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Overlapping clustering methods for Networks

Introduction

Because networks are a straightforward formalism for representing interactions between objects of interest, they are used in many scientific fields. For instance, in Biology, regulatory networks allow to describe the regulation of gene expression through transcriptional factors [START_REF] Milo | Network motifs: simple building blocks of complex networks[END_REF], while metabolic networks focus on representing pathways of biochemical reactions [START_REF] Lacroix | Motif search in graphs: pplication to metabolic networks[END_REF]. Besides, the binding procedures of proteins are often described as protein-protein interaction networks [START_REF] Albert | Statistical mechanics of complex networks[END_REF][START_REF] Barabási | Network biology: understanding the cell's functional organization[END_REF]. In social sciences, networks are widely used to represent relational ties between actors [START_REF] Snijders | Estimation and prediction for stochastic block-structures for graphs with latent block structure[END_REF][START_REF] Nowicki | Estimation and prediction for stochastic blockstructures[END_REF][START_REF] Palla | Quantifying social group evolution[END_REF]. Other examples of networks are powergrids [START_REF] Watts | Collective dynamics of small-world networks[END_REF] and the world wide web [START_REF] Zanghi | Fast online graph clustering via erdös renyi mixture[END_REF].

As a network describes the presence or absence of links between objects, the notion of groups of nodes having a similar behavior naturally arises. In some cases, this notion of similarity is even the process from which the network originates. Common affinities will for instance lead to edges in social networks, whereas gene duplication is the main growth process of proteinprotein interaction networks.

The most widely assumed group structure is the partition, where each node does belong to only one group. When dealing with real world applications, this assumption of empty intersections between groups is often too rigid. For instance, so-called moonlighting proteins are known to have several functions in the cells [START_REF] Jeffery | Moonlighting proteins[END_REF]. Considering social networks, it seems also obvious that actors might belong to several groups of interests [START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF]. Thus, exploring structures which allow more complex membership for each node is thus of great practical interest. One possibility consists in considering fuzzy clustering, where each node is allowed to belong to all groups with a fuzzy membership coefficient. Fuzzy clustering assumes that each individual (node) to classify, has its membership coefficients summing to one. This approach is for example the one developed in the Latent Dirichlet Allocation [START_REF] Blei | Latent dirichlet allocation[END_REF] or the Mixed Membership Stochastic Block model [START_REF] Airoldi | Mixed membership stochastic blockmodels[END_REF]. A less stringent alternative consist in considering that each individual belongs to each group entirely or not at all.

In this chapter, we propose to give an overview of the methods using the latter approach, that is retrieving group memberships of nodes based on their connectivity pattern, the memberships of each node being summarized in a {0, 1}-vector. The first section introduces the notion of network and the characteristics of real networks one should have in mind when building models. The second section deals with the partitioning of nodes, that is methods assigning each vertex to exactly one group. The last section presents generalizations of those methods which allow overlapping groups of nodes.

Networks and their characteristics

Network representations

A network is commonly represented by a graph G =( V, E)w h e r eV is a set of N vertices and E is a set of edges between pairs of vertices. The graph is said to be directed (Figure 1.1) if the pairs (u, v)inE are ordered. Conversely, unordered pairs form an undirected graph (Figures 1.2 and 1.3). Note that the edges can be weighted by a function w : E ! F for any set F. However, we will concentrate only on binary graphs, that is F = {0, 1}. The size of G is then given through the edge count m = |E|. The graph is said to be dense if m is close to the maximal number M of edges whereas a low value of m leads to a sparse graph. To characterize the density of G, a criterion δ(G)i s often used. It is defined as the ratio of the number m of existing edges over the number M of potential edges:

δ(G)= m M .
For a directed graph, M = N 2 while M = N (N +1)/2 otherwise. If G does not contain any self loop, that is an edge from a vertex to itself, then M = N (N -1) for a directed graph and M = N (N -1)/2 otherwise. The neighbourhood N G (u) of vertex u is defined as the set of all the vertices connected to u. Its degree d(u) is equal to its number of incident edges. Finally, a path from a vertex u to a vertex v is a sequence of edges in E starting at vertex v 0 = u and ending at vertex

v k+1 = v: {u, v 1 }, {v 1 ,v 2 },...,{v k ,v}.
If there exists at least one path between every pair of vertices then the graph is said to be connected. For instance, the graph in Figure 1.1 is connected contrary to the graphs in Figures 1.2 and 1.3 which have some isolated vertices.

