(M) be in-

dependent replicates of Z|Z(Xn), i.e., simulations of Z conditioned on the n obser-

vations Z(Xn). Then, the random fields

Z⋆(i) := Z(i)+λ⊤
n,q(Z(Xq)−Z(i)(Xq)) (i ∈ {1, . . . ,M}) (8)

have the same conditional distribution as Z conditioned on the n+ q observations

Z(Xn),Z(Xq), i.e. for any conditioning values zn ∈ R
n, zq ∈ R

q,

L (Z|Z(Xn) = zn,Z(Xq) = zq) = L (Z(i)+λ⊤
n,q(zq −Z(i)(Xq)) (9)

Furthermore, the Z(i)+λ⊤
n,q(zq −Z(i)(Xq))’s are stochastically independent.

Proof. Let Mn+q := E(Z|Z(Xn),Z(Xq)) and M
(i)
n+q be defined similarly for the ith

replicate Z(i). The equality in distribution of Z and Z(i) implies that:

Z −Mn+q
L
=Z(i)−M

(i)
n+q (10)

Now, an application of the kriging update formula (4) to both Mn+q and M
(i)
n+q, to-

gether with the identity Mn = M
(i)
n , yields

Z
L
=Mn +λ⊤

n,q(Z(Xq)−Mn(Xq))+(Z(i)−M
(i)
n )−λ⊤

n,q(Z
(i)(Xq)−M

(i)
n (Xq))

L
=Z(i)+λ⊤

n,q(Z(Xq)−Z(i)(Xq))

which completes the proof. �

The formulas given in Proposition 3 offer many advantages. In particular, Eq. (8)

explicitly quantifies the effect of the newly assimilated observations Z(Xq) on simu-

lated GRF paths. This can be used in our settings, where we have already simulated

GRF sample paths z(1), . . . ,z(M), from Z(1), . . . ,Z(M), to quickly obtain sample paths

z⋆(1), . . . ,z⋆(M) sampled from Z⋆(1), . . . ,Z⋆(M) of Eq. (8). In the next section, we will

show that the proposed algorithm has a lower complexity than the classical kriging
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residual algorithm, which would update the GRFs Z(i),1 ≤ i ≤ M by computing a

kriging mean based on n+q observations.

3 Complexity calculation

3.1 Kriging residual and FOXY algorithms

In this section, we investigate the computational complexity of simulating M > 0

sample paths of a GRF Z conditioned on n+q observations at points Xn,Xq in the

case where M sample paths conditioned on Z(Xn) are already available. The result

of the algorithms will be an ensemble of M (conditionally) independent realizations

of a GRF with conditional mean and covariance, mn+q and kn+q, given by the kriging

equations. We shall consider here the settings of UK (Eqs. (15),(13)), but the results

and conclusions will be unchanged in the SK settings. Only the case n > 0 will be

considered though, as, if n = 0, the two algorithms that we shall detail are exactly

the same.

Here, we assume that all the simulations are performed at p simulation points

e1, . . . ,ep in X. To simplify the complexity calculations we further assume that p,n
are much larger than q. In UK, another variable is the number ℓ of basis functions

for the trend (Appendix A). This variable is also assumed to be much smaller than

p,n. To summarize, we assume that p,n ≫ q, ℓ.

Two major cases will be distinguished in the algorithms. First, an unfavorable

case where the set of new observation points Xq is not included in the set of sim-

ulation points {e1, . . . ,ep}. Second, the favorable case where it is. Finally, two al-

gorithms will be compared. The first one is a classical kriging residual algorithm,

based on Eq. (1). This algorithm requires to compute a kriging mean Mn+q based

on the real observations Z(Xn),Z(Xq) and also to obtain a kriging residual, which

involves another computation of a kriging mean based on the observations Z(Xn)
and the “artificial” observations Z(i)(Xq). These computations involve the calcula-

tion of n+ q kriging weights, which, in the particular case of UK, will be done

using Eq. (11). The kriging weights are the same for the two kriging means that we

compute. The second algorithm is the FOXY algorithm which is based on Propo-

sition 3 and Eq. (8). FOXY has the advantage of requiring only the computation

of λn,q, i.e. q kriging weights per simulation point. As we compute only q kriging

weights, and not n+q, we shall show that FOXY brings a computational complex-

ity reduction of O(n/q) compared to the classical kriging residual algorithm. The

