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Abstract

The influence of cohesive-frictional crack sliding on the response of quasi-brittle fractured bodies and, in particular, the

shear-induced dilatation due to crack surmounting, are here considered by assuming an equivalent shape function for crack-

lip roughness. The deformation is modeled at the continuum level via structured deformation theory, introducing relevant

kinematical descriptors that are now set in the classical thermodynamic formulation for generalized standard materials. The

resulting model lies in the “simplified model” class, since internal variables may be reduced to one scalar parameter associated

with the smeared-crack slip. Remarkably, even in the presence of friction, the structured-deformation approach renders the

model fully-associated in type, a property particularly relevant for F.E. implementation. In the simplest case no evolution of

crack density and orientation is supposed, and despite this simplification, a good description of the response of cracked masonry

or concrete walls under seismic-like shear are provided by the model, whose calibration is obtainable through ad hoc tests.

Interesting instabilities in the shearing path are exhibited, suggesting as well a possible generalization of the Mohr–Coulomb

criterion.

Keywords: Damage mechanics; Structured deformations; Rough cracks; Friction; Cohesion; Crack sliding; Quasi-brittle materials; Concrete;

Masonry; Geomaterials

1. Introduction

Due to the effect of cohesive forces opposing fracture opening, a diffuse micro-crack framework – rather than a dominant

main crack – is developed under load in materials like concrete, ceramics, geomaterials or masonry, hence the name “quasi-

brittle” (Bazant and Planas, 1998) by which such materials are usually referred to. Substantial progress in the description of this

degradation process has been made during the last 20 years (Jefferson, 2003) using damage mechanics theory (Lemaitre and

Chaboche, 1984), which presents some advantages with respect to classical fracture mechanics.

Damage mechanics historically begun with pure “macro” approaches, in which some scalar parameter was used to describe

the fall of elastic properties due to microcrack evolution (Kachanov, 1986). The main idea of the successive micro–macro

* Corresponding author.

E-mail addresses: francois@lmt.ens-cachan.fr (M. François), gianni.royer@unipr.it (G. Royer-Carfagni).

1



approach consisted in homogenizing some local fracture mechanics solutions at the representative volume element (RVE) scale.

The actual crack distribution, affecting the macro-response (Kaufmann and Marty, 1998; Belletti, Cerioni and Iori, 2001), could

be determined from the macro-stress or -strain state (Steigman, 1991; Mazars, 1986; Ragueneau, La Borderie and Mazars,

2000), or could be supposed established by the first overcoming tensile stress in the virgin material (Pang and Hsu, 1996).

The homogenization may (or may not) take into account interference between cracks (Benveniste, Dvorak and Wung, 1989;

Fond, Fléjou and Berthaud, 1995) in case of high crack density, while the evolution laws can (or cannot) suppose fixed or not the

crack orientation, considering as internal variables crack opening and crack sliding in the irreversible process thermodynamic

approach (Andrieux, Bamberger and Marigo, 1986; Halm and Dragon, 1996, 1998; Pensée and Kondo, 2001). Possible cohesive

forces (due to fiber bridging or grain bridging, aggregate frictional interlock, crack overlap etc.) can as well be taken into account

in the Barenblatt (1962) sense.

The above class of models usually assume that cracks are flat or penny shaped (Onat, 1984). Nevertheless, it is well known

that in quasi-brittle materials cracks exhibit considerable roughness, usually due to small-size heterogeneities (such as sand or

stone aggregates in concrete). What is more, the measured roughness presents well-known self-similarity properties (Maji and

Wang, 1992; Schmittbuhl, Roux and Berthaud, 1994; Amitrano and Schmittbuhl, 2002), emphasizing once more that roughness

should not be neglected in any damage model for quasi-brittle materials. Indeed, at the macro level many classical tests, such

as the shearing of wall panels, exhibit shear-induced dilatations that are due to rough-crack opening due to lip-sliding. In the

fracture mechanics field, relevant models (Patton, 1996; Dyskin and Galybin, 2001) have been proposed to reproduce this

effect but, to our knowledge, no micro–macro damage model takes into account roughness at the micro-level in a consistent

thermodynamic approach.

In general, the continuum description is not trouble-free. As a rule, the cohesive forces bridging the crack surfaces gradually

diminish the wider the crack opening is, so that the resulting equivalent continuum exhibit a strain softening response, which

may lead to some theoretical difficulties such as strain localization. A consistent way to perform the limit of discontinuous de-

formations, as the average distance between opening/sliding cracks goes to zero, is furnished by structured deformation theory,

recently advanced by Del Piero and Owen (1993, 2000) in order to develop earlier ideas in a rigorous mathematical framework.

Roughly speaking, a structured deformation is the combination of a classical “regular” deformation with a “singular” defor-

mation, produced by micro-disarrangements. This distinction is important in view of a thermodynamically-motivated theory

because crack sliding, and the consequent induced crack-opening, lead to plasticity-like deformation splitting, while preserving

their original mechanical significance.

The model here proposed, albeit tentatively, represents a first attempt at respond to the demand of a damage model involving

rough fractures. The proposed approach is based upon structured deformation theory and it is built within the irreversible

process framework, following the generalized standard-material theory (Halphen and Nguyen, 1975). The model structure,

besides assuring easy numerical implementation, allows a straightforward extension to contemplate other approaches in the

field of damage models. For example, in this introductory paper the crack pattern is supposed to be assigned and invariable

during the loading process, but an evolution law for cracks could be easily added without major modifications, and it will be

done in further work.

The plan of the paper is as follows. Relying upon structured deformation theory, a simple mesoscopic model for cracked

materials is presented in Section 2, motivated by micromechanical considerations on rough crack sliding. In Section 3, the

structured-deformation description is interpreted in a thermodynamic framework for irreversible processes by considering crack

sliding as an internal variable associated with a proper thermodynamic force, through which macroscopic dissipation and yield

criteria are deduced. In Section 4 the theory is applied to cracked materials under shear and confinement, showing a surprisingly

wide range of material instabilities. Finally, a possible way to calibrate the model according to the experimental evidence is

discussed in the concluding section.

2. Micromechanics via structured deformation theory

For the sake of simplicity, this study will treat a two-dimensional case only. Consider a membrane element made of a quasi-

brittle material in generalized plane stress, completely damaged by diffuse micro-cracks. Suppose that in any region ℜ, whose

diameter is much larger than the panel thickness and crack spacing, but much smaller than the panel size, the orientation, spacing

and characteristic length of the micro-cracks is uniform. Fig. 2.1(a) represents, for example, a damaged concrete panel with the

aforementioned properties. We surmise that under moderate loading neither new cracks are nucleated nor crack length varies,

although crack gliding is allowed. The punctual stress and strain will be very complicated, but an average view of such complex

phenomena can be obtained by considering an equivalent crack layout for the panel, where cracks are parallel, equidistant and

with the same profile. A representative volume element RVE for such an ideal material is drawn in Fig. 2.1(b). The orthogonal

base {e1, e2}, used in the following, has been chosen such that e1 is at right angle to the crack average plane.

Let ω : R → R represent a continuously differentiable, symmetric, even, periodic function, with mathematical period p.

