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Residual Component Analysis of Hyperspectral

Images—Application to Joint Nonlinear

Unmixing and Nonlinearity Detection
Yoann Altmann, Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE, Steve McLaughlin, Fellow, IEEE,

and Jean-Yves Tourneret, Senior Member, IEEE

Abstract— This paper presents a nonlinear mixing model for
joint hyperspectral image unmixing and nonlinearity detection.
The proposed model assumes that the pixel reflectances are linear
combinations of known pure spectral components corrupted
by an additional nonlinear term, affecting the end members
and contaminated by an additive Gaussian noise. A Markov
random field is considered for nonlinearity detection based on
the spatial structure of the nonlinear terms. The observed image
is segmented into regions where nonlinear terms, if present, share
similar statistical properties. A Bayesian algorithm is proposed
to estimate the parameters involved in the model yielding a joint
nonlinear unmixing and nonlinearity detection algorithm. The
performance of the proposed strategy is first evaluated on
synthetic data. Simulations conducted with real data show the
accuracy of the proposed unmixing and nonlinearity detection
strategy for the analysis of hyperspectral images.

Index Terms— Hyperspectral imagery, nonlinear spectral
unmixing, residual component analysis, nonlinearity detection.

I. INTRODUCTION

S
PECTRAL unmixing (SU) of hyperspectral images has

attracted growing interest over the last few decades.

It consists of distinguishing the materials and quantifying their

proportions in each pixel of the observed image. This blind

source separation problem has been widely studied for the

applications where pixel reflectances are linear combinations

of pure component spectra [1]–[5]. However, as explained in

[6], [7], the linear mixing model (LMM) can be inappropriate

for some hyperspectral images, such as those containing sand,

trees or vegetation areas. Nonlinear mixing models (NLMMs)

provide an interesting alternative to overcoming the inherent
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limitations of the LMM. They have been proposed in the

hyperspectral image literature and can be divided into two

main classes [8].

The first class of NLMMs consists of physical models

based on the nature of the environment. These models include

the bidirectional reflectance based model proposed in [9] for

intimate mixtures associated with sand-like materials and the

bilinear models recently studied in [10]–[13] to account for

scattering effects mainly observed in vegetation and urban

areas. The second class of NLMMs contains more flexible

models allowing for different kinds of nonlinearities to be

approximated. These flexible models are constructed from

neural networks [14], [15], kernels [16], [17], or post-nonlinear

transformations [18].

While the consideration of nonlinear effects can be relevant

in specific areas, the LMM is often sufficient for approxi-

mating the actual mixing models in some image pixels, for

instance in homogeneous regions. Thus, it makes sense to

distinguish in any image, linearly mixed pixels which can be

easily analyzed, from those nonlinearly mixed requiring deeper

analysis. Nonlinearity detection in hyperspectral images has

already been addressed in [19] to detect nonlinear areas

in observed scenes using surrogate data. In previous work,

a pixel-by-pixel nonlinearity detector based on a polyno-

mial post-nonlinear mixing model (PPNMM) was proposed

and provided interesting results [20]. The detector in [20]

follows a PPNMM-based SU procedure and uses the statis-

tical properties of the parameter estimator to subsequently

derive an accurate test statistic. This paper proposes to

simultaneously achieve the SU and nonlinearity detection.

This problem has been recently addressed using sparse

SU techniques based on bilinear [21] and post-nonlinear mod-

els [22], [23]. Conversely, we propose to use a model-selection

approach for detecting nonlinearities with different statistical

properties.

This paper presents a new supervised Bayesian algorithm for

joint nonlinear SU and nonlinearity detection. This algorithm

is supervised in the sense that the endmembers contained

in the image are assumed to be known (chosen from a

spectral library or extracted from the data by an endmember

extraction algorithm (EEA)). This algorithm is based on a

nonlinear mixing model inspired from residual component

analysis (RCA) [24]. In the context of SU of hyperspec-

tral images, the nonlinear effects are modeled by additive



perturbation terms characterized by Gaussian processes (GPs).

This allows the nonlinear terms to be marginalized, yielding

a flexible model depending only on the nonlinearity ener-

gies. The hyperspectral image to be analyzed is partitioned

into homogeneous regions in which the nonlinearities share

the same GP. This algorithm relies on an implicit image

classification, modeled by labels whose spatial dependencies

follow a Potts-Markov random field. Consideration of two

classes (linear vs. nonlinear mixtures) would lead to binary

detection maps. However, this paper allows for nonlinearly

mixed regions to be also identified, based on the energy of the

nonlinear effects. More precisely, the proposed algorithm can

identify regions with different level of nonlinearity and charac-

terized by different GPs. Most SU algorithms assume additive,

independent and identically distributed (i.i.d.) noise sequences.

However, based on previous work conducted on real hyper-

spectral images, non i.i.d. noise vectors are considered in

this paper.

When the endmembers used to estimate the abundances

are accurate, it makes sense to assume that the unknown

abundances sum to one for each pixel (at least when assuming

the LMM). However, this assumption can be relaxed. Two

alternative algorithms are proposed in this paper (with and

without the abundance sum-to-one constraint). However, only

the fully constrained version is detailed for ease of reading.

Details of the second version can be found in [25]. Moreover,

it is also reasonable to assume that the nonlinearities only

involve nonlinear transformations of the known endmembers.

