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Abstract

This paper presents a new module for heart sounds segmentation based on S-Transform. The heart sounds
segmentation process segments the PhonoCar dioGram (PCG) signal into four parts: S1 (first heart sound), systole, S2
(second heart sound) and diastole. It can be considered one of the most important phases in the auto-analysis of PCG
signals. The proposed segmentation module can be divided into three main blocks: localization of heart sounds,
boundaries detection of the localized heart sounds and classification block to distinguish between S1 and S2. An
original localization method of heart sounds are proposed in this study. The method named SSE calculates the
Shannon Energy of the local spectrum calculated by the S-transform for each sample of the heart sound signal. The
second block contains a novel approach for the boundaries detection of S1 and S2. The energy concentrations of the
Stransform of localized sounds are optimized by using a window width optimization algorithm. Then the SSE
envelope is recalculated and a local adaptive threshold is applied to refine the estimated boundaries. To distinguish
between S1 and S2, a feature extraction method based on the Singular Value Decomposition (SVD) of the S-matrix is
applied in this study. The proposed segmentation module is evaluated at each block according to a database of 80

sounds, including 40 sounds with cardiac pathologies.

1. INTRODUCTION

Cardiac auscultation is the basis for heart examination. It provides @ wéatformation about structural and
functional cardiac defects, using a simple, efficient and costless medical devidethbsc®pe. Invented in the
nineteenth century, this acoustic instrument has proved since tb gsamount importance to the physical
examination and diagnosis of cardiac pathologies. Over the course of the @pagntwries, the stethoscope
underwent numerous improvements to reach the development of theréestethoscope capable to register
and optimize the quality of the acoustic signal, completed by the PhatioGraphic (PCG) presentation of the
auscultation signal

The PCG signal confirms, and mostly, refines the auscultation datpravides further information about the
acoustic activity concerning the chronology of the pathological sigtieicardiac cycle, by locating them with
respect to the normal heart sounds. The cardiac sounds are by defibitistationary signals, and are located
within the low frequency range, approximately between 10 aAdHzq1].

The analysis of the cardiac sounds, solely based on the humanligaited by the experience of the clinician
for a reliable diagnosis of cardiac pathologies, and to obtain all the qualitativeantdadive information about

cardiac activity. Information, such as the temporal localization of the hmartls, the number of their internal
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components, their frequential content, and the significance of diastdlisyatolic murmurs, can also be studied
directly on the PCG signal. In order to recognize and classify cardideagathologies, advanced methods and
techniques of signal processing and artificial intelligence will be used.

For that, two approaches could be considered to improve electronic chgtbsis

. Stethoscope with embedded autonomous analysis, simple for homg patiehts and paramedics, for
the purpose of autodiagnosis and follow up.

. Stethoscope coupled with a hosting device or a server for sophisticatesisaaf@ypled to a PC with a
Bluetooth link) for the use of professionals in order to improvéopmance of clinical medical diagnosis.
Whatever the approach, one of the first phases in the analysisrofbeads, is the segmentation. Heart sound
segmentation process segments the PhonoCardioGram (PCG) sitgnfduin parts: S1 (first heart sound),
systole, S2 (second heart sound) and diastole. First, S1 and S2 are locategktibeis represented by the
interval S1 to S2 and diastole by the interval S2 to S1.

Identification of the two phases of the cardiac cycle and of the heartisavith robust differentiation between
S1 and S2 even in the presence of additional heart sounds and/or sigrdirst step in this challenge. Then
there is a need to measure accurately S1 and S2 allowing the progresaigontatic diagnosis of heart
murmurs with the distinction of ejection and regurgitation murmurs.

This phase of autonomous detection, without the help of ECG is basgidnal processing tools such as: the
Shannon energy [1], which can be considered as morphological baséarination that operates on the energy
of signal and its performance will certainly decrease in presence of noiseirmurs [2] The high order
statistics based methods; Shannon entropy [3], variance fractal dimedisioeclirrence time statistics [5], all
these methods performed well in the presence of respiratory noiseidig tiot the case in the presence of
murmur data [5], in addition the computing time of these methodsris high. The Radial Basis Functions
(RBF) neural network method which was used to extract the envelope afahtesbund [2]it was shown to
have a good performance on low level noise signals; however, iprésence of high level of noise, the
performance of the RBF method decreases. This was not surprisingdd¢oaumethod operates directly on the
heart sound without any feature extraction step. To deal with tlislgmn, a method for heart sounds
localization named SRBM2as proposed [B This method aims at extracting the envelope of the signal by
applying the features extracted from the S-Transform matrix dfebg sound signal to the radial basis function
(RBF) neural network (SRBF). The SRBF method was shown to havenificsigt enhancement in term of
sensitivity comparing to other existing methods [6].