With respect to a (ξ, η) reference system, with ξ and η parallel to e2 and e1 respectively, the crack-lip shape is identified by
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(a) (b)

Fig. 2.1. (a) Photograph of a representative volume element of a cracked membrane. (b) Equivalent model with parallel and equidistant

through-cracks.

Fig. 2.2. The crack wave function ω and the translation-induced shear dilatation.

the graph of η = aω(ξ/a), represented with a bold face line in Fig. 2.2. Here a is a reference length, so that crack wave-length

results equal to pa.

Assume that the crack shape is symmetric, i.e., it can be made to coincide with itself after the combination of a reflection in

its average line and a translation of half the wave-length, so that

ω(p/4 + ξ/a) = −ω(p/4 − ξ/a), ∀ξ. (2.1)

If the upper lip glides with respect to the lower as in Fig. 2.2, mode II shearing clearly induces mode I opening due to surmount-

ing. The main hypothesis here introduced is that the lips, at first fitting together, maintain at least a contact point while sliding,

so that their relative translation uniquely determines the crack opening. For convenience, we will denote with s · a and with

aθ(s) the shearing and the corresponding opening, where s is a non-dimensional parameter and θ(·) will be referred to as the

separation function. Keeping the reference axes anchored to the lower crack lip as in Fig. 2.2, after the sliding s the equation of

the upper crack lip results η = aω(ξ/a − s) + aθ(s). If C ≡ (ξc, aω(ξc/a)) ≡ (ξc, aω(ξc/a − s) + aθ(s)) denotes the contact

point, due to the aforementioned symmetry (2.1), provided the function ω(ξc/a) is convex on [−p/4,p/4], one finds:

ξc/a = s/2 + p/4 + kp, if s ∈ ]0,p/2] + kp, k ∈ Z,
(2.2)

ξc/a = s/2 − p/4 + kp, if s ∈]−p/2,0] + kp, k ∈ Z.

Then θ(s), taking into account that ω is even and (2.1), reads:

θ(s) = ω(p/4 + s/2) − ω(p/4 − s/2) = 2ω(p/4 + s/2), if s ∈ ]0,p/2] + kp,
(2.3)

θ(s) = ω(p/4 − s/2) − ω(p/4 + s/2) = −2ω(p/4 + s/2), if s ∈ ]−p/2,0] + kp.

3



Fig. 2.3. Structured deformation of a cracked membrane (shear-induced dilatation). The cell here represented is 2pa long and 3a high.

This function is positive, periodic of period p and its derivative is in general discontinuous at s = 0 + kp. In particular, in

the two cases when ω is either a sinusoid or a triangle function1 of amplitude A, the opening functions θ can be expressed

as

ω(ξ/a) = −A cos(2πξ/ap)/2 ⇒ θ(s) = A
∣

∣sin(πs/p)
∣

∣, (2.4)

ω(ξ/a) = −A/2 + ATr(2ξ/ap) ⇒ θ(s) = ATr(2s/p). (2.5)

Notice that, for the same amplitude A, a sinusoidal function leads to an initial slope for θ(s) of πA/p, whereas the triangle

function leads to the smaller slope 2A/p. Moreover, although the shear parameter s can be arbitrarily large, the translation θ(s)

has a maximum value A coinciding with the amplitude of the separation function θ .

A consistent continuum description of the deformation of uniformly cracked panels of this type has been recently considered

by Del Piero and Owen as an example of structured deformation theory. Following their idea (Del Piero and Owen, 2000,

part II, Section 5.1), it is assumed that in the RVE cracks are equidistant and sliding is homogeneous as in Fig. 2.3. If the RVE

contains n cracks and each crack slides of sa, the average shear is (nsa)/(na) = s and the average shear-induced dilatation is

naθ(s)/(na) = θ(s), i.e. the average deformation does not depend upon a.

The theory furnishes a rigorous mathematical approach to consider the case a → 0, i.e. a continuum with infinite cracks

of evanescent sinuosity. In this case, it can be demonstrated that disarrangements due to crack sliding induce the deformation

gradient

M = θ(s)e1 ⊗ e1 + se2 ⊗ e1. (2.6)

More in general, since crack orientation may be not homogeneous, referring to global orthogonal reference system (x, y),

if e1 = e1(x, y), e2 = e2(x, y) represent the orthogonal and parallel versors to the crack average plane at point (x, y) and

s = s(x, y) is the local glide, analogously to (2.6) the deformation gradient due to disarrangements is

M(x, y) = θ
(

s(x, y)
)

e1(x, y) ⊗ e1(x, y) + s(x, y)e2(x, y) ⊗ e1(x, y). (2.7)

Consequently, the deformation of the micro-cracked body can be completely described by the pairing (g,G) defined as

g(x, y) =
(

x + u(x, y), y + v(x, y)
)

,
(2.8)

G(x, y) = ∇g(x, y) − M(x, y),

where u(x, y) and v(x, y) represent the macroscopic displacement in the x and y directions respectively. In particular, g is the

macroscopic deformation, M the deformation gradient due to the disarrangements, and G that part of deformation gradient due

1 The triangle function Tr(·) is the periodic extension of the function T(·), defined in the interval [0,2] as T(t) = t for t ∈ [0,1] and T(t) = 2−t

for t ∈ [1,2].
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to the distortion of the material still integer. Del Piero and Owen (2000) call the pairing (g,G) a structured deformation and

constructed a rigorous mathematical framework for the relevant theory.

Formula (2.8) implicitly assumes that the displacement field varies smoothly throughout the panel, so that in any region

whose size is comparable with those of the RVE the macroscopic strain is homogeneous and the rotation uniform. Assuming

that the gradients of u(x, y) and v(x, y), as well as s(x, y) and θ(s(x, y)) are quantities small of the first order, the Green’s

strain (GTG − I)/2, due to the elasticity of the material, may be approximated by the elastic infinitesimal strain

ε
e(x, y) =

1

2
(∇g + ∇gT) − I −

1

2
(M + MT) = ε(x, y) − θ

(

s(x, y)
)

E11(x, y) − s(x, y)E12(x, y), (2.9)

where

ε(x, y) =

[

u,x (u,y +v,x )/2

(u,y +v,x )/2 v,y

]

(2.10)

represents the macroscopic infinitesimal strain, and

E11(x, y) = e1(x, y) ⊗ e1(x, y), E12(x, y) =
e1(x, y) ⊗ e2(x, y) + e2(x, y) ⊗ e1(x, y)

2
. (2.11)

The quantity

ε
s(x, y) = θ

(

s(x, y)
)

E11(x, y) + s(x, y)E12(x, y) (2.12)

represents instead the (infinitesimal) singular part of the strain, i.e. that due to the microscopic disarrangements. The macro-

scopic strain ε is obtained with respect to the hypothesis of its partition in the elastic part ε
e (due to the elasticity of the

undamaged lamellae in between the cracks) and the structured deformation part ε
s due to the disarrangements, leading to the

plastic-like deformation splitting

ε = ε
e + ε

s. (2.13)

Of course, this theory can account neither for the local stress fields consequent to Hertzian contact, nor for crack profile mod-

ifications due to surface wear. Consequently, as will be discussed in the concluding Section, the present model can only apply

to moderately-loaded damaged materials.