Modeling endmember estimation errors for supervised SU is

an interesting problem that is however out of scope of this

paper and a topic for future investigations.

In the Bayesian framework, appropriate prior distributions

are chosen for the unknown parameters of the proposed RCA

model, i.e., the mixing coefficients, the GP hyperparameters,

the labels and the noise covariance matrix. The joint posterior

distribution of these parameters is then derived. However,

the classical Bayesian estimators cannot be easily computed

from this joint posterior. To alleviate this problem, a Markov

chain Monte Carlo (MCMC) method is used to generate

samples according to the posterior of interest. Finally, the

generated samples are used to compute Bayesian estimators

as well as measures of uncertainties such as confidence

intervals.

The remaining paper is organized as follows. Section II

introduces the RCA model for hyperspectral image analysis.

Section III presents the hierarchical Bayesian model associated

with the proposed RCA model and its posterior distribution.

The Metropolis-Within-Gibbs sampler used to sample from the

posterior of interest is detailed in Section V. Some simulation

results conducted on synthetic and real data are shown and

discussed in Sections VI and VII. Conclusions are finally

reported in Section VIII.

II. PROBLEM FORMULATION

We consider a set of N observed pixel spectra

yn = [yn,1, . . . , yn,L ]T , n ∈ {1, . . . , N} where L is the

number of spectral bands. Each of these spectra is defined

as a linear combination of R known spectra mr , referred to as

endmembers, contaminated by an additional spectrum φn and

additive noise

yn =
R∑

r=1

ar,nmr + φn + en

= Man + φn + en, n = 1, . . . , N (1)

where mr = [mr,1, . . . , mr,L ]T is the spectrum of the r th

material present in the scene, ar,n is its corresponding propor-

tion in the nth pixel and en is an additive independently and

non identically distributed zero-mean Gaussian noise sequence

with diagonal covariance matrix �0 = diag
(
σ 2
)
, denoted as

en ∼ N (0L ,�0), where σ 2 = [σ 2
1 , . . . , σ 2

L ]T is the vector of

the L noise variances and diag
(
σ 2
)

is an L×L diagonal matrix

containing the elements of the vector σ 2. Moreover, the term

φn = [φ1,n, . . . , φL ,n]T in (1) is an unknown L × 1 additive

perturbation vector modeling nonlinear effects occurring in

the nth pixel. Note that the usual matrix and vector notations

M = [m1, . . . , mR ] and an = [a1,n, . . . , aR,n]T have been

used in the second row of Eq. (1). There are several moti-

vations for considering the mixing model (1). First, 1) this

model reduces to the classical linear mixing model (LMM) for

φn = 0L , 2) the model (1) is general enough to handle differ-

ent of kinds of nonlinearities such as the bilinear model studied

in [12] (referred to as Fan model (FM)), the generalized

bilinear model (GBM) [13], and the polynomial post-nonlinear

mixing model (PPNMM) studied for nonlinear spectral unmix-

ing in [18] and nonlinearity detection in [20]. These models

assume that the mixing model consists of a linear contribution

of the endmembers, corrupted by at least one additive term

characterizing the nonlinear effects. In the proposed model,

all additive terms are gathered in the vector φn . Note that a

similar model, called robust LMM, has been also introduced

in [26].

Due to physical considerations, the abundance vec-

tors an satisfy the following positivity and sum-to-one

constraints

R∑

r=1

ar,n = 1, ar,n > 0,∀r ∈ {1, . . . , R}. (2)

In this paper, the sum-to-one constraint is considered for

the abundances. However, this constraint can be relaxed, as

discussed in Section V-F. The problem addressed in this

paper consists of the joint estimation of the abundance

vectors and the detection of nonlinearly mixed pixels

(characterized by φn �= 0L ). The two next sections present the

proposed Bayesian model for joint unmixing and nonlinearity

detection.

III. BAYESIAN LINEAR MODEL

The unknown parameter vector associated with the pro-

posed model (1) contains the abundances A = [a1, . . . , aN ]
(satisfying the constraints (2)), the nonlinear terms of each

pixel
{
φn

}
n=1,...,N

, and the noise variance vector σ 2. This

section summarizes the likelihood and the parameter priors

associated with the parameters of the linear part of the model,



i.e., A = [a1, . . . , aN ] and σ 2. One of the main contributions

of this paper is the characterization of the nonlinearities that

will addressed later in Section IV.

A. Likelihood

Equation (1) shows that yn|M, an,φn, σ 2 is distributed

according to a Gaussian distribution with mean Man + φn

and covariance matrix �0, denoted as yn|M, an,φn, σ
2 ∼

N
(
Man + φn,�0

)
. Assuming independence between the

observed pixels, the joint likelihood of the observation

matrix Y can be expressed as

f (Y|M, A,�, σ 2)

∝ |�0|−N/2etr

[
− (Y − X)T �−1

0 (Y − X)

2

]
(3)

where � = [φ1, . . . ,φN ]T is an L × N nonlinearity matrix,

∝ means “proportional to”, etr(·) denotes the exponential trace

and X = MA + � is an L × N matrix.