A network can equivalently be represented by a so-called adjacency matrix X, which describes the presence or absence of an edge in a graph. As mentioned already, we focus on binary graphs and therefore X is in {0, 1} N ⇥N . Thus, if there exists an edge from vertex i to vertex j then X ij equals 1 and 0 otherwise. If the network is undirected, the matrix is symmetric, i.e. X ij and X ji are equals. Non-zero entries of the diagonal correspond to self-loops. Every property of a graph can be interpreted in terms of its adjacency matrix. The degree of a vertex is for instance the sum of the row or the column corresponding to it, or the fact that two vertices (i, j) are in different connected compounds is equivalent to (X k ) ij = 0 for all power 1  k  N .

Properties of real networks

Very interestingly, most real networks have been shown to share some properties [START_REF] Albert | Diameter of the world-wide web[END_REF][START_REF] Broder | Graph structure in the web[END_REF][START_REF] Dorogovtsev | Structure of growing networks with preferential linking[END_REF][START_REF] Amaral | Classes of smallworld networks[END_REF][START_REF] Strogatz | Exploring complex networks[END_REF] that we briefly recall in the following.

• Sparsity: The number of edges is linear in the number of vertices. In other terms, the mean degree remains bounded when N grows, implying that the density tends to 0.

• Existence of a giant component: Real networks are often disconnected. However, a majority of the vertices are contained in a same component, the other components being significantly smaller.

FIGURE 1.1

Subset of the yeast transcriptional regulatory network [START_REF] Milo | Network motifs: simple building blocks of complex networks[END_REF]. Nodes of the directed network correspond to genes, and two genes are linked if one gene encodes a transcriptional factor that directly regulates the other gene.

• Degree heterogeneity: A few vertices have a lot of connections while most of the vertices have very few links. The degrees of the vertices are sometimes characterized using a scale free distribution [for instance see 9].

• Small world: The shortest path from one vertex to another is generally rather small, typically of size O(log N ).

All the properties listed above can be verified through easy computable statistics which are the degrees and the paths of length at most N . As they are key properties in the interpretation of real network behaviors with respect to information diffusion [START_REF] Pastor-Satorras | Epidemic spreading in scale-free networks[END_REF] or attack tolerance [START_REF] Albert | Error and attack tolerance of complex networks[END_REF], they have to be taken into account when proposing random graph models to describe networks.

Most of the real networks exhibit another property, which is the one of interest in this chapter, namely an underlying group structure. This means that nodes can be spread into classes having similar connectivity patterns. In order to retrieve such structures, statistical and algorithmic tools have been developed.

FIGURE 1.2

The metabolic network of bacteria Escherichia coli [START_REF] Lacroix | Motif search in graphs: pplication to metabolic networks[END_REF]. Nodes of the undirected network correspond to biochemical reactions, and two reactions are connected if a compound produced by the first one is a part of the second one (or vice-versa).

FIGURE 1.3

Subset of the french political blogosphere network. The data consists of a single day snapshot of political blogs automatically extracted on 14th october 2006 and manually classified by the "Observatoire Présidentielle project" [START_REF] Zanghi | Fast online graph clustering via erdös renyi mixture[END_REF]. Nodes correspond to hostnames and there is an edge between two nodes if there is a known hyperlink from one hostname to another (or vice-versa).

Graph clustering

We concentrate in this section on the classification of vertices depending on their connection profiles. There has been a wealth of literature on the topic which goes back to the earlier work of [START_REF] Moreno | Who shall survive?: a new approach to the problem of Human interrelations[END_REF]. As shown in [START_REF] Newman | Mixture models and exploratory analysis in networks[END_REF], it appears that available methods can be grouped into three significant categories. First, some models look for community structure, also called assortative mixing [START_REF] Newman | Mixing patterns in networks[END_REF][START_REF] Danon | Comparing community structure identification[END_REF], where vertices are partitioned into classes such that vertices of a class are mostly connected to vertices of the same class. Other models look for disassortative mixing in which vertices mostly connect to vertices of different classes. They are commonly used to analyze bipartite networks [START_REF] Estrada | Spectral measures of bipartivity in complex networks[END_REF]. Finally, a few procedures look for heterogeneous structure where vertices can have different types of connection profiles. In particular, they can be used to uncover both community structure and disassortative mixing.

In this section, we describe some of the most widely used graph clustering methods. Note that many model free approaches exist [START_REF] Fortunato | Community detection in graphs[END_REF]. However, except for the algorithmic approach presented in Section 1.3.1, we concentrate in the following on methods which rely on statistical models only.

Community structure

Most graph clustering methods aim at detecting community structure, also called assortative mixing, meaning the appearance of densely connected groups of vertices, with only sparser connections between groups (Figure 1.4). Most of them rely on the modularity score of [START_REF] Newman | Finding and evaluating community structure in networks[END_REF]. However, we point out the recent work of [START_REF] Bickel | A non parametric view of network models and newman-girvan and other modularities[END_REF] who showed that these algorithms are (asymptotically) biased and that using modularity scores could lead to the discovery of an incorrect community structure, even for large graphs.