The Time-Frequency (TF) domain can lead to a more robust localization asificdéien methods especially
for non-stationary signals like the heart sounds. S-Transfornmnarés from two advanced signal processing
tools, the short time Fourier transform (STFT) and the wavelet transfortan be viewed as a frequency
dependent STFT or a phase corrected wavelet transform [7]. The S-Trahsferoeen proven in to perform
better than other time-frequency /scale transforms for heart sogndsanalysis [39].

In this paper we present a new module for heart sounds segmentadieh dn S-Transform. The proposed
segmentation module can be divided into three main blocks: localization ofbeads, boundaries detection of
the localized heart sounds and classification block to distinguish between SR.afhde proposed methods in

each block can be summarized as follow:



- A new localization method of heart sounds based on the S-transformpisspd in this study. The method
named SSE, calculates the Shannon Energy of the local spectrum obtaihe&kyansform for each sample of
the heart sound signal in order to extract its envelope.

- The second block contains a novel approach for boundaries detdci@rand S2. The energy concentrations
of the S-transform of localized sounds are optimized by using a wimddth optimization algorithm then the
SSE envelope is recalculated and a local adaptive threshold is applied to refinertheddibundaries.

- A feature extraction method based on the Singular Value Decompositi@) (8 the S-matrix is applied to
classify S1 and S2.

The proposed methods are evaluated based on a database of 80 sbpatisof{dgic). This study is made under

the control of an experienced cardiologist, in with the aim of validatingethéts of each method.

This paper is organized as follows: Section 2 describes the data base usedsindii It is followed by the
Section 3 which describes the different methods proposed for the gatjoremodule (localization, boundaries
detection and classification). The results and discussion are presented in Sectioisettiond 5 gives the

conclusion.

2. Data Base

Several factors affect the quality of the acquired signal, above all, th@type electronic stethoscope, its mode
of use, the patient’s position during auscultation, and the surrounding noise [5]. Adie@rto the cardiologist’s
expeience, it’s preferable that the signals remain unrefined; filtration will only be applied subsequently in the
purpose of signal analysis. For this reason we used protagthescopes produced by Infral Corporation, and
comprising an acoustic chamber in which a sound sensor is insEteadronics of signal conditioning and
amplification are inserted in a case along with a Bluetooth standard comtiamioadule.

Different cardiologists equipped with a prototype electronic stethoscope havibutedtrto a campaign of
measurements in the Hospital of Strasbourg (Frameejyitment was made through clinical research project
(HUS-PRI 4179) with the support of the clinical investigation cent¢8HRM). In parallel, 2 prototypes have
dedicated to the Cardio-Psy experience as a part of the MARS500 projed®-@Bbsia) promoted by ESA
(European Spatial AgeneyPl. A. Aubert), in order to collect signals from 6 volunteers (astrghalihe use of
prototype electronic stethoscopes by different cardiologists makes the database téons of qualitative
diversity of collected sounds.

The sounds are recorded with 16 bits accuracy and 8000Hz sarfiplijugncy in a wave format, using the
software “Stetho” developed under Alcatel-Lucent license.

The dataset contain®&ounds, includingtO pathological cardiac sounds. All of the participants have given a
written informed consent. The normal subjects were aged from 48 years. The 6 participants of the MARS
500 experience having completed their examination as astronauts, the otkemdwv included after
examination on clinical basis.

The pathologic set of patients has been recruited during consultatiorpdghmation in the University Hospital

of Strasbourg. They were aged from 44 to 90 years incligimgen and 10 women. Ten of these patients have

been registered twice generally before and after valvular surgery.



The auscultation was done in the conditions of clinical examination. The besttatimtifocus has been
registered. Duration of registration varied from 6 to 12 seconds while tsatintrolled their respiration.

The diagnosis of the pathologic patients was made by an experienced gistliméoa medical file including
ECG and Echocardiography-Doppler.