B. Prior for the Abundance Matrix A

Each abundance vector can be written as an = [cT
n , aR,n]T

with cn = [a1,n, . . . , aR−1,n]T and aR,n = 1−
∑R−1

r=1 ar,n . The

LMM constraints (2) impose that cn belongs to the simplex

S =
{

c

∣∣∣∣∣cr > 0,∀r ∈ 1, . . . , R − 1,

R−1∑

r=1

cr < 1

}
(4)

To reflect the lack of prior knowledge about the abundances,

we propose to assign noninformative prior distributions for the

N vectors cn . More precisely, the following uniform prior

f (cn) ∝ 1S (cn) , n ∈ {1, . . . , N} (5)

is assigned for each vector cn , where 1S (·) is the indicator

function defined on the simplex S. Assuming prior indepen-

dence between the N abundance vectors {an}n=1,...,N leads to

the following joint prior distribution

f (C) =
N∏

n=1

f (cn) (6)

where C = [c1, . . . , cN ] is an (R − 1) × N matrix.

C. Prior for the Noise Variance Vector σ 2

A noninformative Jeffreys’ prior is chosen for the noise

variance of each spectral band σ 2
ℓ

f (σ 2
ℓ ) ∝ 1

σ 2
ℓ

1R+
(
σ 2

ℓ

)
(7)

which reflects the absence of knowledge for this parame-

ter (see [27] for motivation). Assuming prior independence

between the noise variances, we obtain

f (σ 2) =
L∏

ℓ=1

f
(
σ 2

ℓ

)
. (8)

IV. MODELING THE NONLINEARITIES

We propose in this paper to exploit spatial correlations

between the pixels of the hyperspectral image to be ana-

lyzed. It seems reasonable to assume that nonlinear effects

occurring in a given pixel are related to the nonlinear effects

present in neighboring pixels. Formally, the hyperspectral

image is assumed to be partitioned into K classes denoted as

C0, . . . , CK−1. Let Ik ⊂ 1, . . . , N denote the subset of pixel

indexes belonging to the kth class (k = 0, . . . , K − 1). An

N ×1 label vector z = [z1, . . . , zN ]T with zn ∈ {0, . . . , K −1}
is introduced to identify the class of each image pixel, i.e.,

yn ∈ Ck ⇔ n ∈ Ik ⇔ zn = k. In each class, the unknown

nonlinearity vectors are assumed to share the same statistical

properties, as will be shown in the sequel.

A. Prior Distribution for the Nonlinearity Matrix �

As mentioned above, the mixing model (1) reduces to the

LMM for φn = 0L . For nonlinearity detection, it makes sense

to consider a pixel class (referred to as class C0) corresponding

to linearly mixed pixels. The resulting prior distribution for φn

conditioned upon zn = 0 is given by

f (φn|zn = 0) =
L∏

ℓ=1

δ(φℓ,n). (9)

It can be seen that bilinear models and more generally polyno-

mial models (i.e., model involving polynomials nonlinearities

with respect to the endmembers) are particularly well adapted

to model scattering effects, mainly observed in vegetation and

urban areas. Consequently, it makes sense to assume that

the nonlinearities φn depend on the endmember matrix M.

Nonlinear effects can vary, depending on the relief of the

scene, the underlying components involved in the mixtures

and the observation conditions to name a few factors. This

makes the choice of a single informative prior distribution

challenging. From a classification point of view, it is interest-

ing to identify regions or classes where similar nonlinearities

occur. For these reasons, we propose to divide nonlinearly

mixed pixels into K − 1 classes and to assign different priors

for the nonlinearity vectors belonging to the different classes.

The nonlinearities (of nonlinearly mixed pixels) are assumed

to be random. Assume yn belongs to the kth class. The prior

distribution of the corresponding nonlinear term φn is given

by the following GP (k = 1, . . . , K − 1)

φn |M, zn = k, s2
k ∼ N

(
0L , s2

k K M

)
, (10)

where K M is an L × L covariance matrix parameterized by

the endmember matrix M and s2
k is a scaling hyperparameter

that tunes the energy of the nonlinearities in the kth class.

Note that all nonlinearity vectors within the same class share

the same prior. The performance of the unmixing procedure

depends on the choice of K M, more precisely on the similarity

measure associated with the covariance matrix. In this paper,

we consider the symmetric second order polynomial kernel,

which has received considerable interest in the machine learn-

ing community [28]. This kernel is defined as follows

[K M]i, j =
(
mi,:mT

j,:
)2

, i, j ∈ {1, . . . , L}, (11)



Fig. 1. 4-pixel (left) and 8-pixel (right) neighborhood structures. The
considered pixel appear as a black circle whereas its neighbors are depicted
in white.

where mi,: is an 1 × R vector that denotes the i th row of M.

Polynomial kernels are particularly well adapted to character-

ize multiple scattering effects (modeled by polynomial func-

tions of the endmembers). Note that the parametrization of the

matrix K M in (11) only involves bilinear and quadratic terms1

with respect to the endmembers mr , r = 1, . . . , R. More, pre-

cisely, the matrix K M can be rewritten as K M = Q QT where

Q = [m1 ⊙ m1, . . . , mR ⊙ mR ,
√

2m1 ⊙ m2, . . . ,
√

2mR−1 ⊙
mR] is an L×R(R+1)/2 matrix and ⊙ denotes the Hadamard

(termwise) product. Note also that a polynomial kernel similar

to (11) has been recently considered in [16] and that other

kernels such as the Gaussian kernel could be investigated to

model other nonlinearities as in [24]. As mentioned above,

the endmembers of the scene are assumed to be known in this

paper. Consequently, the proposed nonlinear model does not

involved endmember estimation errors (i.e., missing or poorly

estimated endmembers).