complexities obtained will also be compared to the one of a third “benchmark” al-

gorithm based on a decomposition (e.g., Cholesky) of the conditional covariance

matrix at the simulation points (Davis, 1987). This last algorithm does not take ad-

vantage of any previous computations. The algorithms are summarized in the next

two subsections and the details are given in Appendix B.
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3.2 Preliminary step: computing Z(i)(Xq) for all the M sample

paths

An important detail that is relative to Eq. (1) and is even clearer in Eq. (8) is that the

update of M GRF sample paths requires knowing, for each 1 ≤ i ≤ M, the value of

the sample path number i at the batch Xq, which is denoted by Z(i)(Xq). In Eq. (1)

the knowledge of Z(i)(Xq) is required, as the computation of the kriging residual

involves a kriging mean based on q “artificial” observations Z(i)(Xq). Thus, if the

batch of q points Xq is not included in the set of p simulation points {e1, . . . ,ep},

the value of Z(i)(Xq) needs to be simulated, conditionally on n+ p observations,

and for all 1 ≤ i ≤ M. This case is referred to as the “unfavorable case”. In UK,

it involves the computation of the kriging weights in Eq. (11) of the n+ p points

x1, . . . ,xn,e1, . . . ,ep for the prediction at each of the q points Xq. In particular, the

inversion of a (n + p)× (n + p) matrix in Eq. (11) is done with a cumbersome

O((n+ p)3) complexity. The computation of the other terms of Eq. (11) has a cost

which is dominated by this term in our settings. Finally, once the kriging weights are

computed the value of Z(i)(Xq)) is simulated for all i with a cost of O(Mpq). Thus,

in the described unfavorable case, both the classical kriging residual algorithm and

the new algorithm based on Eq. (8) have a cost, referred to as the “preliminary cost”,

which is of O((n + p)3 + Mpq). A detailed algorithm justifying this complexity

is given in Appendix B. We shall see that the preliminary cost tend to dominate

the other costs of the two algorithms so that the savings provided by the FOXY

algorithm will be lower in the unfavorable case, i.e. if Xq is not included in the set

of p simulation points.

3.3 Computing kriging weights and updating the sample paths

We now assume that for all 1 ≤ i ≤ M the quantity Z(i)(Xq) is known. This is the

case either if Xq is included in the set of simulation points {e1, . . . ,ep} (favorable

case), or if the preliminary cost of O((n+ p)3 +Mpq) has been paid (unfavorable

case).

For the classical kriging residual algorithm, the computation of kriging means re-

quires calculating n+ q kriging weights of x1, . . . ,xn+q for the prediction at points

e1, . . . ,ep. This will be done using Eq. (11). The inversion of the covariance matrix

K at n+ q points in Eq. (11) has a O((n+ q)3) complexity. The p matrix-vector

products K−1k(x), where x takes all the values e1, . . . ,ep, has a O(p(n+q)2) cost.

The computation of the other terms of Eq. (11) involves other complexities that

are all dominated by the O(p(n+ q)2) cost. We thus end-up with a total cost of

O((n+ q)3 + p(n+ q)2). It is important to note that the O((n+ q)3) complexity to

invert K can be reduced to O(qn2) using matrix block-inversion formulas based on

the Schur complement in the realistic case where the covariance matrix computed

in the n (and not n+q) points x1, . . . ,xn has already been inverted before, or decom-
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posed with a standard decomposition. We shall assume that this is the case here, so

that our only dominating term in the complexity if now of O(p(n+q)2).

The FOXY algorithm based on Proposition 3 and Eq. (1) requires the computa-

tion of the q kriging weights of xn+1, . . . ,xn+q for the prediction at points e1, . . . ,ep.

These kriging weights are equal to K−1
n,q kn(x,Xq), as indicated by Eq. (6)), where

x takes the values e1, . . .ep, kn is the kriging covariance defined in Eq. (13) and

Kn,q = kn(Xq,Xq) is the q× q kriging covariance matrix at Xq based on n obser-

vations. The computation of all these kriging covariances can be performed using

Eq. (13). In that case, the cost to invert the matrix K is of O(n3) but, here, we shall

assume that this inverse has already been computed. The remaining matrix vector

multiplications are performed at a cost of mainly O((ℓ+ q)(n2 + pn)) (see, Algo-

rithm 4 for complete details). This final cost is lower than the O(p(n+q)2) cost ob-

tained with the classical kriging residual algorithm, as we assumed that n, p ≫ ℓ,q.

