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Stabilization of nonlinear systems using event-triggeredoutput feedback
laws

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz and Dragan Nešić

Abstract— We design output-based event-triggered con-
trollers to stabilize a class of nonlinear systems. We start
from an output feedback law which stabilizes the plant in
the absence of sampling and we then synthesize the event-
triggering condition. The proposed event-triggering condition
combines event-triggered and time-triggered techniques.The
idea is to turn on the event-triggering mechanism only aftera
fixed amount of time has elapsed since the last transmission.
This time is computed based on results on the stabilization of
time-driven sampled-data systems. The overall strategy ensures
an asymptotic stability property for the closed-loop system.
Moreover, it has the advantage to enforce a (uniform) minimum
amount of time between two transmissions which can be directly
tuned. We show that the results are applicable to linear time-
invariant systems as a particular case and we illustrate the
approach for the stabilization of a nonlinear single-link robot
arm model.

I. I NTRODUCTION

Networked control systems (NCSs) are systems in which
the plant and the controller communicate with each other
over a digital channel. NCSs are of great interest for a broad
range of applications due to their advantages in terms of
flexibility, cost and ease of maintenance. A major challenge
in such systems is to achieve the control objectives despite
the communication constraints induced by the network (like
time-varying sampling, delay, packet drop-out, etc.). In con-
ventional setups, data transmissions are time-driven and two
successive transmission instants are constrained to be less
than a fixed constant, called themaximum allowable trans-
mission interval(MATI) (seee.g.[1], [2]). However, it is not
clear that this paradigm is always suitable. Indeed, the same
amount of transmissions per unit of time is generated in this
case, even when transmissions are not necessary in view of
the control objectives. To overcome this shortcoming, event-
triggered control has been proposed as an alternative where
the transmission instants are determined by the occurrence
of an event, based on the measured output, and not a time-
driven clock, seee.g. [3]–[8]. The main idea is to adapt
transmissions to the state of the plant such that the loop
is closed only when it is needed according to the stability
or/and the performance requirements.
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Most existing results on event-triggered control assume
that the full state measurement is available. However, thisis
not realistic for many applications where only a part of the
plant state can be measured. Hence, the design of stabilizing
event-triggered controllers based on output measurements
has a significant practical interest. This problem has been
first addressed in [9] to the best of our knowledge, and then
in [10]–[16] for instance.

It is important to emphasize that the design of output feed-
back event-triggered controllers is particularly challenging
because it is usually more difficult to ensure the existence of
a minimum amount of time between two transmissions than
with state feedbacks (see [10]); in particular when we aim
to guarantee asymptotic stability properties. The existence
of such a time is not only useful to prove stability but
also because two triggering instants cannot occur arbitrarily
close in time in practice due to hardware limitations. In
[10], event-triggered controllers are proposed for lineartime-
invariant (LTI) systems which guarantee a uniform ultimate
boundedness property. These controllers are such that the
smaller the size of the ultimate bound, the shorter the
guaranteed minimum inter-transmission time. In [17], event-
triggered observer-based controllers have been designed to
ensure an asymptotic stability property for three different
architectures of LTI systems. More recently, a discrete-
time event-triggering mechanism for LTI systems has been
presented in [15] to asymptotically stabilize the system. To
the best of our knowledge, output feedback event-triggered
controllers for nonlinear systems have only been studied in
[12] where passivity tools were used to derive triggering
conditions which ensure anL2 stability property.

In this paper, we are interested in designing output
feedback event-triggered controllers for nonlinear systems
which ensure a (global) asymptotic stability property and
which guarantee the existence of a uniform strictly positive
lower bound on the inter-transmission times. We design the
controller using the emulation approach (seee.g. [5], [7],
[10]) as we assume that we know an output feedback law
which stabilizes the system in the absence of network and
we then take into account the communication constraints and
construct the triggering condition. The overall problem is
modeled as a hybrid system using the formalism of [18] like
in [7], [10], [16]. The proposed strategy combines the event-
triggering condition of [5] adapted to output measurements
and the results on time-driven sampled-data systems in [19].
Indeed, the event-triggering condition is only (continuously)
evaluated afterT units of times have elapsed since the last
transmission, whereT corresponds to the MATI given by



[19]. This two-step procedure is justified by the fact that the
adaption of the event-triggering condition of [3] to output
feedback on its own may lead to Zeno phenomenon (see
[10]). Although the rationale is intuitive, the analysis isnot
trivial as we show in the paper. This triggering mechanism
has been used in [20] to stabilize nonlinear singularly per-
turbed systems under a different set of assumptions. Similar
approaches have been followed in [16], [21], [22] to enforce
a lower bound on the inter-transmission times in different
contexts, mainly for linear systems. Note that the idea of
enforcing a given time between two transmissions is linked
to time regularization techniques, see [23].