B. Prior Distribution for the Label Vector z

In the context of hyperspectral image analysis, the labels

z1, . . . , zN indicate the pixel classes and take values in

{0, . . . , K − 1} where K is the number of classes and the

set {zn}n=1,...,N forms a random field. To exploit the corre-

lation between pixels, a Markov random field is introduced

as a prior distribution for zn given its neighbors zV(n), i.e.,

f (zn|z\n) = f (zn|zV(n)), where V(n) is the neighborhood

of the nth pixel and z\n = {zn′}n′ �=n . More precisely, this

paper focuses on the Potts-Markov model since it is very

appropriate for hyperspectral image segmentation [29]. Given

a discrete random field z attached to an image with N pixels,

the Hammersley-Clifford theorem yields

f (z) = 1

G(β)
exp

⎡
⎣β

N∑

n=1

∑

n′∈V(n)

δ(zn − zn′)

⎤
⎦. (12)

where β > 0 is the granularity coefficient, G(β) is a normaliz-

ing (or partition) constant and δ(·) is the Dirac delta function.

Several neighborhood structures can be employed to define

V(n). Fig. 1 shows two examples of neighborhood structures.

1Note: it can be shown that (10) and (11) can be obtained by defining φn
as a linear combination of terms mi ⊙ m j (as in [13]) and marginalizing

the corresponding coefficients using a Gaussian prior parameterized by s2
k

.
Marginalizing these coefficients allows the number of unknown parameters to
be significantly reduced, leading to the nonlinearities being characterized by

a single parameter s2
k .

Fig. 2. DAG for the parameter and hyperparameter priors (the fixed
parameters appear in boxes).

The four pixel structure (or 1-order neighborhood) will be

considered in the rest of the paper.

The hyperparameter β tunes the degree of homogeneity of

each region in the image. More precisely, small values of β

yield an image with a large number of regions, whereas large

values of β lead to fewer and larger homogeneous regions.

In this paper, the granularity coefficient is assumed to be

known. Note however that it could be also included within

the Bayesian model and estimated using the strategy described

in [30].

C. Hyperparameter Priors

The performance of the proposed Bayesian model for spec-

tral unmixing mainly depends on the values of the hyperpara-

meters
{
s2

k

}
k=1,...,K

. When the hyperparameters are difficult to

adjust, it is the norm to include them in the unknown parameter

vector, resulting in a hierarchical Bayesian model [18], [31].

This strategy requires the definition of prior distributions for

the hyperparameters.

The following inverse-Gamma prior distribution

s2
k |γ, ν ∼ IG(γ, ν), ∀k ∈ {1, . . . , K } (13)

is assigned for the nonlinearity hyperparameters, where (γ, ν)

are additional parameters that will be fixed to ensure a

noninformative prior for s2
k ((γ, ν) = (1, 1/4) in all simu-

lations presented in this paper). Assuming prior independence

between the hyperparameters, we obtain

f (s2|γ, ν) =
K−1∏

k=1

f (s2
k |γ, ν). (14)

where s2 = [s2
1 , . . . , s2

K ]T.

V. BAYESIAN INFERENCE USING A

METROPOLIS-WITHIN-GIBBS SAMPLER

A. Marginalized Joint Posterior Distribution

The resulting directed acyclic graph (DAG) associated with

the proposed Bayesian model introduced in Sections III and IV

is depicted in Fig. 2.

Assuming prior independence between A, (�, z) and σ 2,

the posterior distribution of (�, θ ) where θ = (C, z, σ 2, s2)



can be expressed as

f (θ,�|Y, M) ∝ f (Y|M, θ,�) f (�|M, z, s2) f (θ),

where f (θ) = f (C) f (σ 2) f (z) f (s2). This distribution can be

marginalized with respect to � as follows

f (θ |Y, M) ∝ f (θ)

∫
f (Y|M, θ ,�) f (�|M, z, s2)d�

∝ f (θ) f (Y|M, θ) (15)

where

f (Y|M, θ) =
∫

f (Y|M, θ ,�) f (�|M, z, s2)d�

∝
K−1∏

k=0

∏

n∈Ik

1

|�k |
1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
(16)

with �0 = diag
(
σ 2
)
, �k = s2

k K M + �0 (k = 1, . . . , K − 1)

and ȳn = yn − Man . The advantage of this marginalization

is to avoid sampling the nonlinearity matrix �. Thus, the

nonlinearities are fully characterized by the known endmember

matrix, the class labels and the values of the hyperparameters

in s2 = [s2
1 , . . . , s2

K ]T.

Unfortunately, it is difficult to obtain closed form expres-

sions for standard Bayesian estimators associated with (15).

In this paper, we propose to use efficient Markov Chain Monte

Carlo (MCMC) methods to generate samples asymptotically

distributed according to (15). The next part of this section

presents the Gibbs sampler which is proposed to sample

according to (15). The principle of the Gibbs sampler is

to sample according to the conditional distributions of the

posterior of interest [32, Chap. 10]. Due to the large number

of parameters to be estimated, it makes sense to use a block

Gibbs sampler to improve the convergence of the sampling

procedure. More precisely, we propose to sample sequentially

the N labels in z, the abundance matrix A, the noise variances

σ 2 and s2 using moves that are detailed in the next paragraphs.