In particular, for q > ℓ and p > n, FOXY has a complexity of O(pnq) vs. O(pn2)
for the classical kriging residual algorithm.

Once the kriging weights are computed; the remaining cost in both the kriging

residual algorithm and the new algorithm is of O(Mpq). This is simply the cost to

perform q multiplications for all the p simulation points (e1, . . . ,ep) and all the M

sample paths. The aggregated complexity of the two studied algorithms are summa-

rized in Table 3.3, together with the complexity of a standard algorithm based on a

decomposition of the covariance matrix, which does not take advantage of previous

computations. We see that in the unfavorable case, FOXY brings a lower improve-

ment with respect to the kriging residual algorithm, as the dominating terms in the

complexity are O((n+ p)3) and O(Mpq) for both algorithms. On the other hand,

FOXY is expected to be much faster than the classical kriging residual algorithm in

the favorable case where Xq is a subset of the set of simulation points because the

preliminary cost of O((n+ p)3) is not paid.

Table 1 Theoretical complexity of a classical kriging residual algorithm (Eq. (1)), the FOXY al-

gorithm based on Eq. (8) and an algorithm based on a decomposition of the covariance matrix at

the observation points.

algorithm preliminary calc. kriging weights simulation

Kriging residual algo. O((n+ p)3 +Mpq) O(p(n+q)2) O(Mpq)
New algo. O((n+ p)3 +Mpq) O((ℓ+q)(n2 + pn)) O(Mpq)
Decomp.-based algo. O(p3 +Mp2)
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4 Numerical experiments

In this section, we illustrate the theoretical complexity results on numerical exper-

iments. We investigate the computation time to update M simulations of a GRF

conditioned on n observations into simulations conditioned on n+ q observations.

The simulations are performed at p simulation points. Here the simulated fields are

GRFs in two dimensions. The function used to condition the values of the GRFs is

the Branin-Hoo function (Jones et al., 1998), which is here defined on X = [0,1]2.

The type of kriging considered here is the so-called Ordinary Kriging (OK) where

the non-conditional mean function of the GRF Z is simply an unknown constant.

With our notations, this corresponds to the case of a single basis function (ℓ = 1).

As the computation times are not very sensitive to ℓ (at least if ℓ does not take large

values), only the sensitivity of the computation time to M,n, p,q will be investigated.

Fig. 3 Top: three realizations of a GRF in two dimension conditioned on n = 10 observations

(black points). Bottom: update of these three realizations when q = 3 new observations (red tri-

angles) are assimilated. The non-conditional covariance function of the random field is a Matérn

covariance with parameter ν = 5/2.

An example of GRFs in two dimensions, simulated on a grid of 50×50 = 2500

points is provided on Fig. 3. The three GRFs at the top are conditioned on n = 10

observations and each GRF is updated (using FOXY, here, see bottom plots) to be

conditioned on 10+3 observations. For our experiments, a set of values needs to be

chosen for (M,n, p,q). The chosen set is the following:
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(M,n, p,q) ∈ DM ×Dn ×Dp ×Dq,

where DM = {1,100,1000,10000,20000,30000}, Dn = {10,100,500,1000}, Dp =
{100,500,2000} and Dq = {1,10}. The set DM covers cases where we update very

few conditional simulations, so that the computation time will be dominated by

the preliminary costs or by the time to compute kriging weights, and also cases

where we update a large set of conditional simulations. Regarding Dn, we will test

cases where very few (i.e., 10) conditioning observations are available and also cases

where we have up to 1000 conditioning observations. We chose not to go beyond

a value of 1000 as standard uses of kriging are rarely done when the number of

observations is larger because of an expensive n×n matrix inversion. For the same

reason the values of p do not go beyond 2000. We recall that in the “unfavourable”

case, a (n+ p)× (n+ p) matrix needs to be inverted. We may note however that, in

the favorable case it is perfectly possible to use large p, or even infinite p. Finally,

only two small values of q were considered as the change of computation time when

q grows is rather simple, at least if q remains low. For all the possible triplets (n, p,q)
we choose to plot the computation time as a function of M. The experiments were

performed in both the unfavorable and favorable cases on a laptop with a 2.27 Ghz

cpu and 3.7 Gb of RAM.

