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Automata under Context Bounds
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1 LSV, ENS Cachan & CNRS
2 Fakultät für Informatik, TU Dresden

Abstract. We study the verification problem for parameterized commu-
nicating automata (PCA), in which processes synchronize via message
passing. A given PCA can be run on any topology of bounded degree
(such as pipelines, rings, or ranked trees), and communication may take
place between any two processes that are adjacent in the topology. Pa-
rameterized verification asks if there is a topology from a given topology
class that allows for an accepting run of the given PCA. In general, this
problem is undecidable even for synchronous communication and simple
pipeline topologies. We therefore consider context-bounded verification,
which restricts the behavior of each single process. For several variants of
context bounds, we show that parameterized verification over pipelines,
rings, and ranked trees is decidable. Our approach is automata-theoretic
and uniform. We introduce a notion of graph acceptor that identifies
those topologies allowing for an accepting run. Depending on the given
topology class, the topology acceptor can then be restricted, or adjusted,
so that the verification problem reduces to checking emptiness of finite
automata or tree automata.

1 Introduction

Communicating automata (CA) are a fundamental and well studied model of
parallel systems [7]. They consist of finite-state machines that exchange messages
over channels determined by a fixed and known communication topology. CA are
known to be Turing equivalent so that even basic problems of formal verification
such as reachability are undecidable. Therefore, modifications and restrictions
have been considered which bring back decidability. Reachability is decidable,
for example, when the analysis is restricted to executions with a fixed maximum
number of pending messages, or when channels are lossy [2].

In some contexts such as ad-hoc networks, multi-core programming, or com-
munication-protocol verification, assuming a fixed and known communication
topology is not appropriate. Lately, there has been a lot of (ongoing) research
in the area of parameterized verification [1, 3, 8, 12], which aims to validate a
given system independently of the number of processes and the communication
topology. A lot of different models of such systems have been proposed (cf. [11]
for a recent survey). In this paper, we investigate the reachability problem for
parametrized communicating automata (PCAs). A PCA is a collection of finite



automata that can be plugged into any communication topology of bounded de-
gree. PCAs have recently been introduced to initiate a logical study of parame-
terized systems [5]. Their verification problem has not been considered. Roughly,
it can be stated as follows: Given a PCA and a regular set T of pipeline, ring,
or tree topologies, is there a topology T ∈ T such that A has an accepting run
on T ? Here, “regular” means given by some finite automaton (for pipelines and
rings) or tree automaton (for tree topologies), which is part of the input. Note
that there is also a universal variant of that problem, and our decision procedures
will take care of that case as well.

We actually consider a restriction of PCAs with rendez-vous synchronization,
albeit distinguishing between send and receive events. This considerably simpli-
fies the presentation, but the overall approach can be extended to systems with
asynchronous bounded channels. Note that rendez-vous communication can also
be seen as an underapproximation of the latter.

While bounding the channel capacity or imposing rendez-vous communica-
tion bring back decidability of reachability for CA with fixed communication
topology, this is no longer true in the case of PCA. For various other (unde-
cidable) models of concurrent systems, decidability is achieved by introducing
a context (or “phase”) bound, limiting the part of the model simulating syn-
chronization or communication of concurrent processes [6, 13, 15, 16]. We adopt
the general approach, but introduce new definitions of contexts that are suitable
for our setting. An interface-context restricts communication of a process to one
neighbor in the topology (e.g., the left neighbor in the pipeline). Another con-
text type separates send from receive events while restricting reception to one
interface. Note that, in both cases, there may still be an unbounded number of
switches between two given threads.

We show that context-bounded parameterized verification is decidable: it is
PSPACE-complete for pipelines and rings, and EXPTIME-complete for ranked
trees. Our decidablity proof is automata-theoretic and uniform. We transform a
given PCA A, in several steps, into a graph acceptor that recognizes the set of
acyclic topologies allowing for an accepting run of A. This solves our problem for
pipelines and trees. For rings, an additional adjustment is needed, which rules
out cyclic behaviors that the graph acceptor is not able to detect on its own.

Related Work. Parameterized verification can be classified into verification
of multithreaded programs running on a single core, and protocol verification.
Context-bounded verification for systems consisting of an unbounded number of
threads has already been considered [4,14]. In [4], a model with process creation
is presented, in which a context switch is observed when an active thread is
interrupted and resumed. In [14], an unbounded number of threads are scheduled
in several rounds. In both cases, the context bound does not impose a bound
on the number of threads. However, every thread will be resumed and become
active a bounded number of times, which is not the case in our framework.

On the other hand, protocol verification is based on the concept of indepen-
dent (finite-state) processes communicating over a network-like structure. Due
to the absence of a global scheduler, the above context definition is not adequate
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for protocol verification. A versatile framework for parameterized verification,
capturing rendez-vous communication in pipelines, rings, and trees, is presented
in [1]. The verification problem is phrased in terms of minimal bad configurations,
which does not necessitate context bounds. Motivated by ad-hoc networks, [8]
considers systems modeled by finite automata that communicate in a broadcast
or unicast manner. In the case of unicast communication, the recipient is chosen
nondeterministically from the set of neighbors, which is incomparable with the
unicast communication of PCAs. Direction-aware token-passing systems [3,9,10]
can be modeled in our framework as far as bounded-degree structures such as
rings are concerned. To the best of our knowledge, neither context bounds nor
the PCA model have been considered yet for protocol verification.

Outline. Section 2 recapitulates basic notions such as words and finite (tree)
automata. In Section 3, we introduce topologies, PCAs, and several context-
bounded verification problems. Section 4 is the heart of our automata-theoretic
approach, where we first translate PCA into a sort of cellular automaton and,
in a second step, into topology acceptors. These constructions will be exploited,
in Section 5, to solve the parameterized verification problem for the classes of
pipelines, rings, and ranked trees. Missing proofs can be found in the appendix.

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. Let A be an alphabet, i.e., a nonempty finite
set. The set of finite words over A is denoted by A

∗, which includes the empty
word ε. The concatenation of words w1, w2 ∈ A

∗ is denoted by w1 ·w2 or w1.w2.
Given an index set I and a tuple a = (ai)i∈I ∈ A

I , we write a|i to denote ai.

A finite automaton over A is a tuple B = (S,=⇒, ι, F ) where S is the finite
set of states, ι ∈ S is the initial state, F ⊆ S is the set of final states, and =⇒ ⊆
S×A×S is the transition relation. We write s

a
=⇒ s′ instead of (s, a, s′) ∈ =⇒.

A run of B on a word w = a1 . . . an ∈ A
∗ is a sequence s0s1 . . . sn ∈ S∗ of states

such that s0 = ι and si−1
ai=⇒ si for all i ∈ [n]. The run is accepting if sn ∈ F .