B. Sampling the Labels

For the nth pixel (n ∈ {1, . . . , N}), the label zn is a

discrete random variable whose conditional distribution is fully

characterized by the probabilities

P(zn = k|yn, M, θ \zn ) ∝ f (yn|M, s2, zn = k, an)

× f (zn |z\n),

where θ\zn denotes θ without zn , k = 0, . . . , K − 1 (for K

classes). These posterior probabilities can be expressed as

P(zn = k|yn, M, θ \zn ) ∝ exp

⎡
⎣β

N∑

p=1

∑

p′∈V(p)

δ(z p − z p′)

⎤
⎦

× 1

|�k |
1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
. (17)

Consequently, sampling zn from its conditional distribution

can be achieved by drawing a discrete value in the finite set

{0, . . . , K − 1} with the probabilities defined in (17).

C. Sampling the Abundance Matrix A

Sampling from f (C|Y, M, θ\C) seems difficult due to the

complexity of this distribution. However, it can be shown that

f (C|Y, M, z, σ 2, s2) =
N∏

n=1

f (cn|yn, M, zn, σ 2, s2), (18)

i.e., the N abundance vectors {an}n=1,...,N are a posteriori

independent and can be sampled independently in a parallel

manner. Straightforward computations lead to

cn|yn, M, zn = k, σ 2, s2 ∼ NS (c̄n,�n) (19)

where

�n =
(

M̃T �−1
k M̃

)−1

c̄n = �nM̃T �−1
k ỹn

M̃ = [m1 − mR, . . . , mR−1 − mR] (20)

and ỹn = yn − mR . Moreover, NS(c̄n,�n) denotes the trun-

cated multivariate Gaussian distribution defined on the simplex

S with hidden mean c̄n and hidden covariance matrix �n .

Sampling from (19) can be achieved efficiently using the

method recently proposed in [33].

D. Sampling the Noise Variance σ 2

It can be shown from (15) that

f (σ 2|Y, M, A, z, s2) =
L∏

ℓ=1

f (σ 2
ℓ |Y, M, A, z, s2), (21)

where

f (σ 2
ℓ |Y, M, A, z, s2)

∝ 1

σ 2
ℓ

K−1∏

k=0

∏

n∈Ik

1

|�k |
1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
1R+

(
σ 2

ℓ

)
(22)

Sampling from (22) is not straightforward. In this case, an

accept/reject procedure can be used to update σ 2
ℓ , leading

to a hybrid Metropolis-within-Gibbs sampler. In this paper,

we introduce the standard change of variable δℓ = log(σ 2
ℓ ),

δℓ ∈ R. A Gaussian random walk for δℓ is used to update the

variance σ 2
ℓ . Note that the noise variances are a posteriori inde-

pendent. Thus they can be updated in a parallel manner. The

variances of the L parallel Gaussian random walk procedures

have been adjusted during the burn-in period of the sampler

to obtain an acceptance rate close to 0.5, as recommended in

[34, p. 8].

E. Sampling the Vector s2

It can be shown from (15) that

f (s2|Y, M, A, z, σ 2, γ, ν) =
K−1∏

k=1

f (s2
k |Y, M, A, σ 2, γ, ν),

where

f (s2
k |Y, M, A, σ 2, γ, ν)

∝ f (s2
k |γ, ν)

∏

n∈Ik

1

|�k |
1
2

exp

[
−1

2
ȳT

n �−1
k ȳn

]
. (23)



Algorithm 1 Gibbs Sampling Algorithm

Due to the complexity of the conditional distribution (23),

Gaussian random walk procedures are used in the log-space to

update the hyperparameters {s2
k }k=1,...,K−1 in a parallel manner

(similarly to the noise variance updates). Again, the proposal

variances are adjusted during the burn-in period of the sampler.

The resulting Metropolis-within-Gibbs sampler used to sample

according to the posterior (15) is summarized in Algo. 1.

After generating NMC samples using the procedures detailed

above and removing Nbi iterations associated with the burn-

in period of the sampler (Nbi has been set from preliminary

runs), the marginal maximum a posteriori (MAP) estimator

of the label vector, denoted as ẑMAP, can be computed. The

label vector estimator is then used to compute the mini-

mum mean square error (MMSE) of A conditioned upon

z = ẑMAP. Finally, the noise variances and the hyperparame-

ters {s2
k }k=1,...,K−1 are estimated using the empirical averages

of the generated samples (MMSE estimates).

F. Relaxation of the Abundance Constraints

In this paper, the abundances are assumed to sum to one.

This choice has been motivated by the fact that this constraint

has been widely used for linear and nonlinear mixing models

[12], [13], [16], [18]. However, the sum-to-one constraint can

be removed when considering nonlinear mixtures, as proposed

in [35]. In a Bayesian framework, relaxing the abundance sum-

to-one constraint can be achieved by assigning a different prior

for the abundances. An extension of the proposed algorithm

has been investigated to relax the abundance sum-to-one

constraints. For brevity, the Bayesian model and corresponding

sampler have been omitted in this paper and have been

reported in [25].

VI. SIMULATIONS FOR SYNTHETIC DATA

This section studies the performance of the proposed

algorithm for synthetic hyperspectral images.