Compatibility conditions must be added to assure that the complete strain field ε derives from a displacement field (u, v)

and from a field of disarrangements which do not interfere with one another. These give rise to mathematical conditions that the

scalar fields θ(x, y) and s(x, y) and the tensor fields E11(x, y) and (E12(x, y) have to satisfy to be solutions of any boundary

value problem. In this paper, however, we shall remain at the RVE scale, i.e. it will be supposed that fractures are straight and

parallel and that boundary conditions, displacement field and disarrangements are all homogeneous in the body. Consequently,

there will be no need to deal with the problem of the compatibility of deformation, which will become indeed of crucial

importance in the general case.

In any case, it should be emphasized that structured deformation theory allows to describe highly discontinuous displace-

ments using continuous fields, introducing kinematical descriptors, such as the shear s and the separation function θ(s), that

allow to recognize which part of the macroscopic deformation is indeed due to microstructural disarrangements. This represents

not only a simplified notation, but could have been as well the starting point of the study since, as discussed in the concluding

section, in general it is easier to experimentally measure the average separation function θ(s) with respect to the average shear

s rather than identify the microscopic complexity of crack slinding and opening. This “macro” point of view allows to forget

about the length-scale a, despite here the equivalent crack-model has been introduced to furnish a micro-mechanical motivation

to the model. An ad hoc experimental study by post-mortem point-by-point measurement of the fracture profile (Schmittbuhl,

Roux and Berthaud, 1994) will be considered in the future in order to directly determine ω(s). Another possibility is offered by

an indirect estimate of ω(s) through the assessment of θ(s), using for example an experimental apparatus of the type proposed

by Walraven and Reinhardt (1981), as mentioned in section five.

3. Thermodynamical framework

The present section details the thermodynamic framework for a damaged material where, within a classical formulation

(Halphen and Nguyen, 1975), one of the internal state variables is given by the crack slide s. At constant temperature, the

model is defined through the Helmholtz’s free energy per unit mass ψ and the yield function f , correlating the thermodynamic

force S associated with s.
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3.1. Helmholtz free energy

The state variables suggested by the micro-mechanics are the total strain ε of (2.13) and the slip s, which defines the

structured part of the deformation ε
s as per (2.12). In particular, recall that the tensors E11(x, y) and E12(x, y), defined in

(2.11), as well as the function θ(s) of (2.3), are determined by the initial microcrack configuration for the damaged material

and, since this is supposed to be invariable during the loading process, such quantities are retained as problem data.

Considering isothermal evolution, the Helmholtz free energy is defined as the reversible elastic energy. Let C represent the

fourth order elasticity tensor for the undamaged (uncracked) material, supposed linear elastic. Since elastic energy is stored in

the integer material portions in between the microcracks, using the expression (2.9) for the elastic component of the strain ε
e

the free energy per unit mass reads2

Ψ [ε, s] =
1

2ρ
(ε − θ(s)E11 − sE12) · C

[

ε − θ(s)E11 − sE12

]

, (3.1)

where ρ is the material density. When the material matrix is isotropic, it is convenient to split each tensor into hydrostatic

and deviatoric (traceless) parts, denoted with the apex “H” and “D”, respectively. Recall that E11 and E12 are orthogonal, i.e.

E11 ·E12 = 0, and that E12 is deviatoric, i.e. ED
12

= E12 and EH
12

= 0. Then, the previous equation can be re-written in a simpler

form with respect to the shear modulus µ and the compression modulus K as follows:

2ρΨ [ε, s] = 2µ
[

ε
D − θ(s)ED

11 − sE12

]2
+ 3K

[

ε
H − θ(s)EH

11

]2
. (3.2)

Here, 3K and 2µ are the Kelvin’s moduli, while ED
11

, EH
11

are the deviatoric and hydrostatic part of E11, respectively.

3.2. Associated thermodynamic forces

Similarly, the stress σ is split into the deviatoric and hydrostatic parts σ
D and σ

H. For an isotropic material, these correspond

to the thermodynamic forces associated with the deviatoric ε
D and hydrostatic ε

H parts of the macroscopic strain respectively,

and are obtained by derivation of the free energy with respect to ε
D and ε

H, i.e.

σD = 2µ
[

ε
D − θ(s)ED

11 − sE12

]

, σH = 3K
[

ε
H − θ(s)EH

11

]

. (3.3)

When s = 0, from (2.3) also θ(s) = 0 and isotropic elasticity is recovered. Again from (2.3), setting s = kp, k ∈ Z, leads to

θ(kp) = 0, which shows that a p-periodic crack shift does not affect the hydrostatic part of the elasticity law. We observe, in

passing, that an alternative point of view may consist in regarding ε
s = θ(s)E11 + sE12 to be equivalent to a plastic strain since,

as in classical plasticity theory, from (3.1) the stress is given by C(ε − ε
s). However, the similarity stops here as the evolution

law presented in the forthcoming part will be different.

Following the standard generalized material framework (Halphen and Nguyen, 1975), the thermodynamic force S associated

with s is the partial derivative of the Helmholtz free energy per unit volume with respect to s, i.e. S = −∂(ρΨ )/∂s (the minus

sign is due to a thermodynamical convention). For the case at hand, it is clear that S, coinciding with the decrease in elastic

energy per unitary variation of s, represents the driving force for crack slip. In case of isotropic materials, from (3.2) we obtain

S = 2µ
[

(θ ′ED
11 + E12) · εD − ED

11 · ED
11θθ ′ − E12 · E12s

]

+ 3Kθ ′[EH
11 · εH − EH

11 · EH
11θ ], (3.4)

where θ ′ denotes the derivative of θ and ε11, ε12, ε22 are the strain components referred to the orthogonal base {e1, e2}, being e1

orthogonal to crack average plane. Using the constitutive relations (2.12) (2.13) and (3.3), expression (3.4) can be significantly

rewritten in terms of the stress σ in the form

S = σ · (θ ′E11 + E12), (3.5)

is obtained. Here, σ · E12 is the shear stress acting at the crack level while σ · E11, with E11 as in (2.11)1, coincides with

e1 · σe1 and represents the normal component of stress. Thus, we infer from (3.5) that not only is the driving force S produced

by the shear σ · E12, but a significant role is also played by the term θ ′
σ · E11, which represents the “dilation-induced-shear”.

3.3. Convex of elasticity

It is natural to define the elastic region (here referred to as “convex” of elasticity) with respect to the associated thermody-

namic forces (σ , S). For example, in order to retain a Coulomb-like response we may introduce the function

f (σ , S) = |S| − (B − ϕσ · E11), (3.6)

2 In the following we will denote with “·” the inner product between vectors and tensors, i.e. w · v = viwi , A · B = Aij Bij , where repeated

indices signifies summation. The notation is rather standard.
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which defines the elasticity domain through condition f (σ , S) < 0. Here, ϕ is the frictional coefficient and the constant B

represents a cohesive contribution, relative to observed crack-bridging in quasi-brittle materials (Maji and Wang, 1992) and

consistent with Barenblatt’s approach (Barenblatt, 1962).