Modularity score

Newman and Girvan [START_REF] Girvan | Community structure in social and biological networks[END_REF][START_REF] Newman | Finding and evaluating community structure in networks[END_REF] proposed several intuitive community detection algorithms which involve iterative removal of edges from the network to split it into communities. Edges to be removed are identified using one of a number of possible betweenness measures. All of them are based on the same idea. If two communities are joined by only a few inter community edges, then all paths from vertices in one community to vertices in the other must pass along one of those few edges. Therefore, given a suitable set of paths, we expect the number of paths that go along an edge to be largest for inter community edges.

First, they introduced the edge betweenness which is a generalization to edges of the vertex betweenness measure of [START_REF] Freeman | A set of measures of centrality based upon betweenness[END_REF]. The edge betweenness of an edge is defined as the number of shortest paths between all pairs of vertices in the network that run along that edge. Second, they considered the random

FIGURE 1.4
Example of an undirected affiliation network with 50 vertices. The network is made of three communities represented in red, blue, and green. Vertices connect mainly to vertices of the same community. walk betweenness. The expected number of times a random walk between a particular pair of vertices will pass down a particular edge is calculated. This expected value is then summed over all pairs of vertices to obtain the random walk betweenness of the edge. As shown in [START_REF] Newman | Finding and evaluating community structure in networks[END_REF], other scores can obviously be considered to obtain algorithms that may be more appropriate for some applications. However, it appears that the choice of measure does not highly influence the result of the algorithms. On the other hand, the recalculation step after each edge removal is crucial (see Algorithm 1).

All these algorithms produce a dendrogram (Figure 1.5) which represents an entirely nested hierarchy of possible community divisions for the network. In order to select one of these divisions, [START_REF] Newman | Finding and evaluating community structure in networks[END_REF] proposed a modularity criterion. Consider a particular division with Q communities and let us denote e ql the fraction of all edges in the network that link vertices in community q to vertices in community l. Moreover, consider the fraction a q = P Q l=1 e ql of edges that connect to vertices of community q. The modularity criterion is then given by:

Q mod = Q X q=1 (e qq -a 2 q ). (1.1)
The criterion is computed for all the divisions, and a division is chosen such that the modularity is maximized. Note that modularity can be generalized to both directed and valued graphs [START_REF] Fortunato | Community detection in graphs[END_REF].

A limiting factor of these community detection algorithms is their poor scaling with the number m of edges and the number N of vertices in the net-work. For instance calculating the shortest paths between a particular pair of vertices can be done in O(m) [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF][START_REF] Cormen | Introduction to algorithms[END_REF]. Because they are O(N 2 ) vertex pairs, the computational cost to compute all the edge betweenness scores is in O(mN 2 ). This complexity was improved independently by [START_REF] Newman | Scientific collaboration networks: Ii. shortest paths, weighted networks, and centrality[END_REF] and [START_REF] Brandes | A faster algorithm for betweenness centrality[END_REF] finding all betweennesses in O(mN ). Since this calculation has to be repeated for the removal of each edge, the entire algorithm runs in worst-case time O(m 2 N ). In other words, for dense networks, where m is in O(N 2 ), it runs in O(N 5 )while it scales in O(N 3 ) for sparse networks, where m is linear in N . Rather than building the complete dendrogram (with edge removals) and then choosing the optimal division using the modularity criterion, [START_REF] Newman | Fast algorithm for detecting community structure in networks[END_REF] suggested to focus directly on the optimization of the modularity. Thus, he proposed an algorithm which falls in the general category of agglomerative hierarchical clustering methods [START_REF] Everitt | Cluster analysis[END_REF][START_REF] Scott | Social network analysis: a handbook[END_REF]. Starting with a configuration in which each vertex is the sole member of one of N communities, the communities are iteratively joined together in pairs, choosing at each step the join that results in the greatest increase (or smallest decrease) in mod (1.1). Again, this leads to a dendrogram for which the best cut is chosen by looking for the maximal value of the modularity. The computational cost of the entire algorithm is in O ((m + N )N ), or O(N 3 ) for dense networks and O(N 2 ) for sparse networks. It was shown to be capable of handling a collaboration network with 50000 vertices in [START_REF] Newman | Fast algorithm for detecting community structure in networks[END_REF].