Finally, the language of B is defined as L(B) := {w ∈ A
∗ | there is an accepting

run of B on w}.

For trees, we fix a (maximal) rank r ∈ N. An r-tree over A is a pair (V, π)
where V is a nonempty finite prefix-closed subset of {1, . . . , r}∗, and π : V → A

is a labeling function. The set V is the set of nodes of the tree, and ε is its
root. For u ∈ V and l ∈ [r] with u.l ∈ V , we say that u.l is the l-th child of u.
An r-tree automaton over A is a tuple B = (S,∆, F ) where S is the finite set
of states, F ⊆ S is the set of final states, and ∆ ⊆ S × A × (S ⊎ {⊥})r is the
transition relation. A run of B on an r-tree (V, π) is a mapping ρ : V → S such
that, for all u ∈ V , (ρ(u), π(u), (sl)l∈[r]) ∈ ∆ where sl = ρ(u.l) if u.l ∈ V , and
sl = ⊥ if u.l 6∈ V . The run is accepting if ρ(ε) ∈ F . By L(B), we denote the set
of r-trees accepted by B.
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3 Parameterized Communicating Automata

In this section, we introduce our model of a communicating system that can be
run on arbitrary topologies of bounded degree.

Topologies. A topology is a graph, whose nodes are connected via interfaces.
The idea is that each node runs a finite-state process (of type p, q, . . .). In Fig-
ure 1, for example, nodes are arranged in a pipeline, which allows a process to
communicate with a left and a right neighbor (if they exist). When a node u
emits a message m via its interface right, then m can be received by the neighbor
on the right of u, using interface left. Let N = {a, b, c, . . .} and P = {p, q, . . .}
be finite sets of interface names and process types, respectively.

Definition 1. A topology over N and P is a tuple T = (V, ν, π) where V is
the nonempty finite set of nodes (or processes), π : V → P associates with
every node a process type, and ν : V ×N ⇀ V is a partial mapping. Intuitively,
ν(u, a) = v means that the interface a of u points to v. We suppose that, for
all u ∈ V , there is at last one a ∈ N such that ν(u, a) is defined. Moreover, we
require that ν(u, a) = v implies (1) u 6= v, (2) ν(v, b) = u for some b ∈ N , and
(3) ν(u, a′) = v′ implies [a = a′ iff v = v′], for all a′ ∈ N and v′ ∈ P .

We write u a b v if ν(u, a) = v and ν(v, b) = u, and we write u v if
u a b v for some a, b ∈ N . We call T acyclic if the undirected graph (V, )
is acyclic. This paper will focus on three topology classes:

Pipelines. A pipeline over a nonempty finite set P of process types is a topology
over N = {left, right} and P. It is of the form T = ({1, . . . , n}, ν, π), with n ≥ 2,
such that ν(i, right) = i + 1 and ν(i + 1, left) = i for all i ∈ {1, . . . , n − 1},
and ν(1, left) and ν(n, right) are both undefined. A finite automaton B over P
can be seen as a pipeline recognizer. Indeed, a pipeline is uniquely given by
the sequence π(1) . . . π(n) ∈ P∗. So, we let Lpipe(B) denote the set of pipelines
({1, . . . , n}, ν, π) over P such that π(1) . . . π(n) ∈ L(B). Instead of B, we may
use a classical regular expression. An example pipeline is depicted in Figure 1.
It is uniquely given by the word pqpq.

Rings. A ring over P is a topology over N = {left, right} and P of the form
T = ({1, . . . , n}, ν, π), with n ≥ 3, where ν(i, right) = (i mod n) + 1 and
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ν((i mod n) + 1, left) = i for all i ∈ [n]. Similarly to pipelines, a finite au-
tomaton B over P can be used as a ring recognizer: we let Lring(B) denote
the set of rings ({1, . . . , n}, ν, π) over P such that there is i ∈ [n] satisfying
π(i) . . . π(n)π(1) . . . π(i− 1) ∈ L(B). This takes into account that, a priori, rings
do not have an “initial” node. Figure 2 depicts a ring with five nodes.

Trees. For r ≥ 2, an r-tree topology over P is a topology T = (V, ν, π) over
{father, child1, . . . , childr} and P such that (V, π) is an r-tree over P, ν(ε, father) is
undefined, and for all u ∈ V and l ∈ [r], we have (1) u.l ∈ V implies ν(u, childl) =
u.l and ν(u.l, father) = u, and (2) u.l 6∈ V implies that ν(u, childl) is undefined.
An r-tree automaton B over P can be seeen as a recognizer for tree topologies:
we write Ltree(B) for the set of r-tree topologies (V, ν, π) such that (V, π) ∈ L(B).
A sample 2-tree topology is depicted in Figure 3.

The Automata Model. Next, we introduce our system model. As suggested
above, a parameterized communicating automaton is a collection of finite-state
processes whose actions refer to an interface. Unless stated otherwise, we assume
that N is a fixed nonempty finite set of interface names (or, simply, interfaces).

Definition 2. A parameterized communicating automaton (PCA) over N is a
tuple A = (P,Msg , (Ap)p∈P) where P is a nonempty finite set of process types,
Msg is a nonempty finite set of messages, and Ap is a finite automaton over
the set of actions ΣA := {a!m, a?m | a ∈ N and m ∈ Msg}, for every p ∈ P.

A pipeline PCA or ring PCA is a PCA over {left, right}. Moreover, for r ≥ 2,
an r-tree PCA is a PCA over {father, child1, . . . , childr}.

The idea is the following: When A is run on a topology (V, ν, π) with adjacent
processes u a b v, then u runs a copy of Aπ(u) and can emit a message m
through interface a by executing a!m. Process v receives the message if it is
ready to execute b?m. We assume that communication is by rendez-vous, i.e.,
messages are received instantaneously.

For convenience, we write Σ instead of ΣA. Sometimes, we will even mention
Σ without any reference to A. However, notice that the alphabet depends on a
PCA (more precisely, on N and a set of messages). Let Σ! := {a!m | a ∈ N and
m ∈ Msg} and let Σ? be defined accordingly. These sets are further refined to
Σa! and Σa?, containing only those actions that refer to interface a ∈ N .