A. First Scenario: RCA vs. Linear Unmixing

The performance of the proposed joint nonlinear SU and

nonlinearity detection algorithm is first evaluated by unmixing

a synthetic image of 60 × 60 pixels generated according to

the model (1). The R = 3 endmembers contained in these

images (i.e., green grass, olive green paint and galvanized

steel metal) have L = 207 different spectral bands and have

Fig. 3. Actual (left) and estimated (right) classification maps of the synthetic
image associated with the first scenario.

Fig. 4. Actual noise variances (red) and variances estimated by the RCA-SU
algorithm (blue) for the synthetic image associated with the first scenario.

TABLE I

FIRST SCENARIO: CONFUSION MATRIX (N = 3600 PIXELS)

been extracted from the spectral libraries provided with the

ENVI software [36]. The number of classes has been set

to K = 4, i.e, K − 1 = 3 classes of nonlinearly mixed

pixels. The hyperparameters
{
s2

k

}
k=1,...,3

have been fixed as

shown in Table II, which represents three possible levels of

nonlinearity. For each class, the nonlinear terms have been

generated according to (10). The label map generated with

β = 1.6 is shown in Fig. 3 (left). The abundance vectors

an, n = 1, . . . , 3600 have been randomly generated according

to a uniform distribution over the admissible set defined by

the positivity and sum-to-one constraints. The noise variance

(depicted in Fig. 4 as a function of the spectral bands) have

been arbitrarily fixed using σ 2
ℓ = 10−4

[
2 − sin

(
π

ℓ

L − 1

)]
.

to model a non-i.i.d. (colored) noise. The joint nonlin-

ear SU and nonlinearity detection algorithm, denoted as

“RCA-SU”, has been applied to this data set with NMC = 4000

and Nbi = 2500. Fig. 3 (right) shows that the estimated

label map (marginal MAP estimates) is in agreement with the

actual label map. Moreover, the confusion matrix depicted in

Table I illustrate the performance of the RCA-SU in term of

pixel classification. Table II shows that the RCA-SU provides

accurate hyperparameter estimates and thus can be used to

obtain information about the importance of nonlinearities



TABLE II

FIRST SCENARIO: HYPERPARAMETER ESTIMATION

TABLE III

RNMSEs (×10−2 ): SYNTHETIC IMAGES

in the different regions. Note that the estimation error is

computed using |s2
k − ŝ2

k |/s2
k , where s2

k and ŝ2
k are the actual

and estimated dispersion parameters for the kth class. The

estimated noise variances, depicted in Fig. 4 are also in good

agreement with the actual values of the variances.

The quality of abundance estimation can be evaluated by

comparing the estimated and actual abundance vectors using

the root normalized mean square error (RNMSE) defined in

each class by

RNMSEk =
√√√√ 1

Nk R

∑

n∈Ik

∥∥ân − an

∥∥2
(24)

with Nk = card(Ik) and where an and ân are the actual and

estimated abundance vectors for the nth pixel of the image.

For this scenario, the proposed algorithm is compared with

the classical FCLS algorithm [2] assuming the LMM. Com-

parisons to nonlinear SU methods will be addressed in the next

paragraph (scenario 2). Table III shows the RNMSEs obtained

with the proposed and the FLCS algorithms for this first

data set. These results show that the two algorithms provide

similar abundance estimates for the first class, corresponding

to linearly mixed pixels. For the three nonlinear classes, the

estimation performance is reduced. However, the proposed

algorithm provides better results than the FCLS algorithm that

does not handle nonlinear effects.

B. Second Scenario: RCA vs. Nonlinear Unmixing

1) Data Set: The performance of the proposed joint nonlin-

ear SU and nonlinearity detection algorithm is then evaluated

on a second synthetic image of 60 × 60 pixels containing

the R = 3 spectral components presented in the previous

section. In this scenario, the image consists of pixels generated

according to four different mixing models associated with four

classes (K = 4). The label map generated using β = 1.6 is

shown in Fig. 5(a). The class C0 is associated with the LMM.

The pixels of class C1 have been generated according to the

generalized bilinear mixing model (GBM) [13]

yn =
R∑

r=1

ar,nmr

+
R−1∑

i=1

R∑

j=i+1

γi, j ai,na j,nmi ⊙ m j + en (25)

Fig. 5. Nonlinearity detection for the scenario #2. (a) Actual label

map. (b) log
(∥∥φn

∥∥2
)

. (c) Detection map (PPNMM). (d) Detection map

(RCA-SU).

where n ∈ I1 and the nonlinearity parameters {γi, j } have been

uniformly drawn in [0.5, 1]. The class C2 is composed of pixels

generated according to the PPNMM [18] as follows

yn =
R∑

r=1

ar,nmr

+ b

(
R∑

r=1

ar,nmr

)
⊙
(

R∑

r=1

ar,nmr

)
+ en (26)

where n ∈ I2 and b = 0.5 for all pixels in class C2.

Finally, the class C3 has been generated according to (1) with

s2 = 0.1. For the four classes, the abundance vectors have

been randomly generated according to a uniform distribution

over the admissible set defined by the positivity and sum-to-

one constraints. All pixels have been corrupted by an additive

i.i.d Gaussian noise of variance σ 2 = 10−4, corresponding to

an average signal-to-noise ratio SNR ≃ 30dB. The noise is

assumed to be i.i.d. for a fair comparison with SU algorithms

assuming i.i.d. Gaussian noise. Fig. 5(b) shows the log-energy

of the nonlinearity parameters for each pixel of the image, i.e.,

log
(∥∥φn

∥∥2
)

for n = 1, . . . , 3600. This figure shows that each

class corresponds to a different level of nonlinearity.