Latent position cluster model

An alternative approach for community detection in networks is the Latent Position Cluster Model (LPCM) of [START_REF] Handcock | Model-based clustering for social networks[END_REF]. Consider a N ⇥ N binary adjacency matrix X such that X ij equals 1 if there is an edge from vertex i to vertex j, and 0 otherwise. Moreover, let us define Y a covariate information where Y ij denotes some observed characteristics about the pair (i, j) of vertices. This might represent for instance the traffic information of users from blog i to blog j in a blogosphere network (see Figure 1.3). Several characteristics can possibly be observed for each pair of vertices and therefore Y ij can be vector valued. Note that a few other random graph models have been proposed in the literature to take covariates into account [see for instance 60, 39]. They will not be considered in this chapter where we consider vertices clustering by using the network topology only. Here, we describe LPCM in a general setting, as in Dendrogram of a network with 50 vertices for the community detection algorithm with edge betweenness. It should be read from top to bottom. The algorithm starts with a single community which contains all the vertices. Edges with the highest edge betweenness are then removed iteratively splitting the network into several communities. After convergence, each vertex, represented by a leaf of the tree, is a sole member of one of the 50 communities. [START_REF] Handcock | Model-based clustering for social networks[END_REF], and emphasize that the algorithm can also be used if Y is not available, simply by removing the terms in Y ij in the following expressions.

LPCM assumes that the network does not contain any self loop while both directed and undirected relations can be analyzed. It is assumed that each vertex, usually called actor in social sciences, has an unobserved position in a d dimensional Euclidean latent space as in [START_REF] Hoff | Latent space approaches to social network analysis[END_REF]. Given the latent positions and the covariate information, the edges are assumed to be drawn from a Bernoulli distribution:

X ij | Z i , Z j , Y ij ⇠ B g(a Zi,Zj ,Yij ) .
The function g(x)=( 1+e -x ) -1 is the logistic sigmoid function. Moreover a Zi,Zj ,Yij is given by:

a Zi,Zj ,Yij = Y | ij β 0 -β 1 | Z i -Z j |, (1.2) 
where β 0 as the same dimensionality as Y ij and β 1 is a scalar. Both β 0 and β 1 are unknown parameters to be estimated. To represent clustering, the positions are assumed to be drawn from a finite mixture of Q multivariate normal distributions, each one representing a different class of vertices. Each multivariate distribution has its own mean vector as well as spherical covariance matrix:

Z i ⇠ Q X q=1 ↵ q N (µ q , σ 2 q I),
and α denotes a vector of class proportions which satisfies ↵ q > 0, 8q and P Q q=1 ↵ q = 1. Finally, according to LPCM, the latent positions Z 1 ,...,Z N are iid and given this latent structure, all the edges are supposed to be independent. Consider now the second term on the right hand side of (1.2). By construction, if β 1 is positive, we expect the L 1 distance | Z i -Z j | to be smaller if vertices i and j are in the same class. In other words, the probability g(a Zi,Zj ,Yij ) of an edge between i and j is supposed to be higher for vertices sharing the same class. Note that this corresponds exactly to the definition of a community.

[30] proposed a two-stage maximum likelihood approach and a Bayesian algorithm, as well as a BIC criterion to estimate the number of latent classes. The two-stage maximum likelihood approach first maps the vertices in the latent space and then uses a mixture model to cluster the resulting positions. In practice, this procedure converges more quickly but looses some information by not estimating the positions and the cluster model at the same time. Conversely, the Bayesian algorithm (see Figure 1.6), based on Markov Chain Monte Carlo, estimates both the latent positions and the mixture model parameters simultaneously. It gives better results but is time consuming. Both the maximum likelihood and the Bayesian approach are limited in the sense that they can handle networks with a few hundreds of vertices only. Directed network of social relations between 18 monks in an isolated American monastery [START_REF] Sampson | Crisis in a cloister[END_REF][START_REF] White | Social structure from multiple networks. i. blockmodels of roles and positions[END_REF]. Sampson collected sociometric information using interviews, experiments, and observations. This network focus on the relation of "liking". A monk is said to have a social relation of "like" to another monk if he ranked that monk in the top three monks for positive affection in any of the three interviews given. The positions of the vertices in the two data dimensional latent space have been calculated using the Bayesian approach for LPCM. The position of the three class centers found are indicated as well as circles with radius equal to the square root of the class variances estimated.

Heterogeneous structure

So far, we have seen some algorithms to uncover communities. However, some vertices may be grouped while exhibiting connection patterns different from a dense group poorly linked to the rest of the network. In genetic regulatory networks, transcription factors co-regulating some biological process may for example not be linked one to each other but act jointly on the regulated genes. Some other approaches which can look for heterogeneous structure in networks, where vertices can have different types of connection profiles, have therefore been developed.