Semantics of PCAs. Let A = (P,Msg , (Ap)p∈P) be a PCA over N , with
Ap = (Sp,=⇒p, ιp, Fp) for all p ∈ P. The PCA A can be run on any topology
T = (V, ν, π) over N and P. The semantics of A wrt. T is a finite automaton
[[A]]T = (S,=⇒, ι, F ) over ΣT ⊆ (Σ ∪ {ε})V . The alphabet ΣT contains, for
all v a b v′ and m ∈ Msg , the tuple 〈v,m, v′〉 := (σu)u∈V where σv = a!m,
σv′ = b?m, and σu = ε for all u ∈ V \ {v, v′}. For W = γ1 . . . γn ∈ (ΣT )∗ and
u ∈ V , we define the projection of W to u as W |u := (γ1|u) · . . . · (γn|u) ∈ Σ∗.

For u ∈ V , we write Au, Su,=⇒u, ιu, Fu for Aπ(u), Sπ(u),=⇒π(u), ιπ(u), Fπ(u),
respectively. The set of states of [[A]]T is S =

∏

u∈V Su, keeping track of the
local state of every process in the topology. Accordingly, the initial state is
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ι = (ιu)u∈V , and the set of final states is F =
∏

u∈V Fu. The transition relation
=⇒ ⊆ S ×ΣT × S is defined as follows. Let s = (su)u∈V ∈ S, s′ = (s′u)u∈V ∈ S,

and σ = (σu)u∈V ∈ ΣT . Then, s
σ

=⇒ s′ if, for all u ∈ V , we have that σu 6= ε

implies su
σu==⇒u s′u, and σu = ε implies su = s′u. The language of A wrt. T is

defined as L(A, T ) := L([[A]]T ).

Example 1. Consider the PCA A = (P,Msg , (Ap,Ap̄,Aq,Aq̄)) over the set of
interfaces N = {left, right}, where P = {p, p̄, q, q̄}, Msg = {m}, and the local
languages are given as follows:

L(Ap) = {(right!m)} L(Aq) = {(left?m)(right!m)}

L(Ap̄) = {(left?m)} L(Aq̄) = {(right!m)(left?m)}

Let Q be the regular expression (q + q̄)∗. For all pipelines T over P, we have
L(A, T ) 6= ∅ iff T ∈ Lpipe((pQp̄)∗). In particular, for n ≥ 2 and the pipeline T
given by pqn−2p̄, we have L(A, T ) = {〈1,m, 2〉〈2,m, 3〉 . . . 〈n − 1,m, n〉}. When
we consider rings instead, the reasoning is less evident. Note that L(A, T ) = ∅
for all T ∈ Lring(q

∗+ q̄∗): though two successive processes qq or q̄q̄ match locally,
meaning that an open send encounters an open receive, closing a sequence qn or
q̄n towards a ring is not possible due to the causal dependencies that are created.
In qn, for example, the receive that remains open is always scheduled before the
remaining open send. Thus, matching both will create a cyclic dependency and
not lead to a valid run ofA. However, pathologic dependencies are “resolved” in a
ring over {q, q̄} whenever it contains qq̄ (which implies that there is also q̄q when
the ring is seen as a cyclic word). We actually have, for all rings T over P, that
L(A, T ) 6= ∅ iff T ∈ Lring((pQp̄)∗ + Qqq̄Q). Detecting cyclic dependencies will
be one challenge when we tackle the verification problem for rings in Section 5.

Context-Bounded Parameterized Emptiness. Next, we define several vari-
ants of contexts, which restrict the behavior of each process of a PCA. A word
w ∈ Σ∗ is called an

– (s⊕r)-context if w ∈ Σ∗
! ∪Σ∗

? ,

– (s1+r1)-context if w ∈ (Σa! ∪Σb?)
∗ for some a, b ∈ N ,

– (s⊕r1)-context if w ∈ Σ∗
! ∪Σ∗

a? for some a ∈ N , and

– intf-context if w ∈ (Σa! ∪Σa?)
∗ for some a ∈ N .

The case s1⊕r (w ∈ Σ∗
a!∪Σ∗

? for some a ∈ N ) is symmetric to s⊕r1, and we only
consider the latter. All results hold verbatim when we replace s⊕r1 with s1⊕r.

Let k ≥ 1 and t ∈ {s⊕r, s1+r1, s⊕r1, intf} be a context type. We say that
w ∈ Σ∗ is (k, t)-bounded if there are w1, . . . , wk ∈ Σ∗ such that w = w1 · . . . ·wk

and wi is a t-context, for all i ∈ [k]. The set of all (k, t)-bounded words (over
a fixed Σ) is denoted by W(k,t). For a PCA A = (P,Msg , (Ap)p∈P) and a
topology T = (V, ν, π), we define L(k,t)(A, T ) := {W ∈ L(A, T ) | W |u ∈ W(k,t)

for all u ∈ V }. Note that W(k,t) is a regular word language that is recognized
by a finite automaton B(k,t) whose number of states is linear in k and at most
quadratic in |N | (but linear for the decidable cases of t). Let A′ be the PCA
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Pipeline-Nonemptiness(t)

I: pipeline PCA A = (P,Msg , (Ap)p∈P)

k ≥ 1; finite automaton B over P

Q: L(k,t)(A, T ) 6= ∅ for some T ∈ Lpipe(B) ?

Ring-Nonemptiness(t)

I: ring PCA A = (P,Msg , (Ap)p∈P)

k ≥ 1; finite automaton B over P

Q: L(k,t)(A, T ) 6= ∅ for some T ∈ Lring(B) ?

Treer-Nonemptiness(t)

I: r-tree PCA A = (P,Msg , (Ap)p∈P)

k ≥ 1; r-tree automaton B over P

Q: L(k,t)(A, T ) 6= ∅ for some T ∈ Ltree(B) ?

s⊕r1 intf

pipelines PSPACE-c PSPACE-c
rings PSPACE-c PSPACE-c
trees EXPTIME-c EXPTIME-c

Table 1. Context-bounded nonemptiness problems and summary of results

(P,Msg , (Ap×B(k,t))p∈P) where Ap×B(k,t) is the classical product of two finite
automata. It is easy to see that L(k,t)(A, T ) = L(A′, T ). This means that the
context-bound restriction can be built into the PCA.

Applying the definitions to the PCA A from Example 1, we have L(A, T ) =
L(2,s⊕r1)(A, T ) = L(2,intf)(A, T ) for all topologies over {left, right} and {p, p̄, q, q̄}.

For t ∈ {s⊕r, s1+r1, s⊕r1, intf}, we consider the problems listed in Table 1.
Note that the context bound k is always part of the input. We assume that k is
encoded in unary. The table also gives a summary of the positive results of the
paper. For some context types, however, all problems are undecidable.

Theorem 1. All problems listed in Table 1 are undecidable for t ∈ {s⊕r, s1+r1},
even when we restrict to one context for each process.

