Jérémy Buisson

Everton Calvacante

Fabien Dagnat

Elena Leroux

Sébastien Martinez

Everton Cavalcante

Coqcots & Pycots: non-stopping components for safe dynamic reconfiguration

come L'archive ouverte pluridisciplinaire

Introduction

Software systems need to be highly available and should be built using secure, safe, performant, and robust components. These components must be regularly modified to fix vulnerabilities and bugs, to face new environments, and to offer new services. Enabling these evolutions, while maintaining a high level of availability, requires changing the architecture of such a system during its execution. This capability is especially important for critical systems such as air-traffic control systems and networks, in which stopping systems is not an option due to financial or human costs. It also improves user experience as a user can continue to use a software system being updated without noticing the update, i.e., the updating process is transparent to the users.

In software engineering, dynamic reconfiguration was introduced to build component-based software systems that can be modified during their execution, with minimal or no interruption. In this approach, components and connectors of a system can be inserted, removed or replaced at runtime, thus fostering the continuity of the services it provides.

Since the proposition of the quiescence concept [START_REF] Kramer | The evolving philosophers problem: Dynamic change management[END_REF], reconfiguring a system typically requires the suspension of a set of components that will be affected by the reconfiguration. Maintaining the system in an operational status while stopping part of its components leads to a visible degradation of its quality of service [START_REF] Gama | Resilience in dynamic component-based applications[END_REF][START_REF] Li | QoS assurance for dynamic reconfiguration of component-based software systems[END_REF] due to component dependencies. Another essential issue to be considered is to preserve the consistency of the component assembly throughout the reconfiguration process. Some works in the literature have faced these challenges by minimizing the set of suspended components and/or decreasing the duration of their suspension [START_REF] Ghafari | An architectural approach to ensure globally consistent dynamic reconfiguration of component-based systems[END_REF][START_REF] Vandewoude | Tranquility: A low disruptive alternative to quiescence for ensuring safe dynamic updates[END_REF]. Focusing on consistency, Boyer et al. [START_REF] Boyer | Robust reconfigurations of component assemblies[END_REF] propose a scheme in which an invariant requires to stop any component that depends on a stopped component. However, such dependencies often propagate until the user frontend, and then the system may be almost entirely stopped. To maintain service continuity, we must refrain from stopping components when reconfiguring a system. In this paper, we propose to use dynamic software updating (DSU) techniques [START_REF] Miedes | A survey about dynamic software updating[END_REF][START_REF] Seifzadeh | A survey of dynamic software updating[END_REF] instead of suspending components. The main idea is to mitigate the effect of any reconfiguration action by dynamically updating the implementation of directly and indirectly affected components. For example, if a component B used by a component A needs to be reconfigured, then the component A can be updated with a new implementation that no longer uses B before reconfiguring B.

The two major contributions of this paper are: (i) integration of DSU techniques in a component model named Coqcots/Pycots, and (ii) a reconfiguration development process. In Figure 1, which depicts the process, the left-hand side arrow represents the execution flow of the target application. During execution, if a reconfiguration is needed, its design and execution follow the four steps on the right of the figure. The two first steps of this process are performed in Coq using Coqots: 1 the current architecture of the target software system is modeled as a Coqcots architecture, and 2 this model is used as an input to develop the reconfiguration using the Coq proof assistant. Once the reconfiguration is valid: 3 the reconfiguration script is translated to Python and 4 the Python script is submitted to the Pycots manager, which is a platform component that receives and applies reconfiguration scripts.

The remainder of this paper covers steps 1 , 2 and 4 of the process. Section 2 outlines the DSU techniques. Section 3 presents Coqcots, our component model for dynamic reconfiguration, while Section 4 covers Pycots, the Python framework that implements it. Section 5 is dedicated to the validation of our approach with a case study. Section 6 briefly discusses some relevant work related to the dynamic reconfiguration of component-based systems. Finally, Section 7 contains final remarks and directions for future work. All the material described in this paper is available online at http://coqcots.gforge.inria.fr.