As detailed in the last section, the total computation time of the tested algorithms

is the sum of the computation times of three different steps:

1. The preliminary cost (unfavorable case). Here both algorithms perform a (n+
p)× (n+ p) matrix inversion, which adds a fixed cost that does not depend on

M.

2. The cost to compute kriging weights. In this step the FOXY algorithm computes

q kriging weights while the kriging residual algorithm computes n+ q weights.

This cost is also a fixed cost that does not depend on M. This step is where FOXY

might be much faster than the classical algorithm.

3. The cost to update the simulations once the weights are computed. Both algo-

rithm have an O(Mpq) cost for this step. Hence, when q is large, the computation

time is expected to grow faster with M.

Figure 4 detail our results in the favorable cases while Fig. 5 show the unfavorable

case. Computation times are given in seconds. It is important to note that, for a

given value of (n, p,q), the difference between the computations times of the two

algorithms is the same in the favorable and unfavorable case. However, the ratio

between these two computation times is not constant as the preliminary costs can

be important. This explains why even if the time difference is unchanged, the com-

putation times plotted on a log-scale seem to be closer for the two algorithms in

the unfavorable case. The following conclusions can be drawn from Figs 4, 5. First,

when n is very low, the time to compute kriging weights becomes negligible, which

explains why the two algorithms have the same performances. In that case, the com-

putation time is dominated by the O(Mpq) complexity to update the M conditional

simulations and, in the unfavorable case, by the preliminary costs (specially when p
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is large).

When n = 100, the computation time to obtain the kriging weights is not negligible

anymore. In the favorable case, the computation time is reduced with FOXY by a

factor 2 for moderate (i.e., less than 1000) M. For larger M the performances tend

to be similar as the O(Mpq) complexity dominates again. In the unfavorable case,

the computation time ratio between the two algorithms is lower than 2 because of

the preliminary costs paid in both algorithms.

Finally, when n = 500 or 1000 the gap between the two algorithms gets larger. This

is due to the time to compute the kriging weights that is O(n/q) faster with FOXY.

For n = 1000 FOXY can be up to 25 times faster in the favorable case and for mod-

erate M. For large M, this factor decrease to approximately 10. In the unfavorable

case, this factor is lower because of the preliminary costs. The higher these costs

are, the lower the reduction factor is. For low p, FOXY is approximately 3 times

faster, and only 2 times faster for large p.

The choice of q mainly influences the cost of the last step of both algorithms, which

has a O(Mpq) complexity. q is thus driving the slope of the curves presented on

Figs. 4, 5. It is also interesting to note that, in absolute value, the computation times

are generally low. With a very standard laptop, the update of 30,000 simulations on

2000 points conditionally on 1000 observations takes “only” 1 second with FOXY

in the favorable case, and 10 seconds in the unfavorable case. Performing the simu-

lation “from scratch” using a Cholesky decomposition takes approximately 20 min-

utes, here.

5 Conclusion

In this paper, we provide efficient formulas allowing to quickly update ensembles

of simulations of conditionally Gaussian random fields. Simulated paths, which are

initially conditioned on n ≥ 0 observations, are “twisted” in order to be conditioned

on n+ q observations, for arbitrary q ≥ 1. The formulas lead to a fast update algo-

rithm which has been implemented in R and proves to offer substantial computa-

tional savings, especially when the number of conditioning observations, n is large.

In addition, the formulas have the advantage of explicitly quantifying the effect of

the q newly assimilated observations on the sample paths.

A limitation of the formulas though is that they apply only in the case where

the covariance parameters of the non-conditional covariance function of the consid-

ered random field are assumed known. In the typical settings where the covariance

parameters are re-estimated when new observations are assimilated, the formulas

cannot be straightforwardly applied. Also, one may investigate to what extent a re-

cursive use of the formulas may result in numerical instabilities.