Our results rely on similar assumptions as in [19] which
allow us to derive local and global results. These conditions
are shown to be always verified by LTI systems that are
stabilizable and detectable, in which case these are refor-
mulated as linear matrix inequalities (LMI). Contrary to
[16], the approach is applicable to nonlinear systems and
the output feedback law is not necessarily based on an
observer. Compared to [12], we rely on a different set of
assumptions and we conclude a different stability property.
In addition, we show that our results are applicable to any
LTI systems that are stabilizable and detectable and to a
nonlinear robotic example for which the results in [12] are
not applicable since the required conditions in Proposition
1 in [12] are not satisfied. Unlike [11], where LTI systems
have been studied, we do not necessarily consider observer-
based output feedbacks and the triggering condition does not
necessarily rely on estimates of the unmeasured states. The
latter has the advantage to lighten the implementation since
the triggering mechanism only needs to have access to the
output of the plant, and not the controller variable. Finally, in
the particular case of LTI systems, we conclude asymptotic
stability properties as opposed to ultimate boundedness in
[10]. It has to be noted that the event-triggering mecha-
nism that we propose is different from the periodic event-
triggered control (PETC) paradigm, seee.g.[24], [25], where
the triggering condition is verified only at some periodic
sampling instants. In our case, the triggering mechanism is
continuouslyevaluated, onceT units of time have elapsed
since the last transmission.

The remainder of the paper is organised as follows. Prelim-
inaries are given in Section II. The system model is provided
in Section III. In Section IV, we present the main results. In
Section V, we show that the required conditions are always
satisfied by stabilizable and detectable LTI systems. An
illustrative example is given in Section VI and conclusions
are proposed in Section VII. The proofs are given in the
Appendix.

II. PRELIMINARIES

Notation. We denoteR = (−∞,∞), R≥0 = [0,∞) and
Z≥0 = {0, 1, 2, ..}. The Euclidean norm is denoted as|.|. We
use the notation(x, y) to represent the vector[xT , yT ]T for
x ∈ R

n andy ∈ R
m. A continuous functionγ : R≥0 → R≥0

is of classK if it is zero at zero, strictly increasing, and it
is of classK∞ if in addition γ(s) → ∞ as s → ∞. A

continuous functionγ : R≥0 × R≥0 → R≥0 is of class
KL if for each t ∈ R≥0, γ(., t) is of classK, and, for
each s ∈ R≥0, γ(s, .) is decreasing to zero. We denote
the minimum and maximum eigenvalues of the symmetric
positive definite matrixA asλmin(A) andλmax(A), respec-
tively. We useIn to denote the identity matrix of dimension
n. We will consider locally Lipschitz Lyapunov functions
(that are not necessarily differentiable everywhere), therefore
we will use the generalized directional derivative of Clarke
which is defined as follows. For a locally Lipschitz function
V : R

n → R≥0 and a vectorυ ∈ R
n, V ◦(x; υ) :=

lim suph→0+, y→x(V (y+hυ)−V (y))/h. For a continuously
differentiable functionV , V ◦(x; υ) reduces to the standard
directional derivative〈∇V (x), υ〉, where∇V (x) is the (clas-
sical) gradient. We will invoke the following result which
corresponds to Proposition 1.1 in [26].

Lemma 1 (Lemma II.1 [26]). Consider two functionsU1 :
R

n → R and U2 : Rn → R that have well-defined Clarke
derivatives for allx ∈ R

n and υ ∈ R
n. Introduce three sets

A := {x : U1(x) > U2(x)}, B := {x : U1(x) < U2(x)},
Γ := {x : U1(x) = U2(x)}. Then, for anyυ ∈ R

n, the
functionU(x) := max{U1(x), U2(x)} satisfiesU◦(x; υ) =
U◦
1 (x; υ) for all x ∈ A, U◦(x; υ) = U◦

2 (x; υ) for all x ∈ B
andU◦(x; υ) ≤ max{U◦

1 (x; υ), U
◦
2 (x; υ)} for all x ∈ Γ. �

Basic definitions on hybrid systems.In this paper, we
consider hybrid systems of the following form using the
formalism of [18]

ẋ = F (x) x ∈ C, x+ = G(x) x ∈ D, (1)

where x ∈ R
n is the state,F is the flow map,C is

the flow set,G is the jump map andD is the jump set.
The vector fieldsF andG are assumed to be continuous
and the setsC andD are closed. The solutions to system
(1) are defined on so-called hybrid time domains. A set
E ⊂ R≥0 × Z≥0 is called acompact hybrid time domain
if E = ∪

j∈{0,...,J}
([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ ... ≤ tJ and it is a hybrid time
domain if for all (T, J) ∈ E,E ∩ ([0, T ] × {0, 1, ..., J})
is a compact hybrid time domain. A functionφ : E → R

n

is a hybrid arc ifE is a hybrid time domain and if for each
j ∈ Z≥0, t 7→ φ(t, j) is locally absolutely continuous on
Ij := {t : (t, j) ∈ E}. A hybrid arc φ is a solution to
system (1) if: (i)φ(0, 0) ∈ C ∪ D; (ii) for any j ∈ Z≥0,
φ(t, j) ∈ C and φ̇(t, j) = F (φ(t, j)) for almost allt ∈ Ij ;
(iii) for every (t, j) ∈ domφ such that(t, j + 1) ∈ domφ,
φ(t, j) ∈ D andφ(t, j + 1) = G(φ(t, j)). A solution φ to
system (1) ismaximal if it cannot be extended, and it is
completeif its domain, domφ, is unbounded.