Dynamic software updating

Dynamic software updating (DSU) gathers several mechanisms whose goal is to update software at runtime. Whereas dynamic reconfiguration affects the architectural structure, DSU modifies the software at procedural or objectoriented level. Most classical DSU mechanisms replace a function by its newer version when it is not being called (i.e., when it is not in the call stack) and convert instances of a given class to a new structure by using a transformer function.

Surveys [START_REF] Miedes | A survey about dynamic software updating[END_REF][START_REF] Seifzadeh | A survey of dynamic software updating[END_REF] list several platforms that provide DSU mechanisms. Each of these platforms offers a different perspective on DSU among the following aspects: How and when shall the update be triggered? How and when shall data be converted? How shall the execution flow of the application be modified? In this work we use Pymoult [START_REF] Martinez | Prototyping DSU techniques using Python[END_REF], a Python-based platform that provides several of the existing DSU mechanisms and well addresses all of the previously mentioned aspects. In the current state-of-the-art, two triggering mechanisms are proposed. With active triggering, the program signals to the platform that it can be updated by calling a specific function placed in the code by the program developer. With passive triggering, the platform detects when the program can be updated. In both cases, detecting this moment requires being able to monitor the program (e.g., detect if a function is in the stack), especially when using passive triggering. Pymoult provides the two triggering mechanisms as well as tools for monitoring the program.

Data is usually converted by the combination of an access strategy (eager or lazy) and a conversion method. For the eager strategy, Pymoult intercepts the creation of each object in order to store a weak reference to this object. The created pool is then used to access all objects at a given time. For the lazy strategy, Pymoult uses the Python meta-object protocol to access objects whenever their fields are used (read or written). Regarding conversion, Pymoult provides tools such as the usage of mixins or proxies.

Several ways of modifying the execution flow (e.g., changing the code of a function, altering the stack) are used in the literature. Pymoult supports safe redefinition for modifying a function or method code when it is not in the stack as well as more sophisticated techniques such as stack reconstruction [START_REF] Makris | Immediate multi-threaded dynamic software updates using stack reconstruction[END_REF] and thread rebooting [START_REF] Buisson | ReCaml: Execution state as the cornerstone of reconfigurations[END_REF][START_REF] Martinez | Prototyping DSU techniques using Python[END_REF]. The two latter mechanisms allow to change the behavior of a function even if it is in the stack. In order to initialize the new behavior, it is possible to capture the runtime stack and read values from it thanks to the Python introspection tools.

The Coqcots component model

In this section we introduce our component model named Coqcots, formally defined by using the Coq formalism. The design of Coqcots follows the consensual component model described by Boyer et al. [START_REF] Boyer | Robust reconfigurations of component assemblies[END_REF], except for the following points. In [START_REF] Boyer | Robust reconfigurations of component assemblies[END_REF], each component follows a definite lifecycle: components can be started or stopped, and for each state of the lifecycle, a specific behavior is defined and embedded in the component. Instead of the predefined collection of behavior variants, Coqcots uses DSU techniques to dynamically change the behavior as needed by each reconfiguration. Moreover, changing the behavior of a component implies a change of its type. For example, a port may be added or removed when a new behavior implements a different set of functionalities. This change of type is explicit in Coqcots.

In the following, we first introduce our component model and explain how to specify a system architecture. Next, we define five operations used to reconfigure a system. Finally, we introduce a set of invariants whose role is to ensure a correct definition of a system architecture.

Specification of an architecture

As illustrated in Figure 2, a component (client) has an associated implementation (i) that uses a set of used services (U, which contains only the srv port service in the case of the client component) to provide a set of provided services (P, which is empty for the client component). The architecture instance contains components (client and server) and defines the bindings between a used service of one of its components and a provided service of another of its components (srv port/echo port). When a used service of a component is not bound, the implementation of that component cannot use this unbound service.