Patients with valvupathy (aortic stenosis, mitral insufficiency includimigral valve prolaps and mitral
insufficiency and ventricural syptol defect) represerit@degistrations.

Cardiac prosthetic valve patients in mitral or aortic position represented a seatidrispthe prothestic valves
was mainly mechanical with 1 bioprothesis. 4 patients beard douldthests in aortic and mitral position. The
other pathologic patients presented rhythm disturbances from ventricularsgstady, AV Block (1 and 2

degree) to tachyarrhythmia in a context of ischemic cardiomyopathy.

3. Method

3.1. Preprocessing

At first the original signal is decimated by factor 4 from 880@0to 2000 Hz sampling frequency and then the
signal is filtered by a high-pass filter with cut-off frequency 0fkz, to eliminate the noise collected by the
prototype stethoscope. The filtered signal is refiltered reverse direction sodtatighno time delay in the
resulting signal. Then, the Normalization is applied by setting the var@nite signal to a value of 1. The

resulting signal is expressed by:

X(t)

Xnorm(L) = Imax(x(0) (1)

3.2. Localization of heart sounds

The localization algorithms operating on PCG data try to emphasize heart aouumdences with an initial
transformation that can be classified into three main categories: fregbasey transformation, morphological
transformations and complexity based transformations [5].

The transformation try to maximize the distance between the heart smuchdbe background noise, and the
result is smoothed andrdsholced in order to apply a peak detector algorithm. We note here, that the main goal
of heart sound localization is to locate the first and the second headssbut without distinguishing the two

from each other and without detecting the boundaries of located sounds.

3.2.1. SSE localization method

A new method for the localization of heart sounds is propos#dsrstudy (SSE). It uses the S-matrix like the
SRBF method0-100 Hz) [6] and it calculates the Shannon Energy (SE) of the local spemtcmtated by the



S-transform for each sample of the siga@). Then, the extracted envelope is smoothed by applying an average
filter (figure 1)

Compute the Shannon Smooth the
S-matrix of the | energy of the extracted
heart sound local spectrum envelope

Figure 1: Block Diagram of SSE Method

The S-Transform proposed in [8], of a time ser{%) is:

S(r, f) = Tx(t)w(r —hetfdt ()
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The proposed SSE method calculates the Shannon energy of each ablbhenextracted S-matrix as follows:
n
SSEx) = S(j,)?log(S(j.)?) (5
j=0

Each column of the S-matrix represents the local frequanhayspecific sample. The advantage of the Shannon
energy transformation is its capacity to emphasize the medium intensities atehuate low intensities of the
signal which represents the local spectrum in the cas83kanethod. The main difference between the SSE
and the SRBF method [6] is the training phase needed for the RBF motal&kBF neural network in the
SRBF method can be considered as a non-linear filter which is replaced siitiple average filter in the SSE
method.

We note that an automatic elimination of the extra detected peaks due tmaagliggnal noise contamination is

performed by applying the algorithm proposed in [1].

3.3. Boundaries detection Algorithm: an optimized S-transform approach

The boundaries detection algorithm aims at estimating the onset and ffeenemd the located heart sounds.
Accurate boundaries estimation is a very important step in the heart segmntation module and it is
essential for the extraction of meaningful features from each part dfdyetes in order to perform an auto-

diagnosis process.

3.3.1 Overview of existing methods

Different boundaries detection algorithms exists in the literature, in [ahedaries are estimated by applying

a thresholdon the extracted envelope of the signal, this is not accurate for some azydies, because the



envelope threshold level is used based on the average value of the whole requedivds. i [10] the same
authors propose another algorithm that employs the STFT (Shoet Hanrier Transform) to explore the time-
frequency domain of the signal. Authors quantify the spectrogtasach segment to two values by applying a
threshold that reserves 60% of the signal energy, however, it islemt how the energy of the signal is
calculated and the accuracy of the algorithm is not mentiondd1)rauthors use some biomedical features of
heart sounds (S1 and S2) like the maximum duration of S1 anth $2termine the limit of estimated
boundaries, the disadvantage of this method is that the estimation of en¢hgysignal is based on the time

domain only, so in the presence of high level of noise the npeaftce of this method will decrease dramatically.