Notice that σ · E11 < 0 specifies that the crack is “in the average” compressed (recall that σ is a macroscopic stress defined

at a material scale much larger than the crack roughness), so that the borderline case when B = 0 corresponds to unilateral

Coulomb’s frictional law. In fact we notice from (3.6) that when B = 0 condition σ · E11 > 0 is not admissible, since the body

would split into pieces when pulled across the crack plane. Besides, the compressive normal stress σ · E11 < 0, weighted by ϕ,

increases the size of the elastic domain. More precisely, we should mention that the presented formulation is not the exact

Coulomb’s law, which should act according the tangent plane at the contact point C (Fig. 2.2), but an “average” frictional law,

effective at the level of average crack plane. The second borderline case, when ϕ = 0, corresponds to cohesive sliding: in fact,

we have from (3.6) that |S| remains constants at yielding, independently of the compressive stress.

The combinations of these two cases furnishes the admissibility condition

σ · E11 < B/ϕ. (3.7)

In words, the simultaneous presence of cohesion and friction allows to withstand also moderate tensile stress at right angle to

the crack plane.

3.4. Flow rule

At yielding (f = 0), the evolution for the state variable s is determined from the consistency equation df = 0 and general-

ized normality rule (Halphen and Nguyen, 1975), saying that

ṡ =
∂f

∂S
λ̇ = sgn(S)λ̇, (3.8)

where λ is analogous to the classic plastic multiplier with λ̇ > 0. In this respect, the model can be considered associated, i.e. the

dissipation pseudo-potential coincides with the yield function. In particular, since from (3.8) ṡ has the same sign of S, it follows

that the yield condition deriving from (3.6) can be written in the form,






S = B − ϕσ · E11 if ṡ > 0,

S = −(B − ϕσ · E11) if ṡ < 0,

|S| � B − ϕσ · E11 if ṡ = 0,

(3.9)

where B − ϕσ · E11 is positive. This is a further indication that S is correlated with the effective shearing force in the average

crack plane.

3.5. Positiveness of the dissipation

The second principle of thermodynamics states that the intrinsic dissipation Ḋ must be positive. From the general theory

(Lemaitre, 1992), Ḋ equals the sum of the products AkV̇k , where Ak denotes the thermodynamic force associated with the

internal state variable Vk . For the case at hand, Ak ≡ S and V̇k ≡ ṡ and, from (3.8), we can notice that the second principle is

naturally fulfilled, i.e. Ḋ = Sṡ > 0.

Moreover, from (3.9), the intrinsic dissipation Ḋ takes the simple form

Ḋ = (B − ϕσ · E11)|ṡ|, (3.10)

from which we find again that the admissibility condition (3.7), i.e. σ · E11 < B/ϕ, is strictly correlated to the positiveness of

the dissipation.

4. Response under shear and tension–compression

The response of a RVE under shear and simultaneously loaded at right angle to the crack average plane is now examined in

detail.

4.1. General considerations

Assume that the stress state is homogeneous and of the form σ = σe1 ⊗ e1 + τ (e1 ⊗ e2 + e2 ⊗ e1) where, as in Fig. 2.1,

e1 and e2 are orthogonal and parallel to the crack average plane respectively. From (3.5), the thermodynamical variable S

associated with the slip s is

S = σθ ′(s) + τ. (4.1)

7



Fig. 4.1. The elastic domain for a given state (s, θ ′(s)).

In words, S is the sum of the imposed shearing τ and of the term σθ ′, which has a precise mechanical interpretation. Recall

that crack lips are supposed to remain in contact during a relative translation and, looking at Fig. 2.2, it is clear that pulling the

specimens may cause crack sliding. At each instant, the relative velocity of the gliding contact points is parallel to the common

tangent plane to the crack lip profiles, which forms an angle θ ′ with respect to the crack average plane, so that one can interpret

σθ ′ as the shear induced by the stress σ , acting at right angle to the crack average plane. The equivalence is also evident in

terms of energy since the dissipation reads

Ḋ = Sṡ = σ θ̇ + τ ṡ, (4.2)

where τ ṡ is the power dissipated by the shear stress and σ θ̇ the power dissipated by the tensile stress in the extension that

accompanies crack sliding. From (3.6) and (4.1), the elastic domain at a given state s is defined by the inequality
∣

∣σθ ′(s) + τ
∣

∣ � B − ϕσ, (4.3)

where B − ϕσ > 0 from the admissibility conditions of Section 3.3. This equation is analogous to some relevant conditions

usually employed in rough-crack fracture mechanics (Patton, 1996; Dyskin and Galybin, 2001), although here it has been

derived in a different way.

In the (σ, τ ) plane, (4.3) identifies the domain bounded by the two lines intersecting at point (B/ϕ,−θ ′(s)B/ϕ) and touching

the τ -axis at +B and −B respectively (Fig. 4.1). In general, the elastic domain may evolve between the upper and lower bounds

determined by the maximum and minimum values attained by θ ′(s).

In particular, for varying s the yield surface takes two different shapes in the {σ, τ } plane according to the sign of ϕ − M .

Fig. 4.2(a) illustrates the case M < ϕ, corresponding to a material where Coulomb’s friction ϕ is greater than the maximum

(initial) slope M of the opening function, while Fig. 4.2(b) illustrates the dual case M > ϕ. Here, parameters B and ϕ have

been kept at the same values of Fig. 4.2(a) and only M has been changed. Provided θ ′(s) attains all the values in the interval

(−M,M) as s is varied, all admissible stress states lie in grey region represented in Figs. 4.2. In particular, the dark-grey region

in the same figure, referred to as the always-elastic domain, corresponds to locally stable elastic stress configurations, i.e. every

infinitesimal transformation from those states will remain elastic (in the sense that they do not imply any modification of s).

An interesting property, enjoyed by a wide class of crack profiles, is that θ ′(s) is discontinuous and attains its extreme values

in a neighborhood of the discontinuity points. More in detail, suppose that the even, null-average and p-periodic function

ω(ξ/a), representative of the crack profile, can be expanded in converging Fourier’s series of cosines

ω

(

ξ

a

)

=
∑

n

−
An

2
cos

(

2nπξ

ap

)

, (4.4)

with all the coefficients An of the same sign (without loosing generality, suppose that An > 0, ∀n). Using (2.4), it can be shown

that the corresponding opening function θ(ξ/a) = θ(s) and its derivative may as well be expanded in Fourier’s series in the

form

θ(s) =
∑

n

An

∣

∣sin(nπs/p)
∣

∣, θ ′(s) =
∑

n

(nπAn/p) sgn
(

sin(nπs/p)
)

cos(nπs/p), (4.5)

respectively. Thus, from the assumed positiveness of all the coefficients An, it is clear that θ ′(s) is discontinuous at s = kp,

k ∈ Z, and attains its extreme values in a neighborhood of such discontinuity points, i.e. at s = kp+ and s = kp−, where all the

terms of the series (4.5) reach their corresponding extreme values. In particular, θ ′(kp+) = −θ ′(kp−) and, consequently,

θ ′(s) ∈ (−M,M) ∀s, where M = θ ′(kp+) = −θ ′(kp−) > 0. (4.6)

In the following, it will be supposed that crack profile ω(ξ/a) enjoys these properties.
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(a)

(b)

Fig. 4.2. (a) Elastic domains in the case M < ϕ. (b) Elastic domains in the case M > ϕ.