In our approach, the implementation of a component may come with a precondition that specifies its assumption on the architecture in which the component is instantiated. This architectural constraint (cst for the client component) is an invariant that ensures that the implementation will only run in the expected situation. For example, a given component may require that some of its used services must be bound (the mandatory services), while the other services are allowed to remain unbound (the optional services). The component implementation can then assume that only optional services may be unbound. Using architectural constraints enables the designer to assume the mandatory semantics discussed by Boyer et al. [START_REF] Boyer | Robust reconfigurations of component assemblies[END_REF] and Bruneton et al. [START_REF] Bruneton | The FRACTAL component model and its support in Java[END_REF].

Formally, Coqcots comes with two predicates, contains and binds, which respectively state that an architecture contains a given component and a given binding. The contains predicate takes as first argument an architecture a, followed by the five elements of a component: [START_REF] Bialek | A framework for evolutionary, dynamically updatable, component-based systems[END_REF] the name of the component c, (2) the set1 of its used services U, (3) the set of its provided services P, (4) its architectural constraint cst, and (5) its implementation i. The definition of contains is:

Parameter contains: ∀ (a: arch) (c: comp) (U: facet) (P: facet) (cst: arch → comp → Prop) (i: ∀ (u: facet record U), cst a c → no exc if bound a c u → facet record P), Prop.
The architectural constraint is defined as a function that maps an architecture a and a component c to a proposition. It is used by the implementation as a precondition to provide the component's services (term cst a c). The other precondition no exc if bound relieves the implementation from defensively checking for availability when a used service is guaranteed to be bound according to the constraint cst.

The binds predicate formally states that a binding exists in an architecture a. The binding is represented by six values: three for the client component (the user of the binding) and three for the server component (the provider of the binding). Both components are represented by (1) their identity respectively clt and srv, (2) the set of their involved services clt U and srv P, and (3) the ports clt port and srv port bound by the predicate. The definition of binds is: Using these two predicates, the designer can define an architecture. For example, the architecture represented in Figure 2 is an element of the following type: In this exemple, the client srv port must be bound as it is a mandatory dependency, and the server has no constraint. For the binding, the set of used and provided ports (third and sixth arguments elided as) are inferred by Coq.

Definition client server := { a | ∃ client

Reconfiguration operations

In this subsection, we formally define five primitive reconfiguration operations:

1. create adds a new component to the current architecture by taking its used and provided ports, constraint and implementation.

2. destroy removes an existing component from the current architecture by taking the name of the component.

3. link creates a binding from a provided ports of a component to a used ports of another component by taking the requiring component and its used port and the providing component and its provided port.

4. unlink destroys a binding from the current architecture by using the same parameters as link.

5. hotswap changes the behavior of an existing component by taking the component's name, the four new elements of the component, and two functions mapping respectively the used ports and the provided ports of previous version to the ones of the new version.

For sake of space, we only explain in details the create operation, whose Coq code is quite compact and easy to understand. All the other operations follow a similar scheme.

The create operation is a function that returns a pair r composed of the new architecture new a and the newly created component new c. They satisfy the create post postcondition informally described later in this section. The create function takes seven parameters: (1) the current architecture a, (2) the set of used services of the new component U, (3) a proof U all opt that the used services are all of the type optional2 , (4) the set of provided services P, (5) the constraint cst, (6) the implementation i, and (7) a proof cst all hold that in the resulting architecture the architectural constraints of all the components (including the created one) are satisfied. The create operation is defined by: It is important to notice that a reconfiguration operation should preserve constraints and bindings of unaffected components. We address this point with the so-called frame axiom approach [START_REF] Hayes | The frame problem and related problems in Artificial Intelligence[END_REF] in postcondition of reconfiguration operations. For example, regarding the create operation, postconditions 3, 4 and 6 above are the frame axioms.