III. PROBLEM STATEMENT

Consider the nonlinear plant model

ẋp = fp(xp, u)

y = gp(xp),
(2)

where xp ∈ R
np is the plant state,u ∈ R

nu is the
control input andy ∈ R

ny is the measured output of the



plant. We assume that the dynamic controller below globally
asymptotically stabilizes system (2)

ẋc = fc(xc, y)

u = gc(xc, y),
(3)

wherexc ∈ R
nc is the controller state. We emphasize that

the xc-system is not necessarily an observer. Moreover, (3)
captures static output feedbacks as a particular case by setting
u = gc(y).

We consider the scenario where controller (3) communi-
cates with the plant via a digital channel. Hence, the plant
output and the control input are sent only at transmission
instantsti, i ∈ Z≥0. We are interested in an event-triggered
implementation (see Figure 1) in the sense that the sequence
of transmission instants is determined by a criterion basedon
the output measurements. At each transmission instant, the

Plant

Event-triggering
mechanism

Controller
y(t)y(ti)u(t)u(ti)

Fig. 1. Event-triggered control schematic [10]

plant output is sent to the controller which computes a new
control input that is instantaneously transmitted to the plant.
We assume that this process is performed in a synchronous
manner and we ignore the computation times and the possible
transmission delays1. In that way, we obtain

ẋp = fp(xp, û), ẋc = fc(xc, ŷ) t ∈ [ti, ti+1]

˙̂y = 0, ˙̂u = 0 t ∈ [ti, ti+1]

ŷ(t+i ) = y(ti), û(t+i ) = u(ti), u = gc(xc, ŷ),

whereŷ andû respectively denote the last transmitted values
of the plant output and of the control input. We assume that
zero-order-hold devices are used to generate the sampled
values ŷ and û, which leads to ˙̂y = 0 and ˙̂u = 0. We
introduce the network-induced errore := (ey, eu) ∈ R

ne ,
whereey := ŷ − y andeu := û − u which are reset to0 at
each transmission instant.

We model the event-triggered control system using the
hybrid formalism of [18] as in [10], [16], [7], for which a
jump corresponds to a transmission. In that way, the system
can be modeled as


ẋ
ė
τ̇


 =




f(x, e)
g(x, e)

1


 (x, e, τ) ∈ C




x+

e+

τ+



 =




x
0
0



 (x, e, τ) ∈ D,

(4)

1We think that the effect of computation and transmission delays can be
studied by using similar arguments as in [5].

wherex := (xp, xc) ∈ R
nx andτ ∈ R≥0 is a clock variable

which describes the time elapsed since the last jump and

f(x, e) =



fp

(
xp, gc(xc, y + ey) + eu

)

fc(xc, y + ey)




g(x, e) =



− ∂

∂xp
gp(xp)fp

(
xp, gc(xc, y + ey)+eu

)

− ∂
∂xc

gc(xc, y + ey)fc(xc, y + ey)


 .

(5)
The flow and jump sets, respectively denotedC andD, are
defined according to the triggering condition we will define.
As long as the triggering condition is not violated, the system
flows onC where no transmission occurs. Jumps occur only
if the triggering condition is verified,i.e. (x, e, τ) ∈ D. When
(x, e, τ) ∈ C ∩ D, the system flows only if flowing keeps
(x, e, τ) in C, otherwise the system experiences a jump.
The functionsf and g, defined in (5), are assumed to be
continuous and the setsC and D will be closed (which
ensure that system (4) is well-posed, see Chapter 6 in [18]).

The main objective of this paper is to design the flow and
the jump sets of system (4),i.e. the triggering condition, to
ensure a (global) asymptotic stability property for system(4).

IV. M AIN RESULTS

In this section, we first present the conditions that we im-
pose for system (4), then we present the triggering technique
and finally we state the main result. We make the following
assumption on system (4), which is inspired by [19].