Hofman and Wiggins' model

Let us consider a binary adjacency matrix X representing a network G.T h e model of Hofman and Wiggins [START_REF] Hofman | A bayesian approach to network modularity[END_REF] associates to each vertex of the network a latent variable Z i drawn from a multinomial distribution:

Z i ⇠ M (1, α =(↵ 1 ,...,↵ Q )) . (1.3) 
As in other standard mixture models, the vector Z i has all its components set to zero except one such that Z iq equals 1 if vertex i belong to class q.T h u s , P Q q=1 Z iq =1, 8i and the vector α satisfies ↵ q > 0, 8q as well as

P Q q=1 ↵ q = 1.
The edges are then assumed to be drawn from a Bernoulli distribution:

X ij ⇠ B(λ),
if vertices i and j are in the same class, that is Z i = Z j , and

X ij ⇠ B(✏),
otherwise. Thus, the model is able to take into account both community structure (λ > ✏) (Figure 1.4) and disassortative mixing (λ < ✏) (Figure 1.7). As in the previous section, given the latent variables Z 1 ,...,Z N , all the edges are supposed to be independent. In order to estimate the posterior distribution p(Z, α, λ, ✏| X) over the latent variables and model parameters, [START_REF] Hofman | A bayesian approach to network modularity[END_REF] used a variational Bayes Expectation Maximization (EM) algorithm with a factorized distribution:

q(Z, α, λ, ✏)=q(α)q(λ)q(✏) N Y i=1 q(Z i ).
Moreover, they proposed a model selection criterion to estimate the number of latent classes in networks. It relies on a variational approximation of the marginal log-likelihood log p(X) and has shown promising results.

Stochastic block models

Originally developed in social sciences, the Stochastic Block Model (SBM) is a probabilistic generalization [START_REF] Fienberg | Categorical data analysis of single sociometric relations[END_REF][START_REF] Holland | Stochastic blockmodels: some first steps[END_REF] of the method described in [START_REF] White | Social structure from multiple networks. i. blockmodels of roles and positions[END_REF]. Given

FIGURE 1.7

Example of an undirected network with 20 vertices. The connection probabilities between the two classes in red and green are higher than the intra class probabilities. Vertices connect mainly to vertices of a different class. a network, it assumes that each vertex belongs to a hidden class among Q classes and uses a matrix Π to describe the intra and inter connection probabilities [START_REF] Frank | Cluster inference by using transitivity indices in empirical graphs[END_REF]. No assumption is made on the form of the connectivity matrix such that very different structures can be taken into account. In particular, SBM can characterize the presence of hubs which make networks locally dense [START_REF] Daudin | A mixture model for random graphs[END_REF]. Moreover and to some extent, it generalizes many of the existing graph clustering techniques, as shown in [START_REF] Newman | Mixture models and exploratory analysis in networks[END_REF]. For instance, the model of Hofman and Wiggins can be seen as a constrained SBM where the diagonal of Π is set to λ and all the other elements to ✏.

Formally, SBM considers a latent variable Z i , drawn from a multinomial distribution (1.3), for each vertex in the network, as in section 1.3.2.1. Thus, each vertex belongs to a single class, and that class is q if Z iq equals 1. The edges are then assumed to be drawn from a Bernoulli distribution:

X ij |Z iq Z jl =1⇠ B(⇡ ql ),
where Π is a Q ⇥ Q matrix of connection probabilities. Again, given all the latent variables, the edges are supposed to be independent. Note that SBM was originally described in a more general setting [START_REF] Nowicki | Estimation and prediction for stochastic blockstructures[END_REF], allowing any discrete relational data. However, as explained in Section 1.2.1, we concentrate in the following on binary edges only.

The identifiability of the parameters in SBM was studied by [START_REF] Allman | Identifiability of parameters in latent structure models with many observed variables[END_REF][START_REF] Allman | Parameters identifiability in a class of random graph mixture models[END_REF], who showed that the model is generically identifiable up to a permutation of the classes. In other words, except in a set of parameters which has a null Lebesgue's measure, two parameters imply the same random graph model if and only if they differ only by the ordering of the classes.

Many methods have been proposed in the literature to jointly estimate SBM model parameters and cluster the vertices of the network. They all face the same difficulty. Indeed, contrary to many mixture models, the conditional distribution of all the latent variables Z and model parameters, given the observed data X, can not be factorized due to conditional dependency. Therefore, optimization techniques such as the Expectation Maximization (EM) algorithm can not be used directly. In the case of SBM, [START_REF] Nowicki | Estimation and prediction for stochastic blockstructures[END_REF] proposed a Bayesian probabilistic approach. They introduced some prior Dirichlet distributions for the model parameters and used Gibbs sampling to approximate the posterior distribution over the model parameters and posterior predictive distribution. Their algorithm is implemented in the software BLOCKS, which is part of the package StoCNET [13]. It gives accurate a posteriori estimates but can not handle networks with more than 200 vertices. [START_REF] Daudin | A mixture model for random graphs[END_REF] proposed a frequentist variational EM approach for SBM which can handle much larger networks and developed an Integrated Classification Likelihood (ICL) criterion for the model selection. [START_REF] Latouche | Overlapping stochastic block model with application to the french political blogosphere[END_REF] adapted it in a Bayesian framework, yielding an algorithm which retrieves better small classes and does the model selection with a non-asymptotic criterion. Online strategies have also been developed [START_REF] Zanghi | Fast online graph clustering via erdös renyi mixture[END_REF] as well as extensions to deal with discrete or continuous edges [START_REF] Mariadassou | Uncovering latent structure in valued graphs: a variational approach[END_REF].

