
HAL Id: hal-00984441
https://hal.science/hal-00984441

Submitted on 28 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharing Cloud Computing Resources
Thomas Bonald, James Roberts

To cite this version:
Thomas Bonald, James Roberts. Sharing Cloud Computing Resources. ALGOTEL 2014 – 16èmes
Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications, Jun 2014, Le Bois-
Plage-en-Ré, France. pp.1-4. �hal-00984441�

https://hal.science/hal-00984441
https://hal.archives-ouvertes.fr

Sharing Cloud Computing Resources

Thomas Bonald1 and James Roberts2†

1Telecom ParisTech, Paris, France
2IRT System-X, Paris-Saclay, France

We address the issue of sharing the CPU and RAM resources of a cloud computing system. Specifically, we argue that

these resources should be shared according to proportional fairness instead of dominant resource fairness. The latter

has recently been proposed as a desirable scheduling objective mainly because of its strategy-proofness property. We

show that proportional fairness, which satisfies a weaker form of strategy-proofness that we refer to as scale-invariance,

yields a much better resource utilization and outperforms dominant resource fairness in the realistic setting where jobs

arrive and leave at random times.

Keywords: Cloud computing, resource sharing, dominant resource fairness, proportional fairness.

1 Introduction

Cloud computing systems serve extremely diverse jobs in terms of resource requirements (CPU, RAM,

bandwidth, storage, etc.) and their performance critically depends on the way these resources are shared.

Dominant resource fairness (DRF) has recently been proposed as a scheduling objective, with some desir-

able properties like Pareto-efficiency, sharing-incentive and strategy-proofness [GZH+11]. In this paper, we

claim that resources should rather be shared according to proportional fairness (PF), long recognized as a

desirable sharing objective for data flows in packet-switched networks [KMT98]. It turns out that PF has the

same properties as DRF except for a weaker form of strategy-proofness that we refer to as scale-invariance.

The key advantage of PF is better resource utilization that tends to decrease the mean completion time of

jobs in the practically interesting case of a dynamic, randomly varying number of jobs.

2 Static sharing

We consider two types of resources, say CPU and RAM, with total capacities C and R, respectively. In this

section, we assume that the number of jobs n is fixed and positive. There are K types of jobs. Each job of

type k consists of a large number of independent tasks, each requiring ck CPU units and rk RAM units, with

ck,rk > 0. All tasks cannot be served simultaneously in general. Denoting by nk the number of jobs of type

k and by ϕk the number of ongoing tasks of each job of type k, we have the capacity constraints:

K

∑
k=1

nkϕkck ≤C and
K

∑
k=1

nkϕkrk ≤ R.

We assume tasks are infinitesimally small compared to the capacity of the cloud computing system. In

this fluid model, we can take C = R = 1, normalize the resource requirements of each task accordingly and

interpret the (now) real numbers ϕ1, . . . ,ϕK as volumes of tasks, with capacity constraints:

K

∑
k=1

nkϕkck ≤ 1 and
K

∑
k=1

nkϕkrk ≤ 1. (1)

†The authors are members of the LINCS, Paris, France. See www.lincs.fr.

Thomas Bonald and James Roberts

The resource allocation ϕ = (ϕ1, . . . ,ϕK) is said to be Pareto-efficient if at least one of these constraints,

CPU or RAM, is attained. It is sharing-incentive if the resource shares are better than under a strictly

fair allocation, strategy-proof if no job can increase its allocation by lying about its resource requirements

and scale-invariant if the resource shares depend on the CPU and RAM requirements through their ratio

only. Scale-invariance may be viewed as a weaker form of strategy-proofness in that no job can increase its

allocation by scaling its resource requirements by merging tasks or dividing tasks into multiple subtasks.

Dominant resource fairness. The dominant resource of a job of type k is defined by dk = max(ck,rk).
DRF equalizes the dominant resource shares ϕ1d1, . . . ,ϕKdK . In view of the capacity constraints (1), this

common resource share is given by:

φ =
1

max

(

K

∑
k=1

nk

ck

dk

,
K

∑
k=1

nk

rk

dk

) . (2)

DRF is Pareto efficient, sharing-incentive and strategy proof [GZH+11]. Since φ depends on the CPU and

RAM requirements through their ratio only, DRF is also scale invariant.

DRF does not utilize both CPU and RAM efficiently in general, due to its specific form imposed by

the strategy-proofness property: only one of the two resources, that achieving the maximum in (2), is

fully utilized. This is illustrated in Figure 1 where the CPU and RAM utilizations for n = 10 jobs of two

types, with resource requirements (c1,r1) = (1,1/10) and (c2,r2) = (1/10,1), are shown with respect to

the number of jobs of type 1, n1. We observe that, except in the symmetric case n1 = n2 = 5, either the CPU

or the RAM is under-utilized.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

R
e

s
o

u
rc

e
 u

ti
liz

a
ti
o

n

Number of class-1 jobs

CPU
RAM

Fig. 1: Resource utilization under DRF (n = 10, 0 ≤ n1 ≤ 10).

Proportional fairness. PF is defined as the unique solution to the optimization problem:

argmax
ϕ

K

∑
k=1

nk logϕk, (3)

under capacity constraints (1). By construction, it is Pareto efficient.