Indeed, the model calls for an interpretation of the discontinuity of θ ′(s) at s = kp. If such a discontinuity was a sharp step,

for any infinitesimal variation of s starting from s = kp the yield surface would suddenly jump between two distinct config-

urations, represented by wedges whose vertexes are either at (B/ϕ,−MB/ϕ) or at (B/ϕ,+MB/ϕ) (see Fig. 4.1). However,

such a material instability is not realistic. Instead, the discontinuity should be interpreted as the borderline case of a sequence of

continuous functions, so that θ ′(s) attains all the values of the interval (−M,M) in a neighborhood of s = kp. In concise form,

one may suppose that

−M � θ ′(kp) � M. (4.7)

This position reflects the spirit of classical Coulomb’s friction theory. Comparing (4.7) and (4.3) with B = 0, one finds that at

s = k p the admissible shear stress can be whatever but (in absolute value) less than a certain fraction of the compression stress.

9



In other words, all possible admissible states in the stress space, spanned while θ ′(s) ∈ [−M,M], can be attained by a virgin

body with no slip (s = 0). Of course, a crack shift of an integer multiple of its wave length cannot be distinguished by the state

s = 0 and, consequently, in general the deductions for s = 0 are also true for s = kp.

Notice as well that an important consequence of (4.7) is that stable yielding from the undistorted configuration (s = kp)

cannot be produced by stress-driven paths. In fact, at whatever small variation of s in a neighborhood of s = kp would produce

a jump of the fork towards the boundary of the admissible domain, where θ ′(kp±) = ±M . In this configuration the stress

cannot be further augmented and s can be moved away from the zero value only by strain-driven deformations. On the contrary,

starting from a configuration s �= kp where θ ′(s) is locally invertible, a moderate stress variation may gently “push” the fork of

Figs. 4.2, similarly to kinematic hardening in classical theory of plasticity.

Being bounded by straight lines, the current yield surface is obviously smooth except at the apex {σ, τ } = {B/ϕ,−Bθ ′(s)/ϕ}.

This corner, as well as all the corners of the allowable domain (dark and light grey arrays in Figs. 4.2), do not entail any diffi-

culty in computation. In fact, there is only one degree of freedom in the fork evolution, and no ambiguity is present when the

representative point of the state of stress in the RVE coincides with the apex.

The two cases illustrated in Figs. 4.2(a) and 4.2(b) have an interesting physical interpretation. The case M < ϕ of Fig. 4.2(a),

characterized by a friction coefficient ϕ greater than the maximum slope M of the opening function θ(s), may be thought of as

corresponding to a damaged material with “blunt teeth” crack profiles. In particular, the borderline case M = 0 corresponds to

plane cracks and, for this shape, all the elastic domains coincide; sliding occurs at constant shear, and Mohr–Coulomb’s classical

model, commonly used for soils, is recovered. The significance of the alternative condition M > ϕ, represented in Fig. 4.2(b),

is that the effect of the opening function overcomes friction, as for cracks with “sharp teeth”. The borderline situation M → ∞,

when the opening function θ(s) has infinite slope at s = kp, is met by any crack profile that presents infinite slope at the nodal

points.3 Now, the admissible-domain coincides with the half plane σ < B/ϕ, deprived of the two half-lines (σ = 0, τ < −M)

and (σ = 0, τ > +M). An intermediate situation is M = ϕ, which leads to rectangular-shaped domains that can be easily

deduced from Figs. 4.2(a) or 4.2(b).

It should also be remarked that when M < ϕ the material response in uniaxial compression (with τ = 0) is always elastic

(Fig. 4.2(a)), whereas when M > ϕ this is not true in general. In fact, the “kite-like” shape of the always-elastic-domain,

etched in dark grey in Fig. 4.2(b), evidences that there exist configurations for which the elastic region may be modified by

increasing the compression while maintaining fixed the shear stress. In both cases, the model predicts that indefinitely high

compression can be withstood by virgin materials (s = 0) or materials where cracks have been relatively shifted of a multiple

of the wavelength (s = kp, k ∈ Z). The particular case s = kp/2, k ∈ Z, corresponding to the contact of the crack lips at the

summits of their wave-function profile, should be considered as a meta-stable equilibrium since any infinitesimal variation of s

produces the crack closure under compression.

4.2. Response to cyclic actions

In order to illustrate some of the possible responses interpreted by the model, an ideal cyclic test is conceived of where

the normal stress is maintained fixed at σ = σ0, while the average shear strain γ is augmented starting from γ = 0 and then

cyclically varied between the limits −γ0 � γ � γ0. Assuming that the strain in a RVE is homogeneous and the crack slip

uniform, the state of stress is also homogeneous and defined by σ = σ0e1 ⊗ e1 + τ (e1 ⊗ e2 + e2 ⊗ e1) and, from (3.3),

γ =
τ

µ
+ s. (4.8)

For fixed s and σ0, the yield conditions defined by (4.3) read

τ = (B − σ0ϕ) − σ0θ ′(s), case (A),

τ = −(B − σ0ϕ) − σ0θ ′(s), case (B). (4.9)

Consideration of the dissipation equation (4.2) and the expression (4.1) for S, lead to retain case (A) if ṡ is positive and case (B)

if it is negative. Such conditions define all the yielding paths.

To systematically analyze the results of the model, it is convenient to distinguish whether the material is in tension or

compression. For the sake of simplicity, only the case when ω is a saw-tooth function will be considered. For this crack shape,

recall from (2.5) that the separation function θ(s) is the triangle function A Tr(2s/p) and its derivative is piecewise constant,

i.e. θ ′(s) = ±2A/p = ±M , with jumps at s = kp, k ∈ Z.

3 This case is particularly interesting for concrete. When cracking occurs along the aggregate contours, the crack profile is approximately

piecewise semicircular (Walraven and Reinhardt, 1981). In this particular class of saw-tooth crack-profiles, the borderline condition M → ∞

corresponds to a square wave function of the type ω(x) = aQ(2x/p), which offers a connection similar to a “Lego” brick game. Here, Q(·) is

the periodic extension of the function Q1(·), defined in the interval [0,2] as Q1(t) = 0 for t ∈ [0,1) and Q1(t) = 1 for t ∈ [1,2].
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(a) (b)

Fig. 4.3. (a) Hysteresis loop in the (γ, τ ) plane for compressed specimens with saw-tooth cracks. (b) The pseudo-elastic response for reversible

sliding (high compression and low friction).

4.2.1. Hysteresis loop in compression (σ0 < 0)

When the average crack plane is compressed, the representative point of shear stress and strain in the RVE will follow the

path O–A–B–C–D–E–F –G–H–A. . . in the (γ, τ ) plane of Fig. 4.3(a). The materials starts to yield at point A for τA =

B − σ0(ϕ + M) and, afterwards, it follows a pseudo-plastic plateau. During unloading, starting at point B , a path parallel to

the initial elastic branch is followed until the materials yields again at C under the shear τC = −B + σ0(ϕ − M). The distance

from the γ -axis of AB is larger than the distance of the reverse yielding path CD because in the first case, due to the slope

of the crack teeth, the compression load acts against yielding, while the contrary is true for path CD (compare the schematic

representation of the crack profile and opening in Fig. 4.3(a)). At D, which is collinear with O and A, the crack has been closed

(s = 0), and now the material can again regain stiffness. The material yields again at point E, whose abscissa τ equals a value

opposite to that of point A. Discussion for points G and H is similar.