2) Unmixing: Different estimation procedures have been

considered for the four different mixing models:

• The FCLS algorithm [2] which is known to have good

performance for linear mixtures (with the regularization

parameter δ set to δ = 105).

• The GBM-based approach [37] which is particularly

adapted for bilinear nonlinearities. The optimization algo-

rithm is stopped when the norm of the difference between

consecutive parameter estimates is smaller than 10−6.

• The gradient-based approach of [18] which is based on

a PPNMM and has shown nice properties for various



TABLE IV

ABUNDANCE RNMSEs (×10−2 ): SCENARIO #2

TABLE V

RES (×10−2 ): SCENARIO #2

nonlinear models. This iterative algorithm is stopped

when the difference of consecutive cost function values

is smaller than 10−12.

• The proposed RCA-SU algorithm which has been

designed for the model in (1). It has been applied to this

data set with NMC = 4000, Nbi = 2500, K = 4 and

β = 1.6.

• Finally, we consider the K-Hype method [16] to com-

pare our algorithm with state-of-the art kernel based

unmixing methods. The kernel used in this paper is the

polynomial, second order symmetric kernel whose Gram

matrix is defined by (11). This kernel provides better

performance on this data set than the kernels studied in

[16] (namely the Gaussian and the polynomial, second

order asymmetric kernels). All hyperparameters of the

K-Hype algorithm have been optimized using preliminary

runs.

Table IV compares the RNMSEs obtained with the SU

algorithms for each class of the second scenario. These results

shows that the proposed algorithm provides abundance esti-

mates similar to those obtained with the LMM-based algorithm

(FCLS) for linearly mixed pixels. Moreover, the RCA-SU

also provides accurate estimates for the three mixing models

considered, which illustrates the robustness of the RCA-based

model regarding model mis-specification.

The unmixing quality is also evaluated by the reconstruction

error (RE) defined as REk =
√∑

n∈Ik

∥∥ŷn − yn

∥∥2
/(Nk L),

where yn is the nth observation vector and ŷn its estimate.

Table V compares the REs obtained for the different classes.

This table shows the accuracy of the proposed model for

fitting the observations. The REs obtained with the RCA-

SU are similar for the four pixel classes. Moreover, the

performance in terms of RE of the proposed algorithm are

similar to the performance of the K-Hype algorithm. Table VI

compares the processing time of the different unmixing

algorithms considered to process the synthetic data of the

TABLE VI

PROCESSING TIME (IN S): SCENARIO #2

second scenario. This table shows that the proposed algorithm

requires a higher computational cost when compared to the

other algorithms, mainly due to the sampling procedure.

However, it is important to note that since the proposed

hybrid Gibbs sampler is highly parallelizable, (i.e., the N

abundance vectors are a posteriori independent and the label

vector can be efficiently updated using two sequential updates

for a 4-pixel neighborhood), it does not suffer from potential

computational burden induced by processing the image pixels

sequentially.

From a reconstruction point of view, the K-Hype and

RCA-SU algorithms provides similar results. However, the

proposed algorithm also provides nonlinearity detection maps.

The PPNMM and RCA-SU algorithms perform similarly in

term of abundance estimation and allow both nonlinearities to

be detected in each pixel. However, the nonlinearities can be

analyzed more deeply using the RCA-SU, as will be shown

in the next part.

3) Nonlinearity Detection: The performance of the pro-

posed algorithm for nonlinearity detection is compared to the

detector studied in [20], which is coupled with the PPNMM-

based SU procedure mentioned above. The probability of false

alarm of the PPNMM-based detection has been set to PFA =
0.05. Fig. 5(c) and (d) show the detection maps obtained

with the two detectors. Both detectors are able to locate the

nonlinearly mixed regions. However, the RCA-SU provides

more homogeneous regions, due to the consideration of spatial

structure through the MRF. Moreover, the proposed algorithm

provides information about the different levels of nonlinearity

in the image thanks to the estimation of the hyperparameters

s2
k associated with the different classes. In this simulation,

we obtain [ŝ2
1 , ŝ2

2 , ŝ2
3 ] = [0.2, 1.3, 10] × 10−2, showing that

nonlinearities of class C1 are less severe than those of class

C2 and that are themselves weaker than those of class C3. The

next section studies the performance of the proposed algorithm

for a real hyperspectral image.

VII. SIMULATIONS FOR A REAL HYPERSPECTRAL IMAGE

A. Data Set

The real image considered in this section was acquired in

2010 by the Hyspex hyperspectral scanner over Villelongue,

France (00°03’W and 42°57’N). L = 160 spectral bands

were recorded from the visible to near infrared with a spatial

resolution of 0.5m. This dataset has already been studied

in [17] and [38] and is mainly composed of forested and

urban areas. More details about the data acquisition and pre-

processing steps are available in [38]. A sub-image of size

180 × 250 pixels is chosen here to evaluate the proposed

unmixing procedure and is depicted in Fig. 6. The scene is

composed mainly of a path and different vegetation species,

resulting in R = 5 endmembers. The spectral signatures of



Fig. 6. Real hyperspectral Madonna data acquired by the Hyspex hyperspec-
tral scanner over Villelongue, France (left) and sub-image of interest (right).