Proof (sketch). Figures 4 and 5 demonstrate how to generate grid-like struc-
tures of arbitrary height i and width j, using only one context on each single
process. Figure 4, for example, visualizes an execution of the form

(〈1,m(1,1), 2〉〈2,m(1,2), 3〉 . . . 〈j,m(1,j), j + 1〉) . . . (〈1,m(i,1), 2〉〈2,m(i,2), 3〉 . . . 〈j,m(i,j), j + 1〉) .

The idea is now to simulate a Turing machine, using the (unbounded) verti-
cal dimension to encode its tape, which changes along the (unbounded) horizon-
tal line. More precisely, the leftmost process generates a sequence of messages
(m(1,1), . . . ,m(i,1)) that corresponds to the initial configuration with arbitrarily
many cells. Each further process may locally change that configuration while
passing it to its right neighbor, and so on. In the case of s⊕r, the transfer of a
configuration is sometimes accomplished by a receive context. Here, reception is
blocking if the messages coming from the right neighbor do not correspond to
the next configuration. Obviously, the encoding also works for rings as well as
for the (more general) trees. It is important to note that it does not matter if
the semantics is via rendez-vous (as it is our case) or asynchronous. ⊓⊔

4 From PCAs to Topology Acceptors

In this section, we lay the basis for a uniform approach to parameterized verifi-
cation under context bounds of type s⊕r1 or intf. We first show that, assuming
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Fig. 5. Undecidability for s⊕r

a context bound of type s⊕r1 or intf, a given PCA can be simulated by a sort of
cellular automaton, which works similarly to PCAs but performs only a bounded
number of steps on each process. The idea is that single contexts are summarized
to one step of maximally |N |+ 1 processes. This transformation works for both
context types, with only minor differences.

In a further step, which is then independent of a context type, the cellu-
lar automaton is translated into a topology acceptor, which no longer has an
operational semantics but a “static” one: a run is a tiling of a topology with
transitions. When we restrict a topology acceptor to pipelines or tree topolo-
gies, we obtain a finite automaton or tree automaton, respectively. Thus, this
transformation solves our verification problems for tree and pipeline topologies.

Unfortunately, the topology acceptor is only guaranteed to be correct for
acyclic topologies. It may actually accept cyclic topologies that do not admit
an accepting run of the given PCA. Nevertheless, for the class of rings, we can
enrich a topology acceptor with additional information that helps keeping track
of interdependencies between contexts of different processes (cf. Example 1).
This will allow us to build a finite automaton recognizing the unfoldings of rings
having an accepting PCA run (Lemma 3).

We explain the general idea by means of Figure 6. Assume context type
s⊕r1, which is the more difficult case. The figure depicts an execution (in fact, a
set of “order“-equivalent executions) that is (3, s⊕r1) bounded. Processes 1, 2,
and 3 use three contexts, while 4 and 5 can do with a single one. The dotted
areas on a process line suggest that we actually consider an arbitrary number of
actions. Our aim is to aggregate these unboundedly many actions in a bounded
number of summaries Si so that a finite automaton can read the pipeline (i.e.,
the word pppqq) from left to right, while verifying that the summaries can be
glued together towards an accepting run of the given PCA.

As process 4 alternates between sending to 3 and sending to 5, its summaries
have to include the behavior of processes 3 and 5. A summary is then given by
a cell transition of the form s

pqq
−−→ s′. Here, cell refers to pqq, which represents

an isomorphism type of a pipeline of length three. Moreover, s, s′ ∈ Sp×Sq ×Sq

denote how states evolve in that particular fragment within a bigger pipeline,
for example when executing all actions gathered in S5. Cells have bounded size
so that the set of cell transitions can be effectively computed and represented.

Now, the behavior of process 4 can only be captured when we use at least
two cell transitions (for S5 and S6). The reason is that receives of process 3
from 4 are interrupted by receives from process 2. Similarly, the receive con-
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Fig. 6. Cell transitions wrt. s⊕r1
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Fig. 7. Run of topology acceptor

text in the middle of process 3 will belong to two different summaries, as it is
“interrupted” by a context switch on process 2. The splitting is not unique, as
we could have merged S3 and S4. However, the total number of splits can be
bounded: a send (receive) context is split whenever the complementary receives
(sends, respectively) belong to distinct contexts. Thus, it is divided into at most
k · |N | summaries. As a result, any (k, s⊕r1)-bounded execution of a PCA is cap-
tured by a sequence of cell transitions such that each process is involved at most
k · (|N |2 + 2|N |+ 1) times (cf. appendix). This gives us a bounded abstraction
of a priori unbounded behaviors so that we can build a finite automaton that
guesses such an abstraction and, simultaneously, checks if it corresponds to an
accepting run of the PCA. A run of the finite automaton (topology acceptor in
the general case) is depicted in Figure 7. We come back to it later.

Let us formalize these ideas. In the following, we do not restrict to pipelines,
so N is an arbitrary alphabet of interface names. A topology C = (V, ν, π) is
called a cell if there is ū ∈ V such that (1) for all u ∈ V \ {ū}, we have ū u,
and (2) for all u, u′ ∈ V \ {ū}, we do not have u u′. We call ū a center of C.
Note that C is star-shaped, and we have |V | ≤ |N |+ 1.

In the following, we define cell transitions to represent summaries. Let A =
(P,Msg , (Ap)p∈P) be a PCA over N , with Ap = (Sp,=⇒p, ιp, Fp). Moreover, let
C = (V, ν, π) be a cell (over N and P). Suppose that [[A]]C = (S,=⇒, ι, F ) and
s, s′ ∈ S =

∏

u∈V Su. We let

– s C−−→intf s
′ if |V | = 2 and L((S,=⇒, s, {s′})) \ {ε} 6= ∅ ;

– s C−−→s⊕r1 s
′ if there are a center ū ∈ V of C and a wordW ∈ L((S,=⇒, s, {s′}))

such that W |ū ∈ Σ+
! and W |u ∈ Σ+

? for all u ∈ V \ {ū}. Thus, if C contains
at least three nodes, then there is a unique center, and this center “executes”
only send actions.

Next, we apply cell transitions on arbitrary topologies T = (V, ν, π). For
t ∈ {s⊕r1, intf}, we define a finite automaton 〈A〉Tt = (S,=⇒t, ι, F ) where S, ι,
and F are as in [[A]]T . Moreover, =⇒t is a subset of S × Γ × S, where Γ is the
set of sub-structures of T that are cells. For states s = (su)u∈V and s′ = (s′u)u∈V

from S and a cell C ∈ Γ with set of nodes U ⊆ V , we let s
C

==⇒t s′ if we have
both (su)u∈U

C−−→t (s
′
u)u∈U and su = s′u for all u ∈ V \ U .