An interesting case is when the level of stress at D is greater than zero, so that the hysteresis loop is as depicted in Fig. 4.3(b).

This case is attained when

−B + σ0(ϕ − M) > 0. (4.10)

But, recalling that σ0 is negative, this condition can only be fulfilled when M > ϕ for σ0 < −B/(M − ϕ), that is, for high

compression combined with either low friction or sharp crack teeth, so that the yielding domains are of the type represented

in Fig. 4.2b. Notice that in this (σ, τ ) representation, all points representative of the stress history lie on a vertical segment on

the left-hand side of the abscissa B/(ϕ − M) because of (4.10), so that the shear level causing the elastic fork to move under

reverse loading (point C in Fig. 4.3(b)) is greater than zero. Recall that, while sliding, there is competition between the driving

shear stress τ and the effect of the compressive load. When ϕ is small when compared to the crack-tooth slope as in the case

at hand (ϕ < M) reversible sliding may result, i.e., for high compression the crack closes by itself without the action of a shear

force τ . This is why on the equilibrium paths CD and GH the shearing stress τ acts in a direction opposite to that of crack

sliding, giving rise to a pseudo-elastic response.

When the sliding s exceeds the value p/2, i.e. for γ > τA/µ+p/2, the teeth of the crack lips have overcome the point when

their vertexes are in contact, so that now the compressive stress tends to move the crack profiles towards a configuration shifted

of one tooth-length with respect to the original one. For what this response is concerned, the material acts similarly to the case

s < 0, but an instability is now involved. To illustrate, suppose that in Figs. 4.3(a) or 4.3(b) point B corresponds to s = p/2. If

the test was performed with a closed loop testing machine by controlling the crack slip s, the representative point would follow

the equilibrium path B–B ′, parallel to H–A of the re-loading path. But if the test is strain-driven, point B would directly jump

to point B ′′, thus exhibiting a material instability. In conclusion, increasing γ the representative points would follow the path

indicated with O–A–B–B ′′ in Figs. 4.3(a) and 4.3(b). The cases s = p/2 + kp, k ∈ Z, may be discussed in exactly the same

manner.

4.2.2. Hysteresis loop in tension (σ0 > 0)

From a practical point of view this load condition is probably less interesting than the previous one, but it is worth being

discussed because intriguing instability phenomena may occur in tensile specimens. Recall that one of the main hypotheses of
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(a) (b)

Fig. 4.4. (a) Hysteresis loop in the (γ, τ ) plane for tensile specimens with saw-tooth cracks. (b) Pseudoelastic response for very high tensile

load.

the model is that cohesive forces prevent complete material separation under moderate tensile loads, so that crack lips always

remain in contact at some points during sliding. Comparing Fig. 2.3 and the discussion following (3.5), it is clear that a tensile

load acts in favor of crack glide (“dilation-induced-shear”).

To illustrate the various possibilities, it is convenient to treat separately the situations (i) 0 < σ0 < B/(ϕ + M) and (ii)

B/(ϕ + M) < σ0 < B/ϕ. The necessity of such a distinction is clear from the representation in the (σ, τ ) plane of Figs. 4.2:

here the stress path is represented by a vertical segment that intersects the always-elastic domain in case (i), but it does not in

case (ii). At a qualitative level, the response is substantially the same for both the cases to which Figs. 4.2(a) and 4.2(b) refer to.

Case (i): 0 < σ0 < B/(ϕ + M).

The corresponding (γ, τ ) graph is represented in Fig. 4.4(a). The material starts to yield at point A at τA = B − σ0(ϕ + M),

with τA > 0 because of the bounds on σ0, and reverse yielding occurs at point C for τC = −B + σ0(ϕ −M), with τC < 0 since

the admissibility condition for (4.3) gives as well σ0 < B/ϕ. What should be noticed is that tensile load favors sliding on path

AB but acts against sliding on path CD, so that |τA| < |τC |. This explains as well why path AB is lower than GH and CD is

lower than EF .

The loop O–A–B–C–D–E–F –G–H–A in Fig. 4.4(a) is made of equilibrium paths, obtainable with a closed loop testing

machine while controlling the crack slip in the specimen. On the base of the control signal, the machine should reverse the

stroke movement at branch DE during path CDEF and the same at branch HA for path GHAB . If, on the other hand, the test

is strain-driven, at D the point (γ, τ ) representative of stress and strain in the specimen, would jump on branch EF at E′. From

a physical point of view, notice that on DC the tensile load acts against shearing, but at D the crack closes and immediately

afterwards the tensile loads favors shearing. Consequently, the material will exhibit a snap-through-like instability. Similar

considerations show that there is a jump from H to A′ during the re-loading path.

It might be questioned if, for example, the jump should occur at a point different from D on the segment DD′. Referring

to Fig. 4.4(a), let us suppose that the jump is from D′′ to E′′ and let I represents the point of intersection between the lines

D′′E′′ and OD. Recalling (3.9), it can be demonstrated that the driving force S is the same on both paths DD′ and EE′ and

equals −B + σ0ϕ. Since τ is constant on D′D′′ and E′E′′, we deduce from (4.8) that ṡ ≡ γ̇ on both these paths. Consequently,

denoting with �s the length of the segment DD′ (or EE′), the work dissipated on D′D′′ + E′′E′ is equal to (B − σ0ϕ)�s,

whatever the position of D′′ inside the interval DD′. Concerning the energy DJ dissipated in the jump D′′ → E′′, noticing

from (4.8) that when γ is constant ds ≡ −dτ/µ and that s = 0 at point I , recalling that τ = µγ on the line DA, one obtains

DJ
D′′→E′′ =

E′′
∫

D′′

(

σ0θ ′(s) + τ
)

ds =

I
∫

D′′

−(σ0M + τ )

µ
dτ +

E′′
∫

I

−(−σ0M + τ )

µ
dτ

= −
2σ0M

µ
τI +

(τD′′ + τE′′)(2σ0M + τD′′ − τE′′)

2µ
= −

2σ0M

µ
τI + const > 0, (4.11)

where τI , τD′′ and τE′′ denote the shear stress at points I , D′′ and E′′ respectively. In conclusion, the highest dissipation is

obtained when jumping from D to E′, while the lowest dissipation is from D′ to E (Fig. 4.4(a)). With analogous calculations,
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the highest (lowest) dissipation is when the jump is from H (H ′) to A′ (A). The fact that materials tend to dissipate as much

energy as possible, corroborates the initial assertion that the path followed in a strain driven test would be O–A–B–C–D–E′–

F –G–H–A′–B .