Assumption 1. There exist∆x,∆e > 0, locally Lipschitz
positive definite functionsV : Rnx → R≥0 andW : Rne →
R≥0, continuous functionH : Rnx → R≥0, real numbers
γ, L ≥ 0, α, α ∈ K∞ and continuous, positive definite
functionsδ : Rny → R≥0 and α : R≥0 → R≥0 such that,
for all x ∈ R

nx

α(|x|) ≤ V (x) ≤ α(|x|), (6)

for all |e| ≤ ∆e and almost all|x| ≤ ∆x

〈∇V (x), f(x, e)〉 ≤ −α(|x|) −H2(x)− δ(y) + γ2W 2(e)
(7)

and for all |x| ≤ ∆x and almost all|e| ≤ ∆e

〈∇W (e), g(x, e)〉 ≤ LW (e) +H(x). (8)

We say that Assumption 1 holds globally if (7) and (8) hold
for almost allx ∈ R

nx and e ∈ R
ne . �

Conditions (6)-(7) imply that the systeṁx = f(x, e)
is L2-gain stable fromW to (H,

√
δ). This property can

be analysed by investigating the robustness property of the
closed-loop system (2)-(3) with respect to input and/or output
measurement errors in the absence of sampling. Note that,
sinceW is positive definite and continuous (since it is locally



Lipschitz), there existsχ ∈ K∞ such thatW (e) ≤ χ(|e|)
(according to Lemma 4.3 in [27]) and hence (6), (7) imply
that the systemẋ = f(x, e) is input-to-state stable (ISS),
see [28]. We also assume an exponential growth condition
of the e-system on flows in (8) which is similarly used in
[2], [19]. As we will show in Sections V-VI, Assumption 1
can always be satisfied by LTI systems that are stabilizable
and detectable and is shown to hold for a nonlinear robotic
system for example.

In view of Assumption 1, the adaptation of the idea of [5]
leads to a triggering condition of the form

γ2W 2(e) ≤ δ(y). (9)

Note that the termsα(|x|) and H2(x) cannot be used to
define the triggering condition as these depend on the state
x which is not known a priori. The problem is that the Zeno
phenomenon may occur with (9). Indeed, wheny = 0, an
infinite number of jumps occurs for any value ofx such that
gp(xp) = 0. In [10], this issue was overcome by adding a
constant to (9), which would lead toγ2W 2(e) ≤ δ(y) + ε
here forε > 0, from which we can derive a practical stability
property. The event-triggered mechanism that we propose
allows us to guarantee an asymptotic stability property forthe
closed-loop while ensuring that the inter-transmission times
are lower bounded by a strictly positive constant. The idea
is to evaluate (9) only afterT units have elapsed since the
last transmission, whereT corresponds to the MATI given by
[19]. In that way, the triggering mechanism benefits from the
advantages of the event-triggered [5] and time-triggered [19]
strategies and allows the user to directly tune the minimum
inter-jump interval, up to a specified bound given in the
following. We thus redesign (9) as follows

γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ], (10)

where we recall thatτ ∈ R≥0 is the clock variable introduced
in (4). Consequently, the flow and jump sets of system (4)
are

C =
{
(x, e, τ) : γ2W 2(e) ≤ δ(y) or τ ∈ [0, T ]

}

D =
{
(x, e, τ) :

(
γ2W 2(e) = δ(y) andτ ≥ T

)
or

(
γ2W 2(e) ≥ δ(y) andτ = T

)}
.

(11)

Hence, the inter-jump times are uniformly lower bounded by
T . This constant is selected such thatT < T (γ, L), where

T (γ, L) :=






1
Lr

arctan(r) γ > L
1
L

γ = L
1
Lr

arctanh(r) γ < L
(12)

with r :=
√∣∣( γ

L
)2 − 1

∣∣ andL, γ come from Assumption 1
as in [19]. We are ready to state the main result.

Theorem 1. Consider system (4) with the flow and jump sets
defined in (11) and suppose the following hold.

• Assumption 1 is satisfied.

• The constantT in (11) is such thatT ∈ (0, T (γ, L)).

Then, there exist∆ > 0 andβ ∈ KL such that any solution
φ = (φx, φe, φτ ) with |(φx(0, 0), φe(0, 0))| ≤ ∆ satisfies

|φx(t, j)| ≤ β(|(φx(0, 0), φe(0, 0))|, t+j) ∀(t, j) ∈ domφ,
(13)

furthermore, ifφ is maximal, then it is complete. If Assump-
tion 1 holds globally, then (13) holds globally. �

V. L INEAR SYSTEMS

Consider a linear time-invariant plant of the form

ẋp = Apxp +Bpu, y = Cpxp, (14)

wherexp ∈ R
np , u ∈ R

nu , y ∈ R
ny andAp, Bp, Cp are

matrices of appropriate dimensions. We design the following
dynamic controller

ẋc = Acxc +Bcy, u = Ccxc +Dcy, (15)

wherexc ∈ R
nc andAc, Bc, Cc, Dc are matrices of appro-

priate dimensions. We take into account the network-induced
constraints. Then, the hybrid model (4) is



ẋ

ė

τ̇


 =




A1x+ B1e

A2x+ B2e

1


 (x, e, τ) ∈ C



x+

e+

τ+


 =



x

0

0


 (x, e, τ) ∈ D,

(16)

whereA1 :=

(
Ap+BpDcCp BpCc

BcCp Ac

)
, B1 :=

(
BpDc Bp

Bc 0

)
,

A2 :=

(
−Cp(Ap+BpDcCp) −CpBpCc

−CcBcCp −CcAc

)
and

B2 :=

(
−CpBpDc −CpBp

−CcBc 0

)
. We obtain the following result.