The hotswap operation is the key point of Coqcots. The goal of this operation is to replace ports, constraints and implementation of a given component. It is important to notice that all of these replacements must be done at once. This constraint of our model comes from the fact that the type of an implementation depends on ports and constraints. For example, changing a port while keeping the implementation unchanged, is not well-typed. For the same reason, the bindings must also be adjusted. To do so, the hotswap operation takes two additional parameters, which map bound ports of the old set of ports to the new set of ports. As these mappings are restricted to bound ports, it is possible to remove ports as long as they are not bound in the architecture. Our definition of the hotswap operation is therefore consistent with contextual substitutability as defined by Brada [START_REF] Brada | Enhanced type-based component compatibility using deployment context information[END_REF].

The hotswap operation replaces the classical start/stop operations. With this operation, the developer is able to ensure the best continuity of service during a reconfiguration. Indeed, (s)he is able to define a new behavior for the component by providing partial services or all of its services by using other providers for its used services. Notice that this is possible even if the component initial design has not anticipated the situation. Moreover, behavioral changes must consistently reflect in the type of the component, so that any service degradation is explicit in the component type. This makes service degradation controllable.

Invariants

Coqcots is equipped with a set of invariants to ensure the soundness of the architecture definition:

Correct typing of bindings. This invariant excludes all architectures containing at least two ports bound together having incompatible types.

Existence of bound components. This invariant checks that bound components belong to the architecture.

Unicity of used service bindings. This invariant checks that the architecture does not contain a used port bound to two different provided ports.

Unicity of components characteristics. This invariant ensures that, for each component, the set of ports, constraints, and implementation are defined only once.

Satisfaction of component constraints. This invariant ensures that for each component, its constraint holds.

An architecture is consistent if the five previously defined invariants hold. We have proved that any architecture, obtained by applying Coqcots reconfiguration operations starting from the empty architecture, is consistent. It relies on two sub-proofs: (1) the empty architecture is consistent and (2) any of the five proposed reconfiguration operations preserves the invariants and then consistency. These proofs are specified using about 2500 lines of Coq code.

The Pycots Framework

In order to study practical issues, we have implemented Pycots, a Python-based framework that implements Coqcots. This section contains a brief description of Pycots.

The Pycots framework is composed of (1) a Component class, which is used to encapsulate components into black boxes, and (2) functions for reconfiguration operations. A component is basically an object that encapsulates its implementation, which is also an object. Each port is a method of this implementation object, which is either injected by the framework (used port) or coded by the developer (provided port). The provided ports are also exposed as public methods of the component object.

For each used port, we generate a proxy, whose role is to redirect method calls to their destinations. The advantage of the DSU approach is that it is easy to perform the link and unlink operations as they simply consist in hotswapping the proxy implementation of the used port between the two alternative implementations: (1) when the used port is bound, the proxy forwards method calls to the provider; (2) otherwise, the proxy raises an exception.

It is important to notice that the Pycots framework is relieved from runtime verification of constraints, typing and invariants. Indeed, we assume that these issues have been proved with Coq. Furthermore, we split the hotswap operation into several more primitive operations that add or remove ports to a component. These operations simply inject or remove proxy methods in the component. In order to hotswap a component implementation, we rely on Pymoult [START_REF] Martinez | Prototyping DSU techniques using Python[END_REF], which offers several DSU mechanisms as described in Section 2. The manager, which listens for and executes reconfigurations, is borrowed from Pymoult too. To validate our approach, we have studied a simple web server whose architecture is depicted in Figure 3. Strips denote the bindings and components that are removed by the reconfiguration, whereas dashes indicate the bindings and components that are added during reconfiguration.

The architecture initially contains four components: (1) the receiver wraps an instance of BaseHTTPServer, which receives and decodes HTTP requests; (2) the dispatcher dispatches requests to handlers according to the requested URL; (3) serverHello generates a dynamic web page with a "Hello, world" greeting, and; (4) serverFile detects that the given URL is a file name whose content is sent as a response. Its Coqcots model is the conjunction of 44 facts.