9



For K ≥ 1, we define LK(〈A〉Tt ) to be the set of words W = C1 . . . Cn ∈
L(〈A〉Tt ) such that, for all u ∈ V , we have |{i ∈ [n] | u is a node of Ci}| ≤ K.

Lemma 1. Let t ∈ {s⊕r1, intf}, k ≥ 1, and K = k · (|N |2 + 2|N | + 1). Let
A = (P,Msg , (Ap)p∈P) be a PCA such that L(Ap) ⊆ W(k,t) for all p ∈ P. Then,
for all topologies T (over N and P), we have LK(〈A〉Tt ) 6= ∅ iff L(k,t)(A, T ) 6= ∅.

Thus, the behavior of a context-bounded PCA can be faithfully represented
by a “cellular” automaton that performs a bounded number of transitions on
each process. The next step is to translate cellular automata into topology ac-
ceptors, which are similar to graph acceptors [18]. A run of a topology acceptor
is a covering of a topology with cell-shaped tilings.

Definition 3. A topology acceptor (TA), over N and P, is a pair G = (S, ∆)
where S is a finite set of states and ∆ is a finite set of transitions. A transition
is a triple (C, ū, ρ) where C = (V, ν, π) is an isomorphism type of a cell, ū ∈ V
is a center of C, and ρ : V → S is a mapping.

Let T = (V, ν, π) be a topology and γ : V → S be a mapping. Given ū ∈ V ,
we denote by cell(T , ū, γ) the triple (C, ū, ρ) where C is the cell induced in T by
the center ū (the set of nodes of C being V ′ = {ū}∪{u ∈ V | ū u}), and ρ is
the restriction of γ to V ′. We say that γ is a run of G on T if, for all ū ∈ V , we
have that cell(T , ū, γ) ∈ ∆. By L(G), we denote the set of topologies for which
there is a run. Note that there is no particular acceptance condition in a TA.

Lemma 2. Let t ∈ {s⊕r1, intf} and k ≥ 1. Let A be a PCA over N with process
types P. In exponential time, we can construct a TA G (of exponential size)
such that, for all acyclic topologies T (over N and P), we have T ∈ L(G) iff
L(k,t)(A, T ) 6= ∅.

Proof. Let A = (P,Msg , (Ap)p∈P) be the given PCA over N , with Ap =
(Sp,=⇒p, ιp, Fp). We will assume that the sets Sp are pairwise disjoint. We also
assume that L(Ap) ⊆ W(k,t) for all p ∈ P. Recall that this can be achieved at
the expense of a linear blow-up in the size of Ap.

Note that there are |P| · ((|N | · |P|) + 1)|N | isomorphism types C = (V, ν, π)
of a cell. For each of them and all states s, s′ ∈

∏

u∈V Su of the finite automaton
[[A]]C , we first determine whether s C−−→t s

′, as defined above. Once the C, s, s′ are
fixed, this check reduces to a reachability analysis that can be done in polynomial
time (since |N | is fixed).

Now, we construct the desired TA G = (S, ∆) as follows. Set K = k · (|N |2+
2|N | + 1). Recall that K is the bound that we imposed, in Lemma 1, on the
number of local steps in the finite automaton 〈A〉Tt . A state from S is an alter-

nating sequence θ = (s0
τ1−→ s1

τ2−→ . . .
τK−−→ sK) where for some p ∈ P we have

s0 = ιp, sK ∈ Fp and all other states are also in Sp, and each τi is either an
interface name τi ∈ N , or a set of interface names τi ⊆ N , or ε. The sequence θ
describes a summary of the run performed by A on some node u of the topology
(to which θ is assigned in a run of G). We use τi ⊆ N to describe a summary

10



step si−1
τi−→ si of a cell C in which u is a center and communicates through

the interface names in τi. We use τi ∈ N to indicate that u is taking part in a
summary step si−1

τi−→ si of a cell C in which u is not the center and u commu-
nicates only through the interface name τi. Inserting ε-transitions allows us to
consider sequences of equal length, which somehow simplifies the presentation.
Hence, we assume that si−1 = si when τi = ε.

Let θ, θ′ ∈ S be sequences with labels τ1, . . . , τK and τ ′1, . . . , τ
′
K , respectively.

We let fθ(a, i) = |{ℓ ≤ i | a ∈ τℓ ∨ a = τℓ}| be the number of times interface
a ∈ N was used up to transition i in θ. Also, we say that θ and θ′ match on
a link a b if we have (1) fθ(a,K) = fθ′(b,K), (2) for all i ∈ [K] with a ∈ τi
there exists j ∈ [K] with b = τ ′j and fθ(a, i) = fθ′(b, j), and (3) the symmetric
condition.

Transitions of G will check that the summary runs guessed locally at each
node are compatible. This is illustrated in Figure 7, showing a run of G that
corresponds to the PCA run in the adjoining figure. For simplicity, states are
omitted. Let C = (V, ν, π) be a cell, ū ∈ V be a center of C, and ρ : V → S.
Then, (C, ū, ρ) is a transition of G if the following hold:

(a) For all u ∈ V , the states that occur in ρ(u) are all from Sπ(u).

(b) For all u ∈ V and a, b ∈ N such that ū a b u in C, the sequences ρ(ū) and
ρ(u) match on a b .

(c) For all i ∈ [K] such that the i-th transition label of ρ(ū) is τi ⊆ N , we
require that there is a sub-cell D = (V ′, ν′, π′) of C, with center ū and

dom(ν′(ū)) = τi, and there is a transition s D−−→t s
′ where s = (su)u∈V ′ and

s′ = (s′u)u∈V ′ are states from
∏

u∈V ′ Su such that the following hold:

• the i-th transition of ρ(ū) is sū
τi−→ s′ū, and

• for all a ∈ τi, there are u ∈ V ′ and b ∈ N such that ū a b u in D and
there is j ∈ [K] such that the j-th transition of ρ(u) is su

b
−→ s′u and

fρ(ū)(a, i) = fρ(u)(b, j).

This concludes the construction of G. The correctness proof, which crucially
relies on Lemma 1, can be found in the appendix. ⊓⊔

The above construction is only correct for acyclic topologies. Consider the
PCA from Example 1. Figure 8 illustrates that the corresponding TA G accepts
the ring T induced by qqqq, though we have L(A, T ) = ∅. The reason is that G
checks locally whether a run encodes a composition of cell transitions, without
retrieving cyclic dependencies that violate the run conditions of PCAs.