Overlapping clustering

As mentioned previously, most graph clustering methods suffer from the restriction they impose by requiring that each vertex belongs to exactly one class. We present in this section some algorithmic and statistical adaptations of the existing clustering methods which tackle this issue. We focus here on the methods assigning to each vertex a vector of {0, 1} Q ,w h e r eQ denotes the number of classes. In other terms, each individual belongs completely to all groups it participates in. Methods using vectors of coefficients summing to 1 and giving the relative importance of each class in the individual behavior have also been developed [START_REF] Blei | Latent dirichlet allocation[END_REF][START_REF] Airoldi | Mixed membership stochastic blockmodels[END_REF] and are more detailed in Chapter ???.

Algorithmic approaches

The issue of overlapping clustering has received growing attention in the last few years, starting with an algorithmic approach based on Clique Percolation developed by [START_REF] Palla | Uncovering the overlapping community structure of complex networks in nature and society[END_REF] and implemented in the software CFinder [START_REF] Palla | CFinder, the community cluster finding program[END_REF]. In this approach, a k-clique community is defined as the union of all k-cliques (complete sub-graphs of size k) that can be reached from each other through a series of adjacent1 k-cliques. Given a network, the algorithm first locates all cliques and then identifies the communities using a clique-clique overlap matrix [START_REF] Everett | Analyzing clique overlap[END_REF]. By construction, the resulting communities can overlap. In order to select the optimal value of k, the authors suggested a global criterion which looks for a community structure as highly connected as possible. Small values of k leads to a giant community which smears the details of a network by merging small communities. Conversely, when k increases, the communities tend to become smaller, more disintegrated, but also more cohesive. Therefore, they proposed a heuristic which consists in running their algorithm for various values of k and then to select the lowest value such that no giant community appears.

Shen et al. [START_REF] Shen | Detect overlapping and hierarchical structure in networks[END_REF] adapted the classification method of Girvan and Newman to overlapping clusters in a method called EAGLE. To do so, they first build a bottom-up dendrogram by starting from some well-chosen and possibly overlapping maximal cliques. At each step, a distance is computed for every pair of communities, based on the proportion of edges linking those communities. The two nearest ones are then merged. The cut level of the dendrogram is chosen according to a generalization of the modularity to overlapping communities, namely:

Q ov = 1 2m X q X ij 1 O i O j X ij - k i k j 2m δ(C i ,C j ),
where O i is equal to the number of communities i belongs to. It can be shown that if all O i 's are equal to 1, this expression is equal to the modularity defined in Equation 1.1. The contribution of each edge then decreases when its incident vertices belong to several communities. However, those algorithmic procedures are limited to the detection of communities. Statistical tools are then needed to find overlapping heterogeneous structures.

Overlapping stochastic block model

Let us now investigate the adaptation of the Stochastic Block Model to overlapping classes. The hidden structure can no longer be a mixture model, so the constraints P q Z iq = 1 and P q ↵ q = 1 present in SBM are relaxed. Thus a new latent vector Z i is introduced for each vertex i of the network. This vector is composed from Q independent Boolean variables Z iq 2 {0, 1},dra wn from a multivariate Bernoulli distribution:

Z i ⇠ Q Y q=1 B(Z iq ; ↵ q )= Q Y q=1 ↵ Ziq q (1 -↵ q ) 1-Ziq . (1.4)
We point out that Z i can also have all its components set to zero which is a useful feature in practice as we shall see in section 1.4.2.2. The edge probabilities are then given by:

X ij | Z i , Z j ⇠ B X ij ; g(a Zi,Zj ) = e Xij aZ i ,Z j g(-a Zi,Zj ), where a Zi,Zj = Z | i WZ j + Z | i U + V | Z j +W ⇤ , (1.5) 
and g(x)=( 1+e -x ) -1 is the logistic sigmoid function. W is a Q ⇥ Q real matrix whereas U and V are Q-dimensional real vectors. The first term in the right-hand side of (1.5) describes the interactions between the vertices i and j.I fi belongs only to class q and j only to class l, then only one interaction term remains (Z | i WZ j = W ql ). However, the model can take more complex interactions into account if one or both of these two vertices belong to multiple classes (Figure 1.8). Note that the second term in (1.5) does not depend on Z j . It models the overall capacity of vertex i to connect to other vertices. By symmetry, the third term represents the global tendency of vertex j to receive an edge. These two parameters U and V are related to the sender/receiver effects δ i and γ j in the Latent Cluster Random Effects Model (LCREM) of [START_REF] Krivitsky | Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models[END_REF]. However, contrary to LCREM, δ i = Z | i U and γ j = V | Z j depend on the classes. In other words, two different vertices sharing the same classes, will have exactly the same sender/receiver effects, which is not the case in LCREM. Finally, we use the scalar W ⇤ as a bias, to model sparsity.