It should as well be mentioned that during the first loading branch OA, there is an equilibrium bifurcation right at point A,

since both paths AH and AB are attainable. No dissipation is done along AH since ṡ = 0, whereas the power expended

following the branch AA′, recalling (4.2), equals (σ0M + τA)ṡ ≡ (σ0M + τA)γ̇ . Since materials usually follow the path

associated with the greatest dissipation, branch AH should be considered a locus of meta-stable equilibrium states. In fact,

a whatever small perturbation of s starting from s = 0 would be sufficient to move the fork in Figs. 4.2 towards a configuration

where the vertex is at (B/ϕ,−BM/ϕ), for which shear stress greater than τA are not attainable.

Notice as well that a jump from A to H ′ can never occur, because it would correspond to a negative dissipation. In fact,

using an argument similar to (4.11) and recalling from (4.7) that τA = B − σ0(ϕ + M) and τH ′ = B − σ0(ϕ − M), we obtain

DJ
A→H ′ =

H ′
∫

A

(

σ0θ ′(s) + τ
)

ds =

H ′
∫

A

−(−σ0M + τ )

µ
dτ =

2σ0M

µ

[

σ0(M + ϕ) − B
]

= −
2σ0MτA

µ
< 0. (4.12)

This is clear also from a physical point of view since, in order to jump from A to H ′, the crack would have to slip in a direction

opposite to that of the shear stress τ (Fig. 4.4(a)). In any case, point H ′ could be attained through the action of an external

“operator”, picking up the crack lips against the action of τ . Of course the opposite jump, from H ′ to A, occurs during the

hysteresis loop.

Case (ii): B/(ϕ + M) < σ0 < B/ϕ.

An even more intriguing phenomenon of instability may occur in tensile specimens when σ0, while respecting the admissi-

bility limit (3.6), i.e. σ0 < B/ϕ, satisfies condition σ0 > B/(ϕ + M). The corresponding equilibrium paths in the (γ, τ ) plane

are represented in Fig. 4.4(b), where what should be noticed is that paths AB and EF change the sign of τ with respect to

Fig. 4.4(a), i.e., when s > 0 (s < 0) equilibrium can exist only when τ < 0 (τ > 0). This is because the tensile load is so high

that friction alone cannot arrest the sliding of the crack, so that the action of a shearing force acting in the opposite direction is

necessary in order to reestablish equilibrium. This may be thought of as a confinement effect, since it is necessary to apply a

load τ opposed to γ in order to keep the material integrity.

Notice in particular that the origin (s = γ = τ = 0) does not correspond to a point of stable equilibrium. In fact, there

exist other four points, i.e. H ′, E′, A′, D′ which are in equilibrium at γ = 0. Reasoning as in (4.11) and recalling that τH ′ =

B − σ0(ϕ − M), τE′ = −B + σ0(ϕ + M), τA′ = B − σ0(ϕ + M) and τD′ = −B + σ0(ϕ − M), the energy dissipated while

jumping from the origin to those points reads

DJ
O→H ′ = DJ

O→E′ = DJ
O→A′ = DJ

O→D′ =
1

2µ

[

−B + σ0(ϕ + M)
][

B − σ0(ϕ − M)
]

> 0. (4.13)

In words, the same energy is dissipated when jumping to either H ′, or E′, or A′, or D′. Due to symmetry, the equivalence of

points E′ and A′, as well as H ′ and D′, is not surprising. The equivalence between E′ and H ′ is due to the opposite effect

of σ0 and τ : the slip s at H ′ is greater than at E′, but while σ0 produces a positive dissipation, τ is responsible of a negative

dissipation and the two contributions compensate one another. Indeed, the correlation between points E′ and H ′ (or between A′

and D′) may be explained paraphrasing the behavior of soil. In fact, the difference between the confining effect of τ at points,

say, E′ and H ′ recalls the same difference between active and passive confining pressure for a soil. In fact, at E′ the shear τ

restrains the crack from sliding towards the configuration of point F , whereas at H ′ the shear τ produces sliding towards the

configuration of point H . Clearly τH ′ > τE′ because at H ′ the frictional forces have to be overcome.

Point O is not stable because the effect of the tensile stress σ0 is sufficient to provoke the sliding of the inclined crack

teeth and, consequently, if no shearing stress τ was applied, the material would irremediably break. Said more substantially à

la Liapunov, despite the branch DAOEH being stable with respect to infinitesimal perturbations in τ or γ , it is unstable in the

internal variable s, since a whatever small perturbation of s in a neighborhood of s = 0, is sufficient to move the fork in Figs. 4.2

towards one of the configurations θ ′(0±) = ±M . We may then suppose that a suitable confining constraint is applied such to

maintain γ = 0 and the question arises whether, in this conditions, the material would jump towards E′ or H ′ (the discussion

for points A′ or D′ is symmetrical). Paraphrasing again the conceptual distinction between active and passive soil pressure,

observe that at E′ it is the material that pushes the constraint (“active” pressure), whereas at H ′ it is the constraint that pushes

the material (“passive” pressure). If the constraint is not an actuator, its reaction would be the lowest to withstand the material

pressure, similarly to the way in which a retaining wall withstands the action of a soil. Thus, the system would naturally jump

towards E′ (or its symmetric A′). This behavior is also confirmed by observing that elastic energy at H ′ (or D′) is greater than

at E′ (or A′): the system should naturally tend towards the configuration which, for the same dissipation, corresponds to the

lowest energy level.
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Suppose now that, after applying σ0, the material jumps to the configuration A′. Increasing γ , the path A′–B is followed.

Reversing γ , branches BC and CD are attained, but at point D a snap-through instability phenomenon analogous to that

discussed in (4.11) occurs, so that the representative point of the material state directly jumps from D to branch EF at E′′

(a similar-in-type instability occurs from H to A′′′). Therefore, in a strain-driven cycle the material would follow the path

O–A′–B–C–D–E′′–F –G–H–A′′′–B . On the other hand, suppose that at the beginning the material had jumped to the config-

uration E′. In the (σ, τ ) graphs of Figs. 4.2, such configuration corresponds to the point (σ0,−B + σ0(ϕ + M)), i.e. it is on

the lower edge of the upper fork with vertex at (B/ϕ,BM/ϕ). If at E′ the shear γ is augmented, in Figs. 4.2 the representative

point of the stress state enters the elastic domain. Correspondingly, in Fig. 4.4(b) the representative point follows a linear path

parallel to the line A–O–E, and eventually reaches the branch GH at H ′′. If γ is further augmented, the RVE configurations

proceeds towards point H on the branch H ′′H , finally jumping on A′′′. In conclusion, the path followed by the representative

point on Fig. 4.4(b) would be O–E′–H ′′–H–A′′′–B–C–D–E′′–F –G–H–A′′′–B . Again, this behavior is pseudo-elastic in

kind, but characterized by complex instability phenomena.

Whether the materials jumps from the origin to E′ or A′ depends upon the nature of the fluctuations in s, and may be

considered a chaotic phenomenon, in the sense that whatever small variations in s around s = 0 may drive the material towards

either E′ or A′.

The case where s exceeds p/2, is represented in dashed lines on Fig. 4.4. In general, it leads to pure elastic paths at s = kp,

k ∈ Z.

5. Comparison with experiments and conclusions

The cases discussed in this paper are only a first attempt to illustrate some basic features of the proposed theory, whose

potential is yet to be fully exploited. In our opinion, the strength of the approach consists in the description of what appears to

be the crucial property to interpret the shear response of quasi-brittle materials: the shear-induced dilatation. This phenomenon

is essentially due to the congenital roughness of developing cracks, naturally introducing a material intrinsic length-scale.