3.3.2 The OSSE Algorithm

In this paper, we propose a new algorithm to estimate the heart doauntt¥aries. The proposed algorithm tries
to optimize the energy concentration of the S-transform at each locatad bguusing a window width
optimization methodThe envelope of the optimized S-transform is then recalculated by using trepSi®BEch
and an adaptive threshold is applied to determine the onset and the endauip ddcated heart sound. Let us
assume thdlt is the time located sounds after applying the localization method on thestad andSM,N) is
the S-matrix of the heart sound whdfgepresents the frequency domain ahtthe time domain.

The block diagram of the proposed algorithm (OSSE) is shown belpwe{)).

Estimate the Optimize the energy Calculate the SSE Apply a local
boundaries limit for | concentration of the o envelope of the »| adaptive threshold to
each located sound | | extracted S-matrix i optimized S-matrix refines the estimated

boundaries
a
b Cc

Figure 2 The block diagram of the OSSE Method

a. Estimate the boundaries limit

The boundaries limits are estimated based on the fact that the maximum dofr&ioand S2 is 150 ms [12]. So
a 150ms window is applied in the proximity of detected S1 and S2 peaks which covers 75ms in the

backward direction of the Sl or S2 peak and 75ms in the forward direction.

b. Optimized S-transform

Many studies tried to improve the Time-Frequentl)(representation of the S-transform [13, 14]. The main
study in the literature interested to optimize the energy concentration in thenTdindwas in [15]. That is, to
minimize the spread of the energy beyond the actual signal compoAsritsis well known, the ideal time-
frequency transformation should only be distributed along frequermigisef duration of signal components. So
the neighboring frequencies would not contain any energy and the enatgiut®mn of each component would
not exceed its duration [16].

The energy concentration in the Time-Frequency (TF) domain is amnaportant parameter for the algorithms
that aim to detect the duration of any given events in a signal. dheréfshould hold the same importance for

the boundaries detection algorithm of heart sounds based on time-fredeatces. However, in some cases,



the S-transform suffers from poor energy concentration in TFadonience, the importance of an energy
concentration optimization process to improve the boundaries estimation efttiedunds.

The main approach used in [15] was to optimize the width of thdow used in the S-transform. The width of
the Gaussian window can be controlldseveral ways by adding a new parameter to the window equation. We
use in this study the parameteintroduced in [15] and we investigate another parameter narfezk equation

6). Both of them control the Gaussian window width:

@

O'(f)=|f|p (6)

We note here that in this papehen a vary, p is fixed to 1, and when p vary, a is fixed to 1. The optimal vale

can be calculated in two methods; the first method calculates one global pararhitieris recommended for
signals with constant or slowly varying frequency components.sébend method calculates the time-varying
parameter (s@n optimal parameter for each sample) which is more suitable for signalsfasithvarying
frequency components. The disadvantage of the second approachighitomputational complexity which
makest unsuitatte for applications where time is an important factor.

Based on the first approach, the optimization algorithm is applied orpbagimeterp anda, separately. The
performance measure against each parameter is compared in sectiohh@®@rformance measure is based on
the concentration measur€Nl) proposed in [1]f For eacha (or p) from a given set, th€M (a) can be

expressed by:
1

(7)

[] ‘s: (t, f)‘dtdf

—00—00

CM(a) =

with S/ (t, f)is the normalized energy of thet@nsform for each a; it’s given by [14]:
SI(t, )

\/ff s¢(t, )| cltdf

—00—00

St f)= (8)

The CM (o) andCM (p) are calculated and compared for all existing S1 and S2 sounds iatahask. We note
again that the main objective is to enhance the concentration energy oftrdmesfSrm in order to detect
precisely the boundaries of the located heart sounds. We consideradngefer that reaches a higi@M to be

more appropriate for the heart sound signals.

c. The Adaptive threshold

Performing an optimized S-transform before calculating the SSE enveldqes tiee choice of threshold less
sensitive to the variation of different heart sounds. In this stutlyseshold which equals to 10 % (see figure 9)

of the maximum value of the SSE envelope is applied to refine the estimatethbes.



4. Distinguishing S1 and S2

Most of the existing methods for the segmentation of heart souadbeugeature of systole and diastole duration
to classify the first heart sound (S1) and the second heart sourfd ($8) 19]. These time intervals can become
problematic and useless in several clinical real life settings which are parjictégriesented by severe
tachycardia or in tachyarrhythmia (figure. 3Jo deal with this problem, an unsupervised method for the
discrimination of S1 and S2 using the high frequency informatias proposed in [20, 21This method is
based on a simple threshold appl@mdthe high frequency envelope and the heart sounds which exigbit h
frequency are considered as S2 sounds. However, the method ignsitive to the selected threshold and the
frequency content of heart sounds can be very close and overlap; whias the task of detection of high

frequency signatures very difficult.