5 Context-Bounded Parameterized Verification

When we are only interested in pipelines, rings, or trees, a TA can be translated
to a finite automaton or, respectively, tree automaton, which is then checked for
emptiness. This allows us to apply the construction and ideas presented in the
previous section to context-bounded verification over trees, pipelines, and rings.
The case of rings, however, needs some additional subtle argument.
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Theorem 2. The problem Treer-Nonemptiness(t) is EXPTIME-complete, for
all r ≥ 2 and t ∈ {s⊕r1, intf}.

Proof. We first show the upper bound. By Lemma 2, we can transform an r-tree
PCA with set of process types P into a TA G over {father, child1, . . . , childr} and
P of exponential size. It is standard to transform the TA G into a tree automaton
B (with polynomial blow up) such that, for all r-tree topologies T over P, we
have T ∈ L(G) iff T ∈ Ltree(B). As emptiness of tree automata is decidable in
polynomial time, this gives us an EXPTIME decision procedure.

The lower bound is by reduction from the intersection problem for binary-
tree automata, which is EXPTIME-complete [17]. Without loss of generality,
we assume here that tree automata accept only trees where the root and ev-
ery internal node have exactly two children. Given k ≥ 1 and binary-tree au-
tomata B1, . . . ,Bk, we construct, in polynomial time, a PCA A such that, for
all 2-tree topologies T , we have L(2k,s⊕r1)(A, T ) 6= ∅ iff L(3k,intf)(A, T ) 6= ∅ iff
T ∈ Ltree(B1)∩ . . .∩Ltree(Bk). The idea is that each internal node u in the tree
topology chooses transitions δ1, . . . , δk of B1, . . . ,Bk, respectively, that are ap-
plied at u. These transitions are sent to the children u.1 and u.2 of u. When u.1
(or u.2) receives a transition δi, it immediately sends a corresponding transition
δ′i to its own children. This is why the PCA works with 2k and 3k contexts. ⊓⊔

Theorem 3. The problem Pipeline-Nonemptiness(t) is PSPACE-complete,
for all t ∈ {s⊕r1, intf}.

Proof. For the upper bound, we again use Lemmas 1 and 2, which allow us
to transform a PCA into a TA G. The latter, in turn, can be transformed into
a finite automaton (we perform a more sophisticated construction below for
rings). However, the construction has to be done “on-the-fly” so that it takes
only polynomial space. The pre-computation of the cell transitions s C−−→t s

′ can
be done in polynomial time. Moreover, a single state of G is representable using
polynomial space. Clearly, checking if a sequence of at most three consecutive
states of G form a valid transition can be done in polynomial space. Putting all
that together, we obtain a PSPACE procedure.

The lower-bound proof is an adaptation of the lower-bound proof for Theo-
rem 2, but uses intersection of finite automata, which is PSPACE-complete. ⊓⊔

Theorem 4. The problem Ring-Nonemptiness(t) is PSPACE-complete, for
all t ∈ {s⊕r1, intf}.

The rest of this section is devoted to the proof of Theorem 4. Recall that we
cannot simply apply Lemma 2, since the constructed TA G is only guaranteed
to be correct when running on acyclic topologies. Consider the (2, s⊕r1)- and
(2, intf)-bounded PCA A from Example 1. For simplicity, we suppose K = 2 (cf.
Lemma 1). Let T be the ring topology induced by qqqq. Though L(A, T ) = ∅,
there is a run of the associated TA G on T , which is illustrated in Figure 8.
Essentially, the run checks, locally, if two successive local executions fit together.
There is, by now, no mechanism that keeps track of the causal dependency
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between events created during a run. In particular, it does not record that the
gray-shaded left-event (which arised from a receive action) is scheduled before the
gray-shaded right-event (which arised from a send action). Thus, those events
cannot be matched, i.e., the run of G does not reflect a run of A. We will,
therefore, enrich G to obtain a decision procedure for rings.

To be able to infer dependencies from cell transitions, we slightly modify
the definition of s C−−→s⊕r1 s

′: we require that there are a center ū ∈ V of C
and a word W ∈ L((S,=⇒, s, {s′})) such that (1) W |ū ∈ Σ+

! and |V | = 2,
or (2) W |ū ∈ Σ∗

! (Σ
+
left!Σ

+
right!Σ

+
left!)Σ

∗
! ∪ Σ∗

! (Σ
+
right!Σ

+
left!Σ

+
right!)Σ

∗
! . Condition (2)

guarantees that there are at least two direction switches in the sending phase of
ū. Note that Lemma 1 is still valid at the cost of a linear blow up of K.

The idea is now to add dependence graphs that keep track of the causal
dependencies between cell transitions. They arise naturally when we combine
the behavior of two processes in terms of states of G. For processes 1 and 2 in
Figure 8, we obtain the dependence graph Dqq depicted in Figure 9. There are
two kinds of constraints, an undirected one representing synchronizations (the
thick gray lines), and a directed one for strict causality (depicted by arrows). The
effect of appending a further process of type q can be computed as a composition
Dqq ◦ Dqq, which we obtain by merging the right side of the first graph with
the left side of the second, taking the transitive closure of the constraints, and
removing the middle nodes (in the figure, we represent the transitive closure by
a minimal set of constraints). Now, “closing” the pipeline qqqq towards a ring
corresponds to joining the left and right hand side of (Dqq)

4 = (Dqq)
2, depicted

as join((Dqq)
4) in Figure 9. But this creates a cycle using at least one constraint of

type →, which has to be interpreted as a violation of the run condition of PCAs.
However, if the third process is of type q̄ (executing (right!m)(left?m)), Dqq is
composed with Dqq̄, which results in Dqq ◦Dqq̄. Closing the pipeline corresponds
to appending Dq̄q, which resolves the “bad” dependency and results in the graph
at the bottom right, whose join is harmless. Let us implement these ideas.

Lemma 3. Suppose t ∈ {s⊕r1, intf} and k ≥ 1. Let A be a ring PCA with
process types P. We can construct a finite automaton B over P of exponential
size such that, for all rings T over P, we have T ∈ Lring(B) iff L(k,t)(A, T ) 6= ∅.

13



Proof. We start from the TA G = (S, ∆) over {left, right} and P that we obtain

according to the proof of Lemma 2. Recall that a state of G is a sequence s0
τ1−→

s1
τ2−→ . . .

τK−−→ sK where K = 18k (due to the new definition of C−−→s⊕r1).
First, we introduce dependence graphs. Let Ω = {⊲1, . . . , ⊲K}∪{⊳1, . . . , ⊳K}.