Proposition 1. Consider system (16). Suppose that there
exist ε1, ε2, µ > 0 and a positive definite symmetric real
matrix P such that
(
AT

1 P + PA1 +AT
2 A2 + ε1C

T

p Cp + ε2Inx
PB1

BT
1 P −µIne

)
≤0,

(17)
whereCp = [Cp 0]. Then Assumption 1 holds withV (x) =
xTPx, α(|x|) = λmin(P )|x|2, α(|x|) = λmax(P )|x|2,
W (e) = |e|, H(x) = |A2x|, L = |B2| :=

√
λmax(BT

2 B2),
γ =

√
µ, α(|x|) = ε2|x|2 and δ(y) = ε1|y|2. �

The proof of Proposition 1 has been omitted due to space
constraints. Proposition 1 provides a sufficient condition,
namely (17), for the verification of Assumption 1, which thus
allows us to use the results of Section IV for LTI systems.
It has to be noted that the LMI (17) can always be satisfied
when system (14) is stabilizable and detectable. Indeed, in
this case, we can select the controller (15) such thatA1

is Hurwitz. Noting that (17) is equivalent to the following



inequalities, by using the Schur complement of (17) (see
Section A.5.5 in [29]),

−µIne
≤ 0

AT
1 P+PA1+AT

2 A2+ε1C
T

p Cp+ε2Inx
+ 1

µ
PB1BT

1 P ≤ 0.
(18)

We see that we can select the matrixP such thatAT
1 P +

PA1+AT
2 A2+ε1C

T

p Cp+ε2Inx
is negative definite. It then

suffices to selectµ sufficiently large to ensure (18).
In view of Proposition 1, Assumption 1 holds withγ2 = µ.

On the other hand, the smallerγ, the larger the upper-bound
on T in (12). Hence, we can minimizeµ under the linear
constraint (17) to enlarge the constantT . Note thatL = |B2|
is fixed, sinceB2 depends on the plant and the controller
matrices and the controller is assumed to be known a priori,
and hence, we can only play withγ to enlargeT .

VI. I LLUSTRATIVE EXAMPLE

A. Model

Consider the dynamics of a single-link robot arm

ẋp1 = xp2

ẋp2 = − sin(xp1) + u

y = xp1,

(19)

wherexp1 denotes the angle,xp2 the rotational velocity and
u the input torque. The system can be written as

ẋp = Axp +Bu− φ(y)

y = Cxp,
(20)

wherexp := (xp1, xp2) and

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1
0

]T
, φ(y) =

[
0

sin(y)

]
.

(21)
In order to stabilize system (22), we first construct a state
feedback controller of the formu = Kxp+B

Tφ(y). Hence,
system (19) reduces to

ẋp = (A+BK)xp

y = Cxp.
(22)

We design the gainK such that the eigenvalues of the closed
loop system (22) are(−1,−2) (which is possible since the
pair (A,B) is controllable). Hence, the gainK is selected to
beK = [−2 − 3]. Next, since only the measurement ofy
is available, we construct a state-observer of the following
form

ẋc = Axc +Bu− φ(y) +M(y − Cxc), (23)

wherexc ∈ R
2 is the estimated state andM is the observer

gain matrix. We rewrite (23) as

ẋc = (A−MC)xc +Bu− φ(y) +My. (24)

We design the gain matrixM such that the eigenvalues of
(A −MC) are (−5,−6) (which is possible since the pair
(A,C) is observable). Thus, the observer gain is selected to

beM = [11 30]T . As a result, the closed-loop system in
the absence of sampling is given by

ẋp = Axp +Bu− φ(y)

y = Cxp

ẋc = (A−MC)xc +Bu− φ(y) +My

u = Kxc +BTφ(y).

(25)

We now take into account the effect of the network. We
consider the scenario where the controller receives the output
measurements only at transmission instantsti, i ∈ Z≥0 while
the controller is directly connected to the plant actuators.
We design a triggering condition of the form (10). As a
consequence, the network-induced error ise = ey = ŷ − y
and we obtain, fort ∈ [ti, ti+1)

ẋp = Axp +B
(
Kxc +BTφ(ŷ)

)
− φ(y)

= Axp +BKxc + φ(y + e)− φ(y) (26)

and

ẋc=(A−MC)xc+B
(
Kxc+B

Tφ(ŷ)
)
−φ(ŷ)+Mŷ

= (A−MC +BK)xc +MCxp +Mey. (27)

Let x := (xp, xc). Then, system (26)-(27) has the following
dynamics on flows

ẋ =

[
A BK
MC A−MC +BK

] [
xp
xc

]
+

[
0
M

]
e

+

[
φ(y + e)− φ(y)

0

]

:= Ax+ Be+ ψ(y, e).