The fast update approaches presented in this paper can be applied to efficiently

compute Monte-Carlo estimates based GRF simulations in the case where the ob-

servations are assimilated sequentially. Example of potential applications include
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Fig. 4 Computation times in the favorable case.

estimating the Shanon entropy of the maximizer of a conditioned GRF, a crucial

step in a recently proposed Bayesian global optimization algorithm (Villemonteix

et al., 2009). In the same vein, updated simulations have been recently used in the

framework of the “robust inversion” problem studied in Chevalier (2013). In any

case, when relying on an ensemble conditional simulations, one has to keep in mind

that potential biases in Monte-Carlo estimates due to sample finiteness may prop-

agate along consecutive stages. When using such approach, and especially when it
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Fig. 5 Computation times in the unfavorable case.

comes to uncertainty quantification purposes, the sample size and the procedure for

generating the initial set of simulations should hence be carefully chosen.
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Appendix A Universal and Simple Kriging

Let us consider a L2 random field Z defined on a bounded set X ⊂ R
d with known

(and not necessarily stationary) covariance function k(·, ·) and unknown mean func-

tion m(·) such that Z|m∼GRF(m,k), where GRF(m,k) denotes a Gaussian Random

Field with mean function m and covariance function k. Let us apply a Bayesian ap-

proach and write m as follows:

m(·) =
ℓ

∑
i=1

βi fi(·)

where ℓ ≥ 1, f1, . . . , fℓ are ℓ known basis functions and β = (β1, . . . ,βℓ) has an

improper uniform prior in R
ℓ. In these settings, known as the Universal Kriging

(UK) settings, when n observations Z(n) := Z(Xn) are assimilated at points Xn :=
(x1, . . . ,xn) ∈X

n, it is known (O’Hagan, 1978) that the posterior distribution of Z is

a GRF with posterior (or conditional) mean function mUK
n and covariance function

kUK
n given by the so-called UK equations:

λUK(x) = K−1
(

k(x)+F(F⊤K−1
F)−1(f(x)−F

⊤K−1k(x))
)

(11)

mUK
n (x) = λUK(x)⊤Z(n) = f(x)⊤β̂ +k(x)⊤K−1

(
Z(n)−Fβ̂

)
(12)

kUK
n (x,x′) = k(x,x′)−k(x)⊤K−1k(x′) +

(f(x)⊤−k(x)⊤K−1
F)(F⊤K−1

F)−1(f(x′)⊤−k(x′)⊤K−1
F)⊤ (13)

where β̂ := (F⊤K−1
F)−1

F
⊤K−1Z(n), f(x) := ( f1(x), . . . , fℓ(x))

⊤, F ∈ R
n×ℓ is the

matrix with row i equal to f(xi)
⊤, k(x) := (k(x,x1), . . . ,k(x,xn))

⊤, K is the covari-

ance matrix at the observation points, K := (k(xi,x j))1≤i, j≤n. The vector λUK(x) is

the vector of n kriging weights of x1, . . . ,xn for the prediction at point x.

A well known simpler setting is the case where the non-conditional mean func-

tion m is already known. In that case, the Bayesian approach is no longer necessary

and the conditional mean and covariance function of Z are given by the so-called

Simple Kriging (SK) equations, written here in the case where m(·) = 0:
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λ SK(x) = K−1k(x) (14)

mSK
n (x) = λ SK(x)⊤Z(n) = k(x)⊤K−1Z(n) (15)

kSK
n (x,x′) = k(x,x′)−k(x)⊤K−1k(x′) (16)

If m is not equal to zero, the SK covariance function kSK
n is unchanged and

an application of Eq. (15) to the centred GRF Z − m yields mSK
n (x) = m(x) +

k(x)⊤K−1(Z(n)−m(x(n))).

Appendix B Algorithms
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Algorithm 2 Preliminary cost (unfavorable case): computation of Z(i)(Xq) for all

1 ≤ i ≤ M.

Require: M i.i.d. GRFs Z(1), . . . ,Z(M) simulated in p points e1, . . . ,ep conditionally on n ≥ 0

observations Z(x1), . . . ,Z(xn) at points x1, . . . ,xn.

Require: The non-conditional covariance function, k, of the GRFs Z(1), . . . ,Z(M).

Require: q > 0 additional points Xq = (xn+1, . . . ,xn+q).
Step 1. The goal is to compute a matrix of (n+ p)×q kriging weights of (x1, . . . ,xn,e1, . . . ,ep)
for the prediction at points xn+1, . . . ,xn+q, using Eq. (11).