The proposed reconfiguration splits the serverHello component into two components: dynEngine, a generic engine that generates dynamic pages, and dynHello, the greetings handler. Since the serverFile component is not affected by this reconfiguration, it will continue to handle requests during the reconfiguration. The main idea is to temporarily hotswap the implementation of the dispatcher component such that it continues to serve the requests targeting the serverFile component while it enqueues those for serverHello. The main steps of this reconfiguration are: 1. To modify the implementation of the receiver component. As BaseHTTPServer handles all the requests by using a single thread, we use ThreadingMixIn, a mixin class from the standard library that transforms BaseHTTPServer such that it spawns a new thread for each request. Therefore, it will be possible to suspend a thread to delay a request.

2. The implementation of the dispatcher component is replaced by the following one: (1) it suspends the current thread (the request-handler thread) by using a global event object, if it receives a request for the serverHello component, and (2) it works as before, if a request for the serverFile component is received.

3. Once the two previous steps are completed, the serveHello port of dispatcher is no longer used: the web server is ready for the architectural changes. The binding between the dispatcher and serverHello components is removed, the dynEngine and dynHello components are instantiated and bound, and then dynEngine is hotswapped to add its provided port and dispatcher is bound to dynEngine.

4. Finally, dispatcher is hotswapped back to its initial implementation and suspended threads are resumed.

The Coqcots model of this reconfiguration contains about 100 lines of Coq. It proves that the reconfiguration is correct and that requests targeting the serverFile component are handled immediately, even during reconfiguration. The corresponding Pycots reconfiguration script contains about 30 lines of Python (without taking into account the code of the new implementation classes).

Related work

OpenCOM [START_REF] Pissias | Framework for quiescence management in support of reconfigurable multi-threaded component-based systems[END_REF], Fractal [START_REF] Bruneton | The FRACTAL component model and its support in Java[END_REF] and FraSCAti [START_REF] Seinturier | A component-based middleware platform for reconfigurable service-oriented architectures[END_REF] are well-known component models with similar capabilities for managing and reconfiguring component assemblies at runtime. For each component, controller elements are responsible for managing the reconfiguration operations and ensure their safety and consistency. To achieve these guarantees, components can be stopped such that they are led to a quiescent state. A typical reconfiguration scenario is (1) stop affected components, (2) change bindings, and (3) (re)start components. Unaffected components are not stopped hence their services remain available during reconfiguration.

When a component A attempts to use a stopped component B, while the behavior is said undefined in the Fractal textual description, most implementations suspend the calling thread until B is restarted. Even if A is not explicitly stopped, its services are unavailable and unavailability propagates back in the architecture. Alternatively, in the Boyer et al.'s work [START_REF] Boyer | Robust reconfigurations of component assemblies[END_REF], a consistency invariant requires that mandatory dependencies of started components are bound to started components only: in this case, A must be stopped before B can be. While this approach is better founded, in practice applications are often stopped entirely. OSGi proposes yet another alternative: the framework-provided getService method, used by a bundle to resolve a dependency, informs the bundle when the dependency is missing. To some extent, OSGi supports only optional bindings, which is hard to satistify in practice.

The proposal of Bialek and Jul [START_REF] Bialek | A framework for evolutionary, dynamically updatable, component-based systems[END_REF] envisions to facilitate the reconfiguration of component-based distributed applications. To take into account the requirement of non-stopping components while reconfiguring, they maintain at the same time the previous and the new versions of a component that needs to be changed. This strategy introduces complexity for managing these elements and may bring up scalability issues. Moreover, the proposal lacks a strong formalism that would ensure important properties throughout the reconfiguration process, such as consistency.

The position paper of La Manna [START_REF] Manna | Local dynamic update for component-based distributed systems[END_REF] proposes to model the current and new versions of the components using interface automata. These models are then used to automatically generate state transformers, which are functions that map states between the two versions of the interface automata. A state transformer tells when a component can switch from its current version to its new version. This promising approach provides timely, not-disruptive and safe reconfiguration, but the proposal does not consider the implementation aspects.