(28)

Sincee = ŷ − y and in view of (19), we have

ė = −ẏ = −xp2. (29)

Hence, in view of (28), (29), the functionsf, g in (4) are
f(x, e) = Ax+ Be+ ψ(y, e) andg(x, e) = −xp2.

B. Verification of Assumption 1

We now verify Assumption 1. LetW (e) := |e| for all
e ∈ R. Consequently, for almost alle and allx

〈∇W (e), g(x, e)〉 ≤ |xp2|. (30)

Hence, condition (8) holds withH(x) = |xp2| and L =
0. Let V (x) = xTPx, whereP is a real positive definite
symmetric matrix such thatATP+PA = −Q (such a matrix
P always exist sinceA is Hurwitz) andQ is real positive
definite and symmetric such thatλmin(Q) > 4. We selectQ
as a block diagonal matrix with the diagonal elements equal
to 4.2, thusλmin(Q) = 4.2. Then, we have, for alle ∈ R

and almost allx ∈ R
4

〈∇V (x),f(x, e)〉 = xT (ATP+PA)x+2xTP (Be+ψ(y, e))
≤ −λmin(Q)|x|2 + 2|PB||x||e|

+2|P ||x||ψ(y, e)|.
(31)



In view of (28),
|ψ(y, e)| = |φ(y + e)− φ(y)| = | sin(y + e)− sin(y)| ≤ |e|.
As a consequence,

〈∇V (x), f(x, e)〉 ≤ −λmin(Q)|x|2 + 2(|PB|+ |P |)|x||e|.
(32)

Using the fact that2(|PB| + |P |)|x||e| ≤ λmin(Q)
2 |x|2 +

2(|PB|+|P |)2

λmin(Q) |e|2 and recalling thatλmin(Q)
4 > 1, we obtain

〈∇V (x), f(x, e)〉 ≤ −λmin(Q)

2
|x|2 + 2(|PB|+ |P |)2

λmin(Q)
|e|2

≤−λmin(Q)

4
|x|2−|xp2|2−

λmin(Q)

4
y2+

2(|PB|+|P |)2
λmin(Q)

|e|2.
(33)

Thus, condition (7) is verified withα(|x|) = λmin(Q)
4 |x|2,

δ(y) = λmin(Q)
4 y2 andγ2 = 2(|PB|+|P |)2

λmin(Q) .

C. Simulation results

We obtain the numerical valueγ = 26.5333, which gives,
in view of (12),T = 0.0592. We takeT = 0.059. Figure 2
shows that the plant and the estimated state asymptotically
converge to the origin as expected. The generated inter-
transmission times by the proposed mechanism (10) are
shown in Figure 3 where we can observe the interaction
between the time-triggered [19] and the event-triggered [5]
techniques. Table I gives the minimum and the average
inter-sampling times for the proposed triggering mechanism
(11) for 200 randomly distributed initial conditions such
that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 and for
different values ofT . We can see that the average and
the minimum inter-transmission times, respectively denoted
as τavg and τmin, increase whenT increases as shown in
Table I. To justify the proposed triggering mechanism, Figure
4 presents the inter-transmission times with the triggering
conditionγ2W 2(e) ≤ δ(y) without enforcing a constant time
T between transmissions (i.e. T = 0 in (10), (11)). We note
that Zeno phenomenon occurs in this case, as discussed in
Section IV.
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VII. C ONCLUSION

An emulation-based approach has been presented for the
design of output-based event-triggered controllers for non-
linear systems. The results apply to a class of nonlinear
systems, which includes stabilizable and detectable LTI sys-
tems as a particular case. The proposed technique ensures
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Fig. 3. Inter-transmission times.

T = 0.01 T = 0.04 T = 0.059
τmin 0.01 0.04 0.059
τavg 0.0489 0.0567 0.0625

TABLE I

M INIMUM AND AVERAGE INTER -TRANSMISSION TIMES FOR200

RANDOMLY DISTRIBUTED INITIAL CONDITIONS SUCH THAT

|(x(0, 0), e(0, 0))| ≤ 100 AND τ(0, 0) = 0 AND FOR A SIMULATION
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Fig. 4. Inter-transmission times generated by a triggering-condition of the
form γ2W 2(e) ≤ δ(y).

an asymptotic stability property and enforces the existence
of a (uniform) strictly positive lower bound on the inter-
transmission times. The structure of the proposed mechanism
provides insight into the interaction between event-triggered
and time-triggered approaches which opens the door for
future developments.