- Compute the matrix K−1 of Eq. (11), i.e. the inverse covariance matrix at the n+ p points

(x1, . . . ,xn,e1, . . . ,ep): O((n+p)3)

- Compute the other terms in Eq. (11) which do not depend on x, i.e. F⊤K−1, then (F⊤K−1
F)−1,

then F(F⊤K−1
F)−1: O(ℓ(n+p)2 + ℓ2(n+p)+ ℓ3)

for i = 1 → q do

- Compute k(xn+i), i.e. the column vector (k(xn+i,x1), . . . ,k(xn+i,xn),k(xn+i,e1), . . . ,k(xn+i,ep))
⊤

and f(xn+i): O(n+p + ℓ)
- Compute the multiplication K−1k(xn+i) and then F

⊤K−1k(xn+i). Conclude the computation

of λUK(xn+i): O(ℓ(n+p)+(n+p)2)
end for

Total cost for Step 1: O((n+p)3 +(q+ ℓ)(n+p)2 +(ℓ2 +qℓ)(n+p)+ ℓ3)
Total cost for Step 1 dominated by the term of O((n+p)3)
Step 2. Preliminary: get the kriging covariance matrix S := (kn+p(xn+i,xn+ j))1≤i, j≤q using

Eq. (13) and the terms precomputed in Step 1. No new terms are added to the complexity (com-

pared to Step 1), except a term of O(q2(n+p)) corresponding to q2 vector-vector products.

Compute also a decomposition (Cholesky, Mahalanobis) of S with a cost of O(q3).
for i = 1 → q do

- If n > 0, precompute, ui := ∑
n
j=1[λ

UK(xn+i)] jZ(x j), where [λUK(xn+i)] j is the kriging

weight of x j for the prediction at point xn+i: O(n)
end for

for i = 1 → M do

for j = 1 → q do

- Compute the kriging mean mUK
n+p(xn+ j) from the n + p observations

Z(x1), . . . ,Z(xn),Z
(i)(e1), . . . ,Z

(i)(ep), using the vector of kriging weights λUK(xn+ j).
The precomputation of u j reduces this to p operations. O(p).

end for

- Simulate a Gaussian random vector Z(i)(Xq) with mean mn+p(Xq) and covariance matrix S.

O(q2)
end for

Total cost for Step 2: O(M(pq+q2)+q2(n+p)+q3)
Total cost for Step 2 dominated by the term of O(Mpq)
Total cost of the algorithm dominated by the term of O(Mpq+(n+p)3)
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Algorithm 3 Classical kriging residual algorithm

Require: M i.i.d. GRFs Z(1), . . . ,Z(M) simulated in p+ q points e1, . . . ,ep,xn+1, . . . ,xn+q condi-

tionally on n ≥ 0 observations x1, . . . ,xn.

Require: The non-conditional covariance function, k, of the GRFs Z(1), . . . ,Z(M).

Require: q > 0 real observations Znew = (Z(xn+1), . . . ,Z(xn+q)) at points Xq = (xn+1, . . . ,xn+q).
Require: If n > 0, the inverse of the matrix K0 := (k(xi,x j))1≤i, j≤n

Step 1. The goal is to compute a matrix of (n+ q)× p kriging weights of (x1, . . . ,xn+q) for

the prediction at points e1, . . . ,ep, using Eq. (11). These weights will be used to obtain kriging

means at points e1, . . . ,ep.

- Compute the inverse of the (n+q)× (n+q) matrix K of Eq. (11), i.e. the covariance matrix K

at the n+q points (x1, . . . ,xn+q). The inverse is obtained from the inverse of the n×n matrix K0

using matrix block-inversion formulas O(qn2).
- Compute the other terms in Eq. (11) which do not depend on x, i.e. F⊤K−1, then (F⊤K−1

F)−1,

then F(F⊤K−1
F)−1: O(ℓ(n+q)2 + ℓ2(n+q)+ ℓ3)

for i = 1 → p do

- Compute k(ei), i.e. the column vector (k(ei,x1), . . . ,k(ei,xn+q))
⊤ and f(ei): O(n+q + ℓ)

- Compute the multiplication K−1k(ei) and then F
⊤K−1k(ei). Conclude the computation of

λUK(ei): O(ℓ(n+q)+(n+q)2)
end for

Total cost for Step 1: O((q+ ℓ)n2 + ℓq2 + ℓ2(n+q)+ ℓ3 +p((n+q)2 + ℓ(n+q)))
Total cost for Step 1 dominated by the term of O(p(n+q)2)
Step 2. The goal is to use the computed kriging weights to perform, for all the M GRF sample

paths, kriging means at points e1, . . . ,ep based on n+q observations at points x1, . . . ,xn+q.