If we associate to each latent variable Z i a vector Zi = Z i , 1 | , then (1.5) can be written:

a Zi,Zj = Zi | W Zj , (1.6) where W 
= ✓ WU V | W ⇤ ◆ .
The Zi(Q+1) s can be seen as random variables drawn from a Bernoulli distribution with probability ↵ Q+1 = 1. Thus, one way to think about the model is to consider that all the vertices in the graph belong to a (Q + 1)-th cluster which is overlapped by all the other clusters. In the following, we will use (1.6) to simplify the notations. Finally, given the latent structure Z = {Z 1 ,...,Z N }, all the edges are supposed to be independent. Thus, when considering directed graphs without self-loop, the Overlapping Stochastic Block Model (OSBM) is defined through the following distributions:

p(Z | α)= N Y i=1 Q Y q=1 ↵ Ziq q (1 -↵ q ) 1-Ziq , (1.7) 
and

p(X | Z, W)= N Y i6 =j
e Xij aZ i ,Z j g(-a Zi,Zj ).

The graphical model of OSBM is given in Figure 1.9.

Modeling sparsity

As mentioned in 1.2, real networks are often sparse and it is crucial to distinguish the two sources of non-interaction. Sparsity might be the result of the rarity of interactions in general but it might also indicate that some class (intra or inter ) connection probabilities are close to zero. For instance, social networks are often made of communities where vertices are mostly connected to vertices of the same community. This corresponds to classes with high intra connection probabilities and low inter connection probabilities. In (1.5), we can notice that W ⇤ appears in a Zi,Zj for every pair of vertices. Therefore, W ⇤ is a convenient parameter to model the two sources of sparsity. Indeed, low values of W ⇤ result from the rarity of interactions in general, whereas high values signify that sparsity comes from the classes (parameters in W, U and V).

Modeling outliers

When applied on real networks, graph clustering methods often lead to giant classes of vertices having low output and input degrees [START_REF] Daudin | A mixture model for random graphs[END_REF][START_REF] Latouche | Bayesian methods for graph clustering[END_REF]. These classes are usually discarded and the analysis of networks focus on more highly structured classes to extract useful information. The product of Bernoulli distributions (1.7) provides a natural way to encode these "outliers". Indeed, rather than using giant classes, OSBM uses the null component such that Z i = 0 if vertex i is an outlier and should not be classified in any class.

Identifiability

As in the case of the SBM, reordering the Q classes of the OSBM and doing the corresponding modification in α and W does not change the generative random graph model. There is another family of operations which does not change the generative random graph model, which we call inversions. They correspond to fix a subset S ⇢ {1,...,Q} and to exchange the labels 0 to 1 and vice-versa on the coordinates of the Z i 's included in S. To give an intuition, let us consider the inversion with S = {1}. If we denote by "cluster 1" the vertices whose Z i 's have a 1 as first coordinate, the initial graph sampling procedure consists in sampling the set "cluster 1" and then drawing the edges conditionally on that information. After the inversion, it samples the vertices which are not in "cluster 1" and draws the edges conditionally on that information, which is an equivalent procedure.

As shown in [START_REF] Latouche | Overlapping stochastic block model with application to the french political blogosphere[END_REF], the OSBM is generically identifiable up to permutations of the classes and inversions. In other words, except in a set of parameters which has a null Lebesgue's measure, two parameters imply the same random graph model if and only if the second can be obtained from the first by a permutation and an inversion.

Parameter estimation

The log-likelihood of the observed data set is defined through the marginalization: p(X | α, W)= P Z p(X, Z |↵, W). This summation involves 2 NQ terms and quickly becomes intractable. To tackle this issue, the EM algorithm has been applied on many mixture models. However, the E-step requires the calculation of the posterior distribution p(Z | X, α, W) which cannot be factorized in the case of networks [START_REF] Daudin | A mixture model for random graphs[END_REF]. In order to obtain a tractable procedure, some approximations based on global and local variational techniques have to be done.