A dependence graph is a graph D = (Ω,→,∼) where →,∼ ⊆ Ω × Ω with ∼
symmetric. The composition D1 ◦ D2 of two graphs D1 = (Ω,→1,∼1) and D2 =
(Ω,→2,∼2) is obtained as follows. InD1, we rename every ⊳i into ♭i. Similarly, in
D2, rename every ⊲i into ♭i. The composition is then defined as (Ω,→,∼) where
→ is the restriction of E∗ ◦ (→1∪→2)◦E

∗ to Ω, where E = →1∪∼1∪→2∪∼2,
and ∼ is the restriction of (∼1 ∪ ∼2)

+ to Ω. We also define a join operation
on dependence graphs D = (Ω,→,∼) and let join(D) be the dependence graph
(Ω,→,∼ ∪ {(⊲i, ⊳i) , (⊳i, ⊲i) | i ∈ [K]}) (cf. Figure 9).

With a pair (θ, θ′) ∈ S × S, we now associate a dependence graph Dθθ′ .
Suppose the labels of θ are τ1, . . . , τK and the labels of the sequence θ′ are
τ ′1, . . . , τ

′
K . Then, we define Dθθ′ = (Ω,→,∼) by → = {(⊲i, ⊲j) , (⊳i, ⊳j) | 1 ≤

i < j ≤ K} and ∼ = {(⊲i, ⊳j) , (⊳j , ⊲i) | (right ∈ τi or right = τi) and (left ∈
τ ′j or left = τ ′j) and fθ(right, i) = fθ′(left, j)} (cf. Figures 8 and 9).

Let us determine the finite automaton B over P such that T ∈ Lring(B) iff
L(k,t)(A, T ) 6= ∅, for all rings T over P. To allow for a modular construction,
we will actually build a finite automaton reading words over P × S. We define
B as the product of two finite automata. First, Brun accepts those words w =
(p1, θ1) . . . (pn, θn) ∈ (P × S)∗ of length n ≥ 3 such that the mapping {1 7→
θ1, . . . , n 7→ θn} is a run of G on the ring with set of nodes V = {1, . . . , n} that
is induced by p1 . . . pn. As is the case for pipelines and trees, this construction is
easy and omitted. The second finite automaton, Bdep, checks the dependencies
that we create during a run. A state of Bdep is either ι, or a triple (θ1, θ2, D)
where θ1, θ2 ∈ S denote the very first and, respectively, the last state of G that
were read so far (thus, θ1 is invariant along a run), and D is a dependence
graph. Let w = (p1, θ1)(p2, θ2) ∈ (P × S)2. We have an initial transition ι

w
==⇒

(θ1, θ2, Dθ1θ2). For simplicity, we hereby allow Bdep to read two letters at once.
Now, let θ1, θ2 ∈ S, (p, θ3) ∈ P × S, and D be a dependence graph. Then, we
have a transition (θ1, θ2, D)

(p,θ3)
====⇒ (θ1, θ3, D ◦Dθ2θ3). Thus, the “last” state θ2

is updated to θ3, and the dependence graph is updated to the new dependency
created in terms of θ3. Finally, (θ1, θ2, D) is a final state if join(D ◦Dθ2θ1) does
not have a cycle using edges in → ∪ ∼, and using → at least once. Intuitively,
this means that the pipeline can be closed towards a ring.

We now obtain B as the projection (to P) of the product Brun×Bdep. One can
show that the dependence graphs faithfully represent the causal dependencies
created between the states of the TA assigned to the first and the last process
of a pipeline. Thus, the join allows us to verify if the pipeline can be closed. ⊓⊔

Proof (of Theorem 4). Like for pipelines, we perform the constructions given
in the proofs of Lemmas 2 and 3 on the fly. Since the graphs Dθθ′ , their compo-
sition, and their join can be computed in polynomial time, we still get a PSPACE

procedure. For the lower bound, we again exploit PSPACE-hardness of intersec-
tion of finite automata. The adaptation to rings is straightforward. ⊓⊔
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6 Conclusion

We showed that verification of PCAs running on pipelines, rings, and trees is
decidable under certain context bounds. Our approach also yields decidability
of all universal verification problems: Do all topologies accepted by a finite
(tree) automaton allow for an accepting run of the given PCA? This involves
complementation of finite (tree) automata. For future work, it will be worthwhile
to consider model checking against temporal logics, and automata models that
may run over topologies of unbounded degree such as stars and unranked trees.
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A Proof of Lemma 1

Lemma 1. Let t ∈ {s⊕r1, intf}, k ≥ 1, and K = k · (|N |2 + 2|N | + 1). Let
A = (P,Msg , (Ap)p∈P) be a PCA such that L(Ap) ⊆ W(k,t) for all p ∈ P. Then,
for all topologies T (over N and P), we have LK(〈A〉Tt ) 6= ∅ iff L(k,t)(A, T ) 6= ∅.

Proof. We only consider the more difficult case of context type s⊕r1. The case
intf follows the same lines (and we get a slightly better bound K = k+(k · |N |)).
So let, in the following, t = s⊕r1.

Let k ≥ 1 and set K = k · (|N |2 + 2|N | + 1). Let A = (P,Msg , (Ap)p∈P)
be a PCA such that L(Ap) ⊆ W(k,t) for all p ∈ P . Moreover, fix a topology
T = (V, ν, π) over N and P. The direction from cell transitions to PCA follows
easily from the definitions. We will show

L(k,t)(A, T ) 6= ∅ =⇒ LK(〈A〉Tt ) 6= ∅ .

The rough idea is to consider an automata model that is able to execute both,
PCA transitions and cell transitions, and to transform, step by step, all PCA
transitions into cell transitions. To this aim, we define another finite automaton
LAMTt := (S,=⇒∪=⇒t, ι, F ) over ΣT ∪Γ where S, =⇒, ι, and F are as in [[A]]T

and =⇒t ⊆ S × Γ × S is as in 〈A〉Tt , i.e., Γ is the set of substructures of T that
are cells.

For a word W = γ1 . . . γn ∈ (ΣT ∪ Γ )∗ and a node u ∈ V , we define the
projection of W to u as (γ1)|u · . . . · (γn)|u ∈ (Σ ∪ {⊤})∗. Here, for C ∈ Γ , we let
C|u = ⊤ if u is a node of C. Otherwise, C|u = ε. The definition of contexts for
words w ∈ (Σ ∪ {⊤})∗ is the same as for words over Σ with one difference: one
ocurrence of ⊤ is counted as one context. This naturally leads to an extended
definition of (ℓ, t)-boundedness for words from (ΣT ∪ Γ )∗, for ℓ ≥ 1. We let
L(ℓ,t)(LAMTt ) denote the set of (ℓ, t)-bounded words that are accepted by LAMTt .