Figure 3: Example of an arrhythmic subject.

In this study, we present another method to classify S1 and S2 based Simghlar Value Decomposition
(SVD) technique applied on the S-matrix and the results are analyzed andexinpsection 5.3 with the high

frequency signatures detection method proposed in [20].

4.1 Feature extraction based on the SVD

The SVD is a powerful tool that provides a compact matrix or compgifisant information about single
signal. Different ways exist in the literature aims to represent the timeefneg matrix in a compact manner by
using the SVD technique. In [22], authors extracted the eigenvalues ofrtidréiquency matrix. In [23],
authors extended the method to also incorporate information from #veveidors to classify EEG seizures. In
[24], the last technique is applied on the S-matrix in the aim to eXeatires for systolic heart murmur
classification. Following this approach, this study proposes a feature textranethod for S1 and S2
classification.

The time-frequency analysis is performed by the S-Transfoh@ S-matrixS of the extracted heart souhtd is

decomposed by the SVD technique as follows:

S =UDV’" )

WhereU(MxM )and V(NxN) are orthonormal matrices so their squared elements can be consideesdis d
function [21], andD(MxN) is a diagonal matrix of singular values. The columns of the orth@iomatricesU
andV are called the left and right eigenvectors which contains in this castnb and frequency domain
information, respectively. The eigenvectors related to the largest singlias contain more information about
the structure of the signal.

Based on our experience, in this study, the first left eigenveatbtharfirst right eigenvector that correspond to
the largest singular values are used for the feature extraction procegsstbgeam (10 bins) for each related

distribution function is calculated based on the density function. Five éeatators obtained by this method are
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tested in the classification process; the eigentime histogram vektdiT-Features), the eigenfrequency

histogram vectol; (F-Features), the singular values veci (SV Features) and the time-frequency vector
U,&V; (TF Features). All vectors have a length of 10 features except the timerogoeector that has a length

of 20.

5. Results and Discussion

5.1 Localization Methods

The performance of the SBRF and the SSE methods was measured as the oagthcity to locate S1 and S2

correctly. It was measured by sensitivity and positive predictive value:

Sensitiviy = TP (10)
TP+FN
And positive predictive value:
v-_ P 1)
TP+FP

A sound is true positive (TP) or correctly located if the detected soanmgsponds to a S1 or S2 sound
predefined manually by the cardiologist, all other detected sounds wéneddaé false positive (FP) and all

missed sounds are considered as false negative (FN).

Tablel: Sensitivity and Positive Predictive Values for the SRBF arifl rB&hods applied on the clinical sounds sets
(Normal and Pathological) without and with additive Gaussian noise.

Method Normal Pathological
% Sensitivity | PPV Sensitivity PPV Sensitivity | PPV Sensitivity PPV
(Noise) (Noise) (Noise) (Noise)
SRBF 91% 99% 90% 91% 94% 98% 91% 93%
SSE 96% 95% 93% 94% 97% 95% 94% 93%

Normal sounds

Results in Table 1 for normal sounds show that SRBF method reabiygea PPV (99%) than the SSE method
for the clinical signals without any additive noise. However, SSE reachégher sensitivity (96%) than the
SRBF method (9%). The supervised approach performed by the RBF block in the SRBfodnatakes the
extracted envelope more discriminative between the different parts of tied #ign the unsupervise8SiSE
method. Therefore, it is not surprising that the number of false detemiedssin the SRBF method is lower
than the SSE method, which also explains the PPV results. The samesreascalso account for the false
negative alarms which are higher in the SRBF method than the SSE methshiandives a higher sensitivity
to the SSE method. In the presence of an additive white Gaussian nojsexfthmance of the SSE method is
better with 93% sensitivity and 94% PPV. The robustness of both dsefigainst noise is very significant. This
is due to the advantage of performing a time-frequency amalysich makes methods more robust against
noise. Figure 4 shows the envelopes extracted by the both methdisl ayppnormal heart sound with and
without additive noise.
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Figure 4 (top) Envelope extraction for two normal PCG signal without and adidiitive Gaussian noise, (middle) their
SRBF envelopes, (bottom) their SSE envelopes.