Proposition 1 We have:

∀k = 1, . . . ,K, (αck +(1−α)rk)ϕk =
1

n
, (4)

with α = 0 and α = 1 if, respectively,

K

∑
k=1

nk

n

ck

rk

≤ 1 and
K

∑
k=1

nk

n

rk

ck

≤ 1. (5)

Sharing Cloud Computing Resources

Otherwise, α is the unique solution over (0,1) of equations:

K

∑
k=1

nk

n

rk

αck +(1−α)rk

= 1 and
K

∑
k=1

nk

n

ck

αck +(1−α)rk

= 1. (6)

Proof. Let ν and ν′ be the Lagrange multipliers associated with the CPU and RAM capacity constraints (1),

respectively. By the Karush-Kuhn-Tucker theorem, PF is the unique allocation ϕ such that:

∀k = 1, . . . ,K,
1

ϕk

= νck +ν′rk,

with ν,ν′ ≥ 0,

ν

(

K

∑
k=1

nkϕkck −1

)

= 0 and ν′

(

K

∑
k=1

nkϕkrk −1

)

= 0.

Summing these equalities yields ν+ν′ = n. Letting α = ν/(ν+ν′) gives the desired result. ✷

In view of (4), max(ϕkck,ϕkrk)≥
1
n

for all k so that PF is sharing-incentive; since ϕ depends on the CPU

and RAM requirements through their ratio only, PF is also scale invariant. On the other hand, PF is not

strategy-proof [GZH+11].

The key advantage of PF over DRF is better resource utilization. In view of (5) and (6), PF fully utilizes

both CPU and RAM whenever:

K

∑
k=1

nk

n

ck

rk

> 1 and
K

∑
k=1

nk

n

rk

ck

> 1.

In the previous example of n = 10 jobs of two types, with resource requirements (c1,r1) = (1,1/10) and

(c2,r2) = (1/10,1), this is always the case provided n1,n2 > 0.

3 Dynamic sharing

Although the previous example suggests that PF is more efficient than DRF, both allocations must be com-

pared in the more realistic setting of a dynamic, randomly varying number of jobs to get insights into their

actual performance. To this end, we now assume that jobs of type k arrive at rate λk and require the comple-

tion of σk tasks on average, each with mean service time τk. Then µk = 1/(σkτk) would be the completion

rate of a job of type k with exactly one ongoing task and ϕkµk is the completion rate of a job of type k

in the considered fluid model. Under exponential statistical assumptions, the vector ~n = (n1, . . . ,nK) is a

Markov process with birth rate λk and death rate nkϕkµk on component k. Insensitivity results suggest that

the stationary distribution of this Markov process remains approximately the same under general statistical

assumptions with the same means [BMPV06].

Since tasks of type-k jobs arrive at rate λkσk and last τk seconds on average, the corresponding traffic

intensity is ρk = λkσkτk = λk/µk. We deduce the respective CPU and RAM loads:

K

∑
k=1

ρkck and
K

∑
k=1

ρkmk.

Both loads must be less than 1 for the system to be stable. We are interested in the mean completion rate γk

of jobs of type k, defined as the inverse of the mean completion time of jobs of type k. By Little’s law, we

have:

γk =
λk

E(nk)
.

Take the previous example of two types of job with resource requirements (c1,r1) = (1,1/10) and

(c2,r2) = (1/10,1). We let µ1 = µ2 = 1 and denote by λ the total arrival rate. Figure 2 plots the mean

Thomas Bonald and James Roberts

completion rates of jobs of each type, γ1 and γ2, against CPU load in the case of balanced traffic (a)

λ1 = λ2 = λ/2 and in the case of unbalanced traffic (b) λ1 = 3λ/4 and λ2 = λ/4. The results are derived

for each value of the CPU load from the simulation of 107 jumps of the Markov process ~n. We observe

that the performance of PF is slightly better than that of DRF in case (a) and significantly better for type 2

(top curves) in case (b), especially at high load. Note that in case (b), the CPU load is approximately three

times higher than the RAM load; the number of type-1 jobs (which are mainly constrained by the CPU)

tends to be much larger than the number of type-2 jobs (which are mainly constrained by the RAM) so that

DRF under-utilizes the RAM (see Figure 1), to the detriment of type-2 jobs. PF, on the other hand, tends to

utilize both CPU and RAM efficiently.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
e

a
n

 c
o

m
p

le
ti
o

n
 r

a
te

CPU load

DRF
PF

(a) Balanced traffic (λ1 = λ2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
e

a
n

 c
o

m
p

le
ti
o

n
 r

a
te

CPU load

DRF
PF

(b) Unbalanced traffic (λ1 = 3λ2)

Fig. 2: Mean completion rate against CPU load.

4 Conclusion

We argue that PF is preferable to DRF as a scheduling objective in cloud computing systems. PF satisfies the

same properties as DRF except for a weaker form of strategy-proofness that we refer to as scale-invariance.

More importantly, PF tends to utilize resources more efficiently, which results in lower job completion times

in the realistic setting with random job arrivals and departures.

We plan in future work to confirm these results in more general and diverse traffic scenarios. We shall

also consider various features of actual cloud computing systems, accounting notably for the fact that task

resources must be allocated in a single machine, as studied in [PS13] for instance.

References

[BMPV06] T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo. A queueing analysis of max-min fair-

ness, proportional fairness and balanced fairness. Queueing Syst. Theory Appl., 53(1-2):65–84,

June 2006.

[GZH+11] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Sto-

ica. Dominant resource fairness: Fair allocation of multiple resource types. In Proceedings of

USENIX, 2011.

[KMT98] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: shadow prices,

proportional fairness and stability. Journal of the Operational Research Society, 49, 1998.

[PS13] Christos-Alexandros Psomas and Jarett Schwartz. Beyond beyond dominant resource fairness:

Indivisible resource allocation in clusters. Tech Report Berkeley, 2013.