An important property of L(ℓ,t)(A, T ), L(ℓ,t)(〈A〉Tt ), and L(ℓ,t)(LAMTt ) is that
they are closed under permutation of independent actions, which are executed by
distinct sets of processes. We say that two actions γ, γ′ ∈ ΣT ∪Γ are independent
if loc(γ)∩ loc(γ′) = ∅, where loc(〈u,m, v〉) = {u, v} and loc(C) is the set of nodes
of C.

Now, suppose W ∈ L(k,t)(A, T ), which implies W ∈ L(k,t)(LAMTt ). Pick some
ū ∈ V and a maximal, nonempty set I of positions in W that belong to (1) the
first send context of ū, and (2) a nonempty uninterrupted receive context for
each involved adjacent node of ū.

Suppose that the receiving processes are U ⊆ V . Moreover, let C be the cell
induced by U ∪{ū} in T . By reordering of independent actions, W is equivalent
to some word W ′ = γ1 . . . γn ∈ L(k,t)(LAMTt ) such that, for some i ≤ j, the
infix γi . . . γj corresponds to the word induced by the positions I selected in
W . Let s0s1 . . . sn ∈ S∗ be an accepting run of LAMTt on W ′. It follows from
the definitions that si−1

C
==⇒t sj . Thus, s0 . . . si−1sj . . . sn is an accepting run of

LAMTt on W ′′ = γ1 . . . γi−1 C γj+1 . . . γn. Note that W ′′ is (k+1, t)-bounded, since
we possibly split the send context and some receive contexts into two. Now, we
choose the next send context on ū and so on. When there are no more send
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contexts on ū, then we found a word in L(LAMTt ) whose projection to ū consists
of at most k + k · |N | contexts. Moreover, in the projection of each neighbor
of ū, we created at most as many (i.e., k + k · |N |) new contexts. We now pick
another node ū and so on, until all actions from ΣT were transformed into cell
transitions and we end up in a word W ∈ L(LAMTt ) ∩ Γ ∗. Putting everything
together, we obtain that W is (K, t)-bounded for

K = k + (k · |N |) + (|N | · (k + k · |N |)) = k · (|N |2 + 2|N |+ 1) .

The first summand in the term following K is for “old” contexts, the second
summand is for new send contexts, and the third one for new receive contexts
(this is why we have a factor |N |). Finally, since W consists of letters from Γ
only, we have W ∈ LK(〈A〉Tt ). ⊓⊔

B Correctness Proof for Lemma 2

Let K = k · (|N |2 + 2|N | + 1). By Lemma 1, it suffices to show that, for all
acyclic topologies T over N and P, we have T ∈ L(G) iff LK(〈A〉Tt ) 6= ∅.
Assume 〈A〉Tt = (S,=⇒t, ι, F ), and let T = (V, ν, π) be an acyclic topology.

We first show the direction “⇐=”. Let W = C1 . . . Cn ∈ LK(〈A〉Tt ) and
suppose ξ = s0s1 . . . sn is an accepting run of 〈A〉Tt on W . For every i ∈ [n], we
fix a center ūi of Ci. Let us determine a run γ : V → S of G on T . For u ∈ V , we
define γ(u) = (s0

τ1−→ s1
τ2−→ . . .

τK−−→ sK) as follows. First, s0 = ιu. Suppose that
si is the j-th state in s1 . . . sn such that u is a node of Ci = (V ′, ν′, π′). Then,
we let sj = si|u. Moreover, τj = a if ν′(u, a) = ūi. Finally, τj = dom(ν′(u)) if
u = ūi. The sequences are filled up to length K by ε-labels and repeating the
last local state, respectively.

We show that γ is a run of G on T by verifying that, for every u ∈ V ,
the tuple (C, u, ρ) := cell(T , u, γ) is a transition of G. Note that (C, u, ρ) has to
fulfill the properties (a)–(c) in the definition of ∆. Properties (a) and (b) follow
directly from the definition of γ. For (c), the argument goes as follows: for all
i ∈ [K] such that the i-th transition label of ρ(u) is τi ⊆ N , there is j ∈ [n]
such that τi was induced by Cj . Thus, there is a sub-cell D of Cj as required in
property (c).

Now, we show “=⇒”. Let γ : V → S be a run of G on T . This implies that,
for every u ∈ V and every i ∈ [K] such that the i-th transition label of γ(u) is
τ(u,i) ⊆ N , there is a sub-cell D(u,i) fulfilling (c) in the definition of G. Without
loss of generality, we assume that all ε-labels in γ(u) are scheduled at the end.

Let D be the set of these sub-cells D(u,i).
3 Moreover, let g : D× V ⇀ [K] be

a partial mapping that associates with every node v of D(u,i) the corresponding
transition j in γ(v). This mapping is well-defined, as for every n ∈ [K], θ ∈ S,
and a ∈ N , there is at most one step j in θ such that fθ(a, j) = n and τj = a.

3 We rather deal with a multiset. Several sub-cells may be identical, but we will still
distinguish them. In other words, when we write D(u,i), we actually mean (u, i), but
we identify the pair with a cell, since it is convenient.
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Let ⊏ ⊆ D×D be defined as the least strict preorder satisfying D(u,i) ⊏ D(v,j)

whenever D(u,i) and D(v,j) share a node v′ such that g(D(u,i), v
′) < g(D(v,j), v

′).
The restriction to acyclic topologies guarantees that (D,⊏) is actually a (strict)
partial-order relation. Let W = C1 . . . Cn be a linearization of (D,⊏). By in-
duction, we will show that W ∈ L(〈A〉Tt ), which directly implies that W ∈
LK(〈A〉Tt ). As there cannot be a D ∈ D such that D ⊏ C1, we have g(C1, v) = 1
for all v in C1. Let s(u,i) denote the state in γ(u) reached after the i-th step.
Then, there is a transition ι

C1==⇒t (su)u∈V in 〈A〉Tt where

su =

{

s(u,1) if u is a node of C1

ιu otherwise

Now, assume that we constructed, for a strict prefix C1 . . . Cℓ of W , a sequence

of transitions in 〈A〉Tt of the form ι
C1==⇒t . . .

Cℓ==⇒t (su)u∈V . By definition of
(D,⊏) and the assumption that W is a linearization, we have su = s(u,j) for all
nodes u of Cℓ+1 and j = g(Cℓ+1, u) − 1. This implies that there is a transition

(su)u∈V

Cℓ+1

===⇒t (s
′
u)u∈V with

s′u =

{

s(u,j′) if u in Cℓ+1 and j′ = g(Cℓ+1, u)

su otherwise.

Obviously, after treating W completely, we end up in a final state of 〈A〉Tt , which
proves W ∈ L(〈A〉Tt ). We deduce LK(〈A〉Tt ) 6= ∅.
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