Pathological sounds

The results in table 1 for pathological sounds like the normal soundstiat SRBF method reaches a higher
PPV (98%) than the SSE method for the clinical signals without any addiise hwothe case of additive noise,
both methods reach the same PPV (93%). The sensitivity of the SSEIN@T6) still higher than the SRBF
method (94%).This can be explained by the same reasons cited aboveerfdrenance of methods for
pathological sounds, most notably the SSE method, is very significatht nethods are developed to avoid the
detection of murmurs s@’s not surprising to reach a high performance against pathological sounds with
different types of systolic murmurs.

Figure 5 shows the envelopes extracted by the SSE and the SRBF mathmmrsspond to a pathologic sound

with a heavy systolic murmur. Figure 6 shows the robustnesscbf method against white additive noise.
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Figure 5: Envelope extraction (dashed lines) for a signal with systalimur, (top) SRBF envelope, (bottom) SSE envelope.

Figure 6: Sensitivity vs. SNR for the SRBF and SSE methods.

5.2 Boundaries detection

Table 2: Performance measure given by the maximum values of CM (o) and CM (p) for a given parameters set of o and p,
respectively.

Heart Soundq Optimal o CM(a) Optimal p CM(p) CM(a =1, p=1)
S1 0.82+0.45| 0.0185+0.0017] 1.1+0.5 | 0.0186+0.0018 0.0177+0.0015
S2 0.55+0.3 | 0.0186+0.0015 1.37+0.5 | 0.0186+0.0018 0.0175+0.0014
Total 0.68+0.37| 0.0185+0.0016 1.23+0.5 | 0.0186+0.0018 0.0176+0.0015
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The performance measure against each parameter is compared (Tatde2)lu€k of. and p are chosen from a
set; 0w< 2, 09p<2, with a step of 0.1; so twenty values as total for each variableopfineal o is reached when
CM(a) is maximized, and the optimal p is reached when CM(p) is nize@nResults from Table2 show that
there areno significant differences between the two parameteasidp concerning the performance measure.
However, results show an important difference between optimized concentragasure and standard
concentration that correspond to the standard S-transform awith and p=1. The maximum values of
concentration measur€dvi(o) and CM(p), that corresponds to the optimarandp, respectively, are obtained
with & <1 andp>1. This is can be explained by the fact that whef andp>1, the Gaussian window of the S-
transform is narrower, which improves the detection of the sudumges in the signal, like the onset and the
ending of the first and the second heart sounds. However, when awisidarrower in time domain, we loss in
term of frequency resolution. The compromise is performed byplienization process that operates on the
variable that control the variance of the Gaussian windowsv p for example. The criterion of the performance
is the concentration energy measure. The enhancement of energptaditre in the TF domain, influence

clearly on the boundaries estimation results (Table 3).

Table 3: S1 and S2 durations (ms) estimated by the SSE and OSSHsweithcand without additive noise.

Method S1(ms) S1(Noise)| S2(ms) | S2 (Noise)
SSE 122.4+7.2 | 127.849.6| 95.2+8.3| 101.2+7.4
OSSE | 110.7+4.32| 113.6+6.5| 69.1+5.4| 77.9+8.2

Reference 105.8+6 74.845.65

The“Referencé row in Table 3 represents the manual measures made by the castidbygising the software
“Stethd® developed under the license of Alcatel-Lucent. Limits of heart sounds defined with classical
Phonocardiographic references; mitral closure initiating S1 with high fregwahration, the aortic closure
generating the high frequencies beginning S2 and the end of S1 and S2aetednby the end of the high
amplitude vibrations.

Results show the efficiency of optimizing the energy concentratioredbttransform in order to estimate more
realistic boundaries for S1 and S2. Measupbtained by the SSE algorithm (without optimizing the S-
transform) are always higher than the results given by the OSSHttalgavhere an optimization process is
performed. This is not surprising since the OSSE algorithm has a bettey eapogntration in the TF domain,
which minimizes the spread of the energy beyond the S1 and the 8& Fighows the boundaries detection
results, with and without optimization of the S-transform, applied 82 example and figure 8 shows the OSSE
results applied on the entire heart sounds (normal and pathologic). Fighe\8 the variation of the Mean
Absolute Error (MEA) in ms against the selected threshold. The MEAdalaged by the difference between
the Reference results and the results obtained by the automatic methodwéthertors reached for S1 and S2
correspond td0% and 15% threshold values, respectively. The difference between the oondiegpMEA is
not significant, so the selected threshold in this stisdfixed to 10% of the maximum value of the SSE

envelope.
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Figure 8: OSSE method applied on a normal heart sound (topa#imalogical heart sound (bottom).
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5.3 S1 and S2 classification