for i = 1 → p do

- If n > 0, precompute, ui := ∑
n
j=1[λ

UK(ei)] jZ(x j), where [λUK(ei)] j is the kriging weight of

x j for the prediction at point ei: O(n)
- Compute the kriging mean at point e j from the real n + q observations

Z(x1), . . . ,Z(xn),Z(xn+1), . . . ,Z(xn+q), using the vector of kriging weights λUK(ei).
The precomputation of u j reduces this to q operations. O(q).

end for

for i = 1 → M do

for j = 1 → p do

- Compute the kriging mean at point e j from the n real observations Z(x1), . . . ,Z(xn) and

the q “artificial” observations Z(i)(Xq) = (Z(i)(xn+1), . . . ,Z
(i)(xn+q)). The precomputation

of u j reduces this to q operations. O(q).

- Apply Eq. (1) to obtain Z⋆(i)(e j)
end for

end for

Total cost for Step 2: O(Mpq)
Total cost of the algorithm dominated by the term of O(Mpq+p(n+q)2)
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Algorithm 4 FOXY algorithm based on Proposition 3

Require: M i.i.d. GRFs Z(1), . . . ,Z(M) simulated in p+ q points e1, . . . ,ep,xn+1, . . . ,xn+q condi-

tionally on n ≥ 0 observations x1, . . . ,xn.

Require: The non-conditional covariance function, k, of the GRFs Z(1), . . . ,Z(M).

Require: q > 0 real observations Znew = (Z(xn+1), . . . ,Z(xn+q)) at points Xq = (xn+1, . . . ,xn+q).
Require: If n > 0, the inverse of the matrix K0 := (k(xi,x j))1≤i, j≤n

Step 1. The goal is to compute the q kriging weights λn,q(x) = K−1
n,q kUK

n (x,Xq) of Eq. (8) where

x takes the values e1, . . . ,ep, Kn,q = (kUK
n (xn+i,xn+ j))1≤i, j≤q and kUK

n is obtained using Eq. (13).

- Compute the inverse of the n× n matrix K of Eq. (16) i.e. the covariance matrix K at the n

points (x1, . . . ,xn). This inverse is supposed to be precomputed here.

- Compute the other terms of Eq. (13) which do not depend on x, i.e. K−1
F, then (F⊤K−1

F)−1:

O(ℓn2 + ℓ2n+ ℓ3)
for i = 1 → p do

- Compute k(ei), i.e. the column vector (k(ei,x1), . . . ,k(ei,xn))
⊤ and f(ei): O(n + ℓ)

- Compute the multiplication k(ei)
⊤(K−1

F) and then f(ei)
⊤−k(ei)

⊤(K−1
F): O(ℓn)

end for

for i = 1 → q do

- Compute k(xn+i), i.e. the column vector (k(xn+i,x1), . . . ,k(xn+i,xn))
⊤ and f(xn+i):

O(n + ℓ)
- Compute the multiplication k(xn+i)

⊤(K−1
F) and then f(xn+i)

⊤−k(xn+i)
⊤(K−1

F): O(ℓn)
- Compute the multiplications K−1k(xn+i) and the multiplication (F⊤K−1

F)−1(f(xn+i)
⊤ −

k(xn+i)
⊤K−1

F)⊤: O(n2 + ℓ2)
end for

- Conclude the calculation of kUK
n (x,x′) for all (x,x′) ∈ Xq ×Xq: O(q2(n+ ℓ))

- Conclude the calculation of kUK
n (x,x′) for all (x,x′) ∈ {e1, . . . ,ep}×Xq: O(pq(n+ ℓ))

- Conclude the calculation the q kriging weights for prediction at points e1, . . . ,ep by computing

the product: kUK
n (x,Xq)

⊤K−1
n for all x ∈ {e1, . . . ,ep} : O(q3 +pq2)

Total cost for Step 1: O(pℓn+pℓq+pqn+pq2 +n2q+q2n+qℓn+qℓ2 + ℓn2 + ℓ2n+ ℓ3 +q3)
Total cost for Step 1 dominated by the term of O((pn+n2)(ℓ+q))
Step 2. Conclude the update of the M GRFs by applying Eq. (8). For a given point x and a given

GRF sample path, q operations are performed. Total cost of O(Mpq).
Total cost of the algorithm dominated by the term of O(Mpq+(pn+n2)(ℓ+q))