The global variational technique consists in considering, for any distribution q(Z), the decomposition

log p(X | α, W)=L ML (q; α, W)+KL ⇣ q(•) || p(•| X, α, W) ⌘ , (1.8) 
where

L ML (q; α, W)= X Z q(Z) log ( p(X, Z | α, W) q(Z) ) , (1.9) 
and KL(•||•) is the Kullback-Leibler divergence. The maximum log p(X | α, W) of the lower bound L ML (1.9) is reached when q(Z)=p(Z | X, α, W). Thus, if the posterior distribution p(Z | X, α, W) was tractable, the optimizations of L ML and log p(X | α, W), with respect to α and W, would be equivalent. However, in the case of networks, p(Z | X, α, W) cannot be calculated and L ML cannot be optimized over the entire space of q(Z) distributions. Thus, the optimisation is restricted to the class of distributions which satisfy:

q(Z)= N Y i=1 q(Z i ), (1.10) 
with

q(Z i )= Q Y q=1 B(Z iq ; ⌧ iq ) = Q Y q=1 ⌧ Ziq iq (1 -⌧ iq ) 1-Ziq .
Each ⌧ iq is a variational parameter which corresponds to the posterior probability of node i to belong to class q. This global variational approximation is sufficient to obtain a tractable problem in the case of SBM. Unfortunately, in the case of OSBM, a term E Zi,Zj [log g(-a Zi,Zj )] appears when writing down the complete formula of L ML (q). Since the logistic sigmoid function is non linear, it cannot be computed analytically. Thus, we need a second level of approximation to optimize the lower bound of the observed data set. It consists in considering again a lower bound and new parameters such that the bound is tight for the optimal values of the parameters.

More precisely, given a variational parameter ⇠ ij ,E Zi,Zj [log g(-a Zi,Zj )] satisfies:

E Zi,Zj [log g(-a ij )] ≥ log g(⇠ ij )- ( τ i | W τ j + ⇠ ij ) 2 -λ(⇠ ij ) ⇣ E Zi,Zj [( Zi | W Zj ) 2 ]-⇠ 2 ij ⌘ .
(1.11)

Eventually, it leads to the two steps approximation: log p(X | α, W) ≥ L ML (q; α, W) ≥ L ML (q; α, W, ξ), (1.12)

The developed expression of L ML (q; α, W, ξ) is then tractable. It can be found in [START_REF] Latouche | Overlapping stochastic block model with application to the french political blogosphere[END_REF]. The resulting variational EM algorithm (see Algorithm 2) alternatively computes the parameters ⇠ ij , the posterior probabilities τ i and the parameters α and W maximizing max ξ L ML (q; α, W, ξ). The computational cost of the algorithm is equal to O(N 2 Q 4 ). For comparison the computational cost of the methods proposed by [START_REF] Daudin | A mixture model for random graphs[END_REF] and [START_REF] Latouche | Bayesian methods for graph clustering[END_REF] for (non-overlapping) SBM is equal to O(N 2 Q 2 ). Analyzing a sparse network with 100 nodes takes about ten seconds on a dual core, and about a minute for dense networks.
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Algorithm 1 :

 1 Example of a community structure detection algorithm with a betweenness score. repeat Calculate betweenness scores for all edges; Remove the edge with the highest score; until No edges remain;

  FIGURE 1.5Dendrogram of a network with 50 vertices for the community detection algorithm with edge betweenness. It should be read from top to bottom. The algorithm starts with a single community which contains all the vertices. Edges with the highest edge betweenness are then removed iteratively splitting the network into several communities. After convergence, each vertex, represented by a leaf of the tree, is a sole member of one of the 50 communities.

  FIGURE 1.6Directed network of social relations between 18 monks in an isolated American monastery[START_REF] Sampson | Crisis in a cloister[END_REF][START_REF] White | Social structure from multiple networks. i. blockmodels of roles and positions[END_REF]. Sampson collected sociometric information using interviews, experiments, and observations. This network focus on the relation of "liking". A monk is said to have a social relation of "like" to another monk if he ranked that monk in the top three monks for positive affection in any of the three interviews given. The positions of the vertices in the two data dimensional latent space have been calculated using the Bayesian approach for LPCM. The position of the three class centers found are indicated as well as circles with radius equal to the square root of the class variances estimated.

FIGURE 1 . 8

 18 FIGURE 1.8 Example of a directed graph with three overlapping clusters.

FIGURE 1 . 9

 19 FIGURE 1.9 Directed acyclic graph representing the frequentist view of the overlapping stochastic block model. Nodes represent random variables, which are shaded when they are observed and edges represent conditional dependencies.

Algorithm 2 :⌘

 2 Overlapping stochastic block model for directed graphs without self loop. // INITIALIZATION; Initialize τ with an Ascendant Hierarchical Classification algorithm; Sample W from a zero mean σ 2 spherical Gaussian distribution; with respect to W, with a gradient based optimization algorithm [e.g. quasi-Newton method of 16]; // E-step; repeat for i=1:N do Optimize L ML ⇣ q; α, W, ξ ⌘ with respect to τ i ,w i t hab o x constrained (⌧ iq 2 [0, 1]) gradient based optimization algorithm [e.g. Byrd method 17]; until τ converges; until L ML ⇣ q; α, W, ξ ⌘ converges;

Two k-cliques are adjacent if they share k -1v e r t i c e s