The localization of heart sounds is established by using$Een®thod. The boundaries of the heart sounds are
determined by the OSSE algorithm. The results were visually inspected bylialogast and erroneously
extracted heart sounds were excluded from the study. The feature entpaotiess extracts a feature vector per
extracted soun& (Slor S2) and each of these vectors is averaged across available extraotedfsmm each
subject. So from each subject in the database, we obtain one S1 featurangcoe S2 feature vector to use in
the training and classification proses

A 3-Neirest Neighbor (KNN) classifier is used to evaluate the performance ébuh feature vectors obtained
and the 5-fold approach is used for cross validation. The choice of KN$ifielagias based on its simplicity of
and its robustness to a noisy training data.

The method proposed in [20] based on the classification of S1 and S@tby¥requency Signatures (HFS) is
also implemented and compared with the proposed method. We note héhe tH&S method tries to find the
presence of high frequency information by calculating the Shaenergy of the detail coefficient obtained by
the Wavelet Transform and an adaptive threshold is defined to detect the HFS,nsettibilsdoesn’t use the
KNN classifier.

Table 4: sensitivity and specificity for the four feature extracted vectatsaed by a KNN classifier.

Classifier KNN Threshold
T- F- SV TF HFS
Features Features Features| Features
Sensitivity| 92% 81% 60% 95% 89%
Specificity | 92% 88% 65% 97% 91%

The time domain feature vector reaches 92% classification rate, howevigdgihency feature vector reaches
81% sensitivity and 88% specificity. The Time-Frequency vector (TF Fesattgaches the higher classification
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rate with 95% sensitivity and 97% specificity. The singular values are aindistinguishable from each other
and it is shown by the low classification rate for the SV features (Tabléd HFS method reaches 89%
sensitivity and 91% specificity. The frequency content of heart socemise very close and overlap; which
makes the task of detection of high frequency signatures veiguttiffeven in normal sounds) especially when
the high frequency signature in S2 has low intensity.

In most cases seen in the medical field, S2 has a higher frequency thEmsS%.due to the fact that S2 is the
heart sound associated with the closure of the aortic valve in a context ¢éfvigentricular pressure, the mitral
closing occurring at low left ventricular pressure (S1). However, thisioriteannot be generalized on all real
life cases because some medical conditions are characterized by S2 frequesieylower than S1 frequency
content [25] like the case of mitral prosthetic valve where the mitral closurekedriay high frequencies which
can easily be seen at the beginning of S1. Hence, the importance dfetjmency multi-features approach,
especially in a generic module, which can explain the high performétamed with the proposed TF features

vector.

4. Conclusion

In this paper, a robust module for heart sounds segmentatidrebasdevelopedrhe module is divided into
three blocks; localization, boundaries detection, and classification of headss(&1 and S2Feveral methods
are proposed during this study:

- A heart sounds localization method based on the S-transform anddBhB&nergy, named SSE, is proposed
and evaluated against white additive Gaussian noise.

- A method for boundaries detection named OSSE is proposed. It is basedoptimization process for the
energy concentration in the TF domain provided by the S-transform.

- A feature extraction method based on Singular Value Decomposition (SVD) teehaidistinguish between
S1 and S2s examined.

Dividing the proposed segmentation method into three separate blocks, esatdeparform a targeted
optimization at each level. This confers the feature of robustness toofiespd module, which is a more than
necessary element to any auto-diagnosis module applicable in real life conditions.

The goal of this study is to develop a generic tool, suitable for clinical usgstrtmbnoise, and applicable to
diverse pathological and normal heart sound signals without any psewifarmation about the subjecthe
results of the proposed methods evaluated on a database of 80 sonhithithere are 40 pathological cardiac
sounds (with several systolic murmurs, prosthetic valves and tadieyazases) are very promisinlylore
robustness tests against noisy signals, algorithms complexity, fa€iliptementation and more signals, would

contribute to optimize the proposed module.
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