Fig. 7. The R = 5 endmembers estimated by the LMM-based algorithm
[31] for the real sub-image.

Fig. 8. The R = 5 abundance maps estimated by the RCA-SU (left)
and FCLS (middle) algorithms for the Madonna real image (white pixels
correspond to large abundances, contrary to black pixels). Right: Maps of
absolute differences between the FCLS and RCA-SU abundance estimates.

the components have been extracted from the data using the

LMM-based algorithm studied in [31] and are depicted in

Fig. 7.

B. Spectral Unmixing

The proposed algorithm has been applied to this data set

with NMC = 4000 and Nbi = 2500. The number of classes

has been set to K = 5 (one linear class and four nonlinear

classes). The granularity parameter of the label prior (12) has

been fixed to β = 1.6. Fig. 8 shows the abundance maps

estimated by the FCLS algorithm and the proposed method.

The abundance maps estimated by the RCA-SU algorithm

TABLE VII

RECONSTRUCTION ERRORS: REAL IMAGE

Fig. 9. Noise variances estimated by the RCA-SU (red) and the Hysime
algorithm (blue) for the real Madonna image.

Fig. 10. Top: true color image of the scene of interest. Bottom: nonlinearity
detection map obtained with the RCA-SU detector for the Madonna image
(K = 5).

are in good agreement with those estimated by FCLS for

most of the pixels but can differ locally. Table VII shows

that the state-of-the-art and the proposed algorithm provide

similar reconstruction errors. Fig. 9 compares the noise vari-

ance estimated by the RCA-SU for the real image with the

noise variance estimated by the HySime algorithm [39]. This

figure shows that the two algorithms provide similar noise

variance estimates. These results motivate the consideration

of non i.i.d. noise for hyperspectral image analysis since the

noise variances increase for the highest wavelengths. The

simulations conducted on this real dataset show the accuracy

of the proposed RCA-SU in terms of abundance estimation

and reconstruction error, especially for applications where the

noise variances vary depending on the wavelength. Moreover,

it also provides information about the nonlinearities of the

scene.

C. Nonlinearity Detection

Fig. 10 (bottom) shows the detection map (map of zn for

n = 1, . . . , N) provided by the proposed RCA-SU detector for



the real image considered. Due to the consideration of spa-

tial structures, the proposed detector provides homogeneous

regions. Similar structures can be identified in this detection

map and the true color image of the scene [Fig. 10 (top)].

Moreover, the RCA-SU can identify four levels of nonlinearity,

corresponding to [ŝ2
1 , ŝ2

2 , ŝ2
3 , ŝ2

4 ] = [0.004; 0.03; 0.15; 1.54].
The estimated class C4 (white pixels) associated with the

highest level of nonlinearity is mainly located on the path

crossing the image. A second region of average nonlinearity

level associated with the class C3 (light grey pixels) is mainly

located in the pixels containing the first endmember. Finally,

weak nonlinearities (classes C2 and C1) and linear mixtures

(class C0) are located in homogeneous regions of the image.

Additional simulation results conducted with different num-

bers of classes can be found in [25].

VIII. CONCLUSION

We have proposed a new hierarchical Bayesian algorithm

for joint linear/nonlinear spectral unmixing of hyperspectral

images and nonlinearity detection. This algorithm assumed

that each pixel of the image is a linear or nonlinear mixture

of endmembers contaminated by additive Gaussian noise. The

nonlinear mixtures are decomposed into a linear combination

of the endmembers and an additive term representing the

nonlinear effects. A Markov random field was introduced

to promote spatial structures in the image. The image was

decomposed into regions or classes where the nonlinearities

share the same statistical properties, each class being associ-

ated with a level of nonlinearity. Nonlinearities within a same

class were modeled using a Gaussian process parametrized

by the endmembers and the nonlinearity level. Note finally

that the physical constraints for the abundances were included

in the Bayesian framework through appropriate prior distrib-

utions. Due to the complexity of the resulting joint posterior

distribution, a Markov chain Monte Carlo method was investi-

gated to compute Bayesian estimators of the unknown model

parameters.

Simulations conducted on synthetic data illustrated the

performance of the proposed algorithm for linear and nonlinear

spectral unmixing. An important advantage of the proposed

algorithm is its robustness regarding the actual underlying

mixing model. Another interesting property resulting from

the nonlinear mixing model considered is the possibility of

detecting several kinds of linearly and nonlinearly mixed

pixels. This detection can be used to identify the image

regions affected by nonlinearities in order to characterize the

nonlinear effects more deeply. Finally, simulations conducted

with real data showed the accuracy of the proposed unmixing

and nonlinearity detection strategy for the analysis of real

hyperspectral images.

The endmembers contained in the hyperspectral image were

assumed to be known in this work. Of course, the performance

of the algorithm relies on this endmember knowledge. We

think that estimating the pure component spectra present in the

image, jointly with the abundance estimation and the nonlin-

earity detection is an important issue that should be considered

in future work. The number of classes and the granularity of

the scene were assumed to be known in this study. Estimating

these parameters is clearly a challenging issue that is under

investigation. Finally, an extended algorithm has been pro-

posed to estimate the abundances without abundance sum-to-

one constraint, as often considered for images with significant

shadowing effects. Modeling shadow in hyperspectral images

is also a interesting prospect.
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