For example in concrete, provided that cracking occurs through the cement matrix along the circumference of the aggregates,

such a material parameter is of the same order of the aggregate average-diameter. When instead the aggregates are broken by

developing fractures (as in high-performance concrete), crack roughness is determined by intrinsic irregularities whose size now

defines the intrinsic length scale. The model here presented proposes a mesoscopic interpretation of the complex interactions

between fracture surfaces through the definition of a “equivalent crack-roughness”, whose shape interprets and determines the

shear-induced-dilatation phenomenon. Characteristic length scales for this theory are the crack profile amplitude and wave-

length and the crack spacing (see Fig. 2.3).

There is a wealth of experimental evidence of the shear-induced-dilatation in quasi-brittle solids and traditional testing

methods may provide an indirect assessment of the equivalent-crack-roughness. For example, Figs. 5.1(a) and 5.1(b) represent

the apparatus used by Walraven and Reinhardt (1981) for testing concrete under shear loading. By loading the specimens as

in Fig. 5.1(a), shear without moment is produced in the crack plane. Crack sliding induces the specimen dilatation that is

(a) (b)

Fig. 5.1. (a) Geometry of the test specimens proposed by Walraven and Reinhardt (1981) to assess the shear response of cracked concrete. (b)

Measuring gages and arrangement of restraint bars and plates on the specimen.
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(a) (b)

Fig. 5.2. Separation function θ = θ(s) obtained from (5.2) for fcc = 59.1 N/mm2, δ = 10 mm and compressive stress either σ = 0.2fcc or

σ = 0.1fcc . (a) Axes with different lengthscale. (b) Magnification in a neighborhood of the origin (axes with equal lengthscale).

prevented by the restraint bars depicted in Fig. 5.1(b), so that crack plane is compressed by a normal stress, directly estimated

by measuring the elastic elongation of the restraint bars.

The relative displacement over the crack plane is measured by gages placed as in Fig. 5.1(b). Let us denote with � and w

the tangential (shear) and normal (dilatation) components of such displacement. If δ denotes the thickness of the material layer

amenable to cracking (comprised between the two massive L-shaped blocks of Fig. 5.1(b)), the sliding s and the separation θ ,

defined as per Section 2 (Fig. 2.3), may be estimated by s = �/δ, θ = w/δ. Experimentally, one finds a definite, albeit com-

plicated, relationship among shear stress τ , normal compression stress σ , slip s and separation θ , from which the equivalent

crack-roughness can be consequently calculated.

To illustrate, consider the following expressions, interpolating the results of some relevant tests on concrete by Walraven

and Reinhardt (1981):

τ = −
fcc

30
+

[

1.8(θδ)−0.80 +
(

0.234(θδ)−0.707 − 0.2
)

· fcc
]

sδ, (5.1)

σ = −
fcc

20
+

[

1.35(θδ)−0.63 +
(

0.191(θδ)−0.552 − 0.15
)

· fcc
]

sδ. (5.2)

Here, fcc denotes the concrete cubic compression strength in N/mm2, σ (positive when compressive) and τ are expressed in

N/mm2 and δ is measured in mm. For fixed σ , one can easily determine from (5.2) the expression θ = θσ (s), plotted in Figs. 5.2

at two different scales, which represents the separation function introduced in Section 2 to describe the shear induced dilatation.

The equivalent crack-profile can be consequently calculated through (2.3). Of course, the graphs of Fig. 5.2 are not periodic

since they should be associated with moderate sliding, prior to crack-teeth surmounting.

What should be noticed, however, is that the experiments indicate the dependence of the separation function upon the

normal stress σ . From a physical point of view this is not surprising, since the crack profile is surely modified by the presence

the normal stress σ because of Hertzian contact and/or material wearing off. There is no substantial problem in developing the

present model by allowing the dependence of θ upon σ , i.e. θ = θ(σ, s). In particular, if σ is kept constant during the load-

history the analysis of the material response is identical to that of Section 4, of course provided that θ is varied accordingly to

the assumed dependence upon σ . Figs. 5.2 show for example the separation function θ obtained from (5.2) by setting either

σ = 0.1fcc or σ = 0.2fcc. The similarity between the two curves is quite evident and, since Hertzian contact blunts the crack

asperities, it is logical that the lower curve corresponds to the higher compression. Notice as well that, although the different

length scale used for the axes in Fig. 5.2(a) might suggest the contrary, in a neighborhood of the origin both profiles are smooth

as per Fig. 5.2(b), which represents a magnification of Fig. 5.2(a) with axes of equal length-scale. This corroborates our previous

conclusions about the continuity of θ ′(s) at s = 0, leading to (4.7).

A micromechanically-motivated analysis of the possible dependence of the separation function upon the normal stress will

be considered in further work, but even without such a refinement the present theory can interpret a wide range of structural

responses. In particular, the results of tests on panels under shear and confinement reveals significant similarities with the cases
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Fig. 5.3. Typical cyclic response of masonry walls under constant compression and variable shear (Mayes and Clough, 1975).

considered in Section 4. Fig. 5.3 shows for example the load-deflection curve for a reinforced masonry wall under constant

compression and cyclic shear forces (Mayes and Clough, 1975). Of course, in this introductory paper only the simplest cases

have been considered and the model here presented is nothing but minimal. Consequently the similarities between Fig. 5.3 and,

say, Fig. 4.3(b), can only be considered at the qualitative level but, nevertheless, some interesting interpretations of the tests may

be acquired from the model. For example, recalling the discussion for the case in Fig. 4.3(b), corresponding to condition (4.10),

the theory seems to suggest that in the experiment of Fig. 5.3 displaced cracks can be closed by compression load without shear.

Such a situation has been referred to as “reversible sliding” in Section 4.2.1.

Anyway, the present theory is versatile and amenable of substantial refinements. Not only could a closer representation of the

experimental evidence be obtained by simply varying the crack profile, but it is also possible, with no substantial modification,

to allow that the convex of elasticity varies its properties with increasing sliding. In fact, since frictional sliding wears out the

crack profiles diminishing the shear resistance, future developments of our model will have to consider that the crack-opening

mechanism may vary in time because of wearing out of crack-teeth. Such a deterioration phenomenon could be driven, as

usually assumed in brake or clutch-disc design, by the frictional dissipated power
∫

Sṡ dt , already introduced in (4.2).

In conclusion, albeit tentatively, the simple theory here presented seems to be an appropriate tool to describe the response of

cracked materials, in particular the shear-induced dilatation. Structured crack sliding appears to be the natural internal variable

to describe the material state, with which a consistent thermodynamic force may be associated. In this way, the microscopic

complexity of damage is interpreted at the mesoscopic level by only one function, representative of the crack profile. Just

changing the shape of such a function allows a very wide spectrum of material responses to be consistently obtained. This

theory could be combined with some recent analysis of the three-dimensional damage and may account for the fractal nature of

the crack lips (Carpinteri, Chiaia and Cornetti, 2003; Amitrano and Schmittbuhl, 2002).
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