APPENDIX

Proof of Theorem 1. First, we prove the result when
Assumption 1 holds globally. Letζ : R≥0 → R be the
solution to

ζ̇ = −2Lζ − λ(ζ2 + 1) ζ(0) = θ−1, (34)

where θ ∈ (0, 1), λ :=
√
γ2 + η for some η > 0 and

γ comes from Assumption 1. We denotẽT (θ, η, γ, L) the
time it takes forζ to decrease fromθ−1 to θ. This time
T̃ (θ, η, γ, L) is a continuous function of(θ, η) which is
decreasing inθ andη (by invoking the comparison principle).
On the other hand, we note thatT̃ (θ, η, γ, L) → T (γ, L) as
(θ, η) tends to(0, 0) (whereT (γ, L) is defined in (12)). As a
consequence, sinceT < T , there exists(θ, η) such thatT <
T̃ (θ, η, γ, L). We fix the couple(θ, η). Let q := (x, e, τ).



We define for allq ∈ C ∪D
R(q) := V (x) + max{0, λζ(τ)W 2(e)}. (35)

Let q ∈ D, we obtain, in view of (4) and the fact thatW is
positive definite,

R(G(q)) = V (x) + max{0, λζ(0)W 2(0)}
= V (x) ≤ R(q), (36)

whereG(q) := (x, 0, 0). Let q ∈ C and suppose thatζ(τ) <
0. As a consequence it holds thatτ > T . Indeed,ζ(τ) is
strictly decreasing inτ , in view of (34), andζ(T ) > ζ(T̃ ) =
θ > 0 as T < T̃ . As a consequenceζ(τ) < 0 implies
that τ > T . Hence,γ2W 2(e) ≤ δ(y) in view of (11) since
q ∈ C. Consequently, in view of page 100 in [30], Lemma
1, Assumption 1 and (35)

R◦(q;F (q)) = V ◦(x, f(x, e)) ≤ −α(|x|), (37)

where F (q) := (f(x, e), g(x, e), 1). Hence, by following
similar arguments as in the proof of Theorem 1 in [19]
sinceα is continuous and positive definite andV is positive
definite and radially unbounded, there exists a continuous
positive definite functionρ1 such that

R◦(q;F (q)) ≤ −ρ1(V (x)) = −ρ1(R(q)). (38)

Whenq ∈ C andζ(τ) > 0, we have

R(q) = V (x) + λζ(τ)W 2(e). (39)

As above, in view of Lemma 1, Assumption 1 and (34) and
by following the same lines as in the proof of Theorem 1 in
[19], we obtain

R◦(q;F (q)) ≤ −α(|x|)−H2(x) − δ(y) + γ2W 2(e)

+ 2λζ(τ)W (e)H(x) − λ2ζ2(τ)W 2(e)− λ2W 2(e).
(40)

Using the fact that2λζ(τ)W (e)H(x) ≤ λ2ζ2(τ)W 2(e) +
H2(x),

R◦(q;F (q)) ≤ −α(|x|) + γ2W 2(e)− λ2W 2(e). (41)

Recall thatλ2 = γ2 + η, it holds that

R◦(q;F (q)) ≤ −α(|x|) − ηW 2(e). (42)

By using the same argument as in (38), we derive that

R◦(q;F (q)) ≤ −ρ1(V (x)) − ηW 2(e)

= −ρ1(V (x)) − ηθ

λ
λθ−1W 2(e)

= −ρ1(V (x)) − ρ2(λθ
−1W 2(e)), (43)

whereρ2 : s 7→ ηθ
λ
s ∈ K∞. Sinceζ(τ) ≤ θ−1 for all τ ≥ 0

in view of (34), it holds that

R◦(q;F (q)) ≤ −ρ1(V (x)) − ρ2(λζ(τ)W
2(e)). (44)

We deduce that there exists a continuous positive definite
function ρ3 such that

R◦(q;F (q)) ≤ −ρ3(V (x) + λζ(τ)W 2(e)) = −ρ3(R(q)),
(45)

In view of (38), (45) and Lemma 1, whenζ(τ) =
0, R◦(q;F (q)) ≤ max{−ρ1(R(q)),−ρ3(R(q))}. Conse-
quently, it holds that, for allq ∈ C

R◦(q;F (q)) ≤ −ρ(R(q)) (46)

whereρ := min{ρ1, ρ3} is continuous and positive definite.
Let φ be a solution to (4), (11). In view of (46) and by
definition of the Clarke’s derivative (see for instance page
99 in [30]), it holds that, for allj and for almost allt ∈ Ij

(whereIj = {t : (t, j) ∈ domφ})

Ṙ(φ(t, j)) ≤ R◦(φ(t, j);F (φ(t, j))) ≤ −ρ(R(φ(t, j))).
(47)

Thus, in view of (36), (47) and since inter-jump times are
lower bounded byT in view of (11), we conclude that,
by following the same lines as in the end of the proof of
Theorem 1 in [19], there exists̃β ∈ KL such that for any
solutionφ to (4), (11) and any(t, j) ∈ domφ,

R(φ(t, j)) ≤ β̃(R(φ(0, 0)), 0.5t+ 0.5T j). (48)