In summary, although the cited approaches support the dynamic reconfiguration of component-based applications, most of them do not address the requirement of service continuity while performing the reconfiguration actions. Unlike the proposals discussed in this section, our approach relies on DSU instead of the conventional start/stop operations. Coqcots focuses on maintaining safety and consistency throughout a reconfiguration process and the Coq proof environment allows to alleviate the complexity of performing DSU operations and enforce properties. Thus, correctness properties and service continuity can be proved by using this approach.

Conclusion

Dynamic reconfiguration provides a solution when stopping a component-based software system is not an option. Unlike previous work, our proposal relies on DSU to avoid the conventional start/stop operations over components. Specific component implementations are used during reconfiguration in order to continuously provide the best possible service. These implementations do not need to be anticipated at design time as DSU let us embed them in the reconfiguration. In this paper, we support verification and validation aspects with Coqcots using the Coq proof assistant. By forcing the reconfiguration developer to explicitly reflect any service degradation in the type of the components, Coqcots makes service continuity controllable and provable. We also describe Pycots, an implementation framework developed using the Python language and the Pymoult library. Our case study demonstrates the advantages of the approach.

Currently, Coqcots and Pycots are still independent as passing from one framework to the other is done by hand. In future work, we plan to better integrate them by generating the Coqcots model of the architecture from the running software system, then translating automatically the Coqcots reconfiguration script to Python. The former will need to add introspection support to Pycots and the Coq's extraction mechanism paves the way to the latter. We also plan to improve the reconfiguration language, which is currently based on Coq, and define specific Coq notations and tactics to hide low-level details of Coqcots such as frame axioms.

Figure 1 :

 1 Figure 1: Overview of the proposed approach.

Figure 2 :

 2 Figure 2: Anatomy of a Coqcots architecture.

 Parameter binds:∀ (a: arch) (clt: comp) (clt U: Type) (clt port: namedport clt U) (srv: comp) (srv P: Type) (srv port: namedport srv P), Prop.

 server, contains a client client use facet client provide facet client constraint (client implementation a client) ∧ contains a server server use facet server provide facet server constraint (server implementation a server) ∧ binds a client srv port server echo port }. Definition client constraint (self arch: arch) (self: comp) := ∃ s provs port, binds self arch self srv port s provs port. Definition server constraint (self arch: arch) (self: comp) :=True.

 Parameter create:∀ (a: arch) (U: facet) (U all opt: List.Forall (fun p ⇒ ∃ t, p = optional t) (ports of (facet spec U)))(P: facet) (cst: arch → comp → Prop) (i: ∀ self arch self u, cst self arch self → no exc if bound self arch self u → facet record P) (cst all hold: ∀ new a new c, create post a U U all opt P cst i new a new c → ∀ c' U' P' (cst': arch → comp → Prop) (i': ∀ a'' c'' u, cst' a'' c'' → no exc if bound a'' c'' u →), contains new a c' U' P' cst' (i' new a c') → cst' new a c'), { r: arch × comp | let (new a, new c) := r in create post a U U all opt P cst i new a new c }.The postcondition of the create operation is the conjunction of six parts: (1) The previous architecture a does not contain the newly created component new c. (2) The new component new c exists in the new architecture new a with the given elements (used U and provided P services, constraint cst and implementation i). (3) The new architecture new a contains all the components of the previous architecture a.[START_REF] Bruneton | The FRACTAL component model and its support in Java[END_REF] The new architecture new a contains only the components contained by the previous architecture a and the new component new c.[START_REF] Buisson | ReCaml: Execution state as the cornerstone of reconfigurations[END_REF] In the new architecture new a, the new component new c is well-defined, i.e. it has unique elements (U, P, cst and i).[START_REF] Gama | Resilience in dynamic component-based applications[END_REF] The previous a and new new a architectures contain exactly the same bindings.

Figure 3 :

 3 Figure 3: The software architecture of the web server after dynamic reconfiguration.

In our model, we define a set of ports as a facet.

The optional type models that used services can be unbound, thus having no value.