In view of Assumption 1 and sinceW is continuous (since it
is locally Lipschitz) and positive definite, there existsαW ∈
K∞ such thatW (e) ≤ αW (|e|) for all e ∈ R

ne according
to Lemma 4.3 in [27]. As a result, in view of Assumption
1, (34) and (35), it holds that, for allq ∈ C ∪D,

V (x) ≤ R(q) ≤ V (x) +
λ

θ
W 2(e)

α(|x|) ≤ R(q) ≤ α(|x|) + λ

θ
αW (|e|)

α(|x|) ≤ R(q) ≤ αR(|(x, e)|), (49)

whereαR : s 7→ α(s) + λ
θ
αW (s) ∈ K∞. Hence, in view of

(48) and (49), we deduce that for any solutionφ to (4), (11)
and for all (t, j) ∈ domφ

α(|φx(t, j)|) ≤ R(φ(t, j))

≤ β̃
(
αR(|(φx(0, 0), φe(0, 0))|), 0.5t+0.5T j

)
.

(50)

Consequently,

|φx(t, j)| ≤ β(|(φx(0, 0), φe(0, 0))|), t+ j), (51)

whereβ : (s1, s2) 7→ α−1(β̃(αR(s1), s2)) ∈ KL. Thus, (13)
holds.

We now investigate the completeness of the maximal
solutions to system (4), (11). Letφ be a maximal solution to
(4), (11). We first show thatφ is nontrivial, i.e. its domain
contains at least two points (see Definition 2.5 in [18]).
According to Proposition 6.10 in [18], it suffices for that
purpose to prove thatF (q) ∈ TC(q) for any q = (x, e, τ) ∈
C\D, where TC(q) is the tangent cone2 to C at q. Let
q ∈ C\D. If q is in the interior ofC, TC(q) = R

nx+ne+1

and the required condition holds. Ifq is not in the interior

2The tangent cone to a setS ⊂ R
n at a pointx ∈ R

n, denotedTS(x),
is the set of all vectorsω ∈ R

n for which there existxi ∈ S, τi > 0
with xi → x, τ → 0 as i → ∞ such thatω = limi→∞(xi − x)/τi (see
Definition 5.12 in [18]).



of C, necessarilyτ = 0 as q ∈ C\D, in this caseTC(q) =
R

nx+ne × R≥0 and we see thatF (q) ∈ TC(q), in view
of (4). Hence,φ is nontrivial according to Proposition 6.10
in [18]. In view of (4), (11) and (51),φx and φτ cannot
explode in finite time. Recall that the network-induced error
is φe = (φey , φeu) with φey = φy(tj , j) − φy(t, j), φeu =
φu(tj , j)− φu(t, j) for j > 0 and (t, j) ∈ domφ where we
write domφ = ∪j∈{0,...,J}([tj , tj+1], j) with some abuse of
notation. Hence, in view of (2), (3), (51) and sincegp, gc are
continuous, it holds that, for allj > 0 and (t, j) ∈ domφ

|φey (t, j)| = |gp(φxp
(tj , j))− gp(φxp

(t, j))|
≤ |gp(φxp

(tj , j))|+ |gp(φxp
(t, j))|

≤ 2 max |gp(z)|.
|z|≤β(|(φx(0,0),φe(0,0))|,0)

(52)

Similarly, we obtain, for allj > 0 and (t, j) ∈ domφ

|φeu(t, j)| ≤ |gc(φxc
(tj , j), φy(tj , j))|

+|gc(φxc
(t, j), φy(tj , j))|

= |gc(φxc
(tj , j), gp(φxp

(tj , j))|
+|gc(φxc

(t, j), gp(φxp
(tj , j))|

≤ 2 max |gc(z1, z2)|.
|z1| ≤β(|(φx(0,0),φe(0,0))|,0)

|z2| ≤max |gp(z1)|

(53)

When j = 0, we have that|φey (t, 0)| ≤ |φey (0, 0)| +
|gp(φxp

(0, 0))−gp(φxp
(t, 0))| and|φeu(t, 0)| ≤ |φeu(0, 0)|+

|gc(φxc
(0, 0), φy(0, 0))−gc(φxc

(t, 0), φy(0, 0))| and we can
derive similar bounds on the interval[0, t1]. Thus, in view
of (52) and (53) and sinceφe is reset to 0 at each jump,φe
cannot blow up in finite time. As a consequence,φ cannot
explode in finite time. LetG(x, e, τ) := (x, 0, 0) denotes the
jump map in (11). The solutions to (4), (11) cannot leave
the setC ∪D after a jump sinceG(D) ⊂ C in view of (4),
(11). Thus, we conclude that maximal solutions to (4), (11)
are complete according to Proposition 6.10 in [18]. Finally,
we note that if Assumption 1 holds locally, then there exists
∆ > 0 such that (36) and (47) hold on the invariant set
|(x, e)| ≤ ∆ and consequently (13) holds locally. �
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