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Stabilization of nonlinear systems using event-triggereautput feedback
laws

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz anddbr&lesic

Abstract—We design output-based event-triggered con- Most existing results on event-triggered control assume
trollers to stabilize a class of nonlinear systems. We start that the full state measurement is available. However,ithis
from an output feedback law which stabilizes the plant in not realistic for many applications where only a part of the

the absence of sampling and we then synthesize the event- ) e
triggering condition. The proposed event-triggering condtion plant state can be measured. Hence, the design of stagilizin

combines event-triggered and time-triggered techniquesThe ~ €vent-triggered controllers based on output measurements
idea is to turn on the event-triggering mechanism only aftera  has a significant practical interest. This problem has been

fixed amount of time has elapsed since the last transmission. first addressed in [9] to the best of our knowledge, and then
This time is computed based on results on the stabilizationfo in [10]-[16] for instance.

time-driven sampled-data systems. The overall strategy eures L . .
an asymptotic stability property for the closed-loop systen. It is important to emphasize that the design of output feed-

Moreover, it has the advantage to enforce a (uniform) minimun ~ back event-triggered controllers is particularly chajieny
amount of time between two transmissions which can be direlit ~ because it is usually more difficult to ensure the existerice o

tuned. We show that the results are applicable to linear time g minimum amount of time between two transmissions than
invariant systems as a particular case and we illustrate the iy state feedbacks (see [10]); in particular when we aim
approach for the stabilization of a nonlinear single-link robot . b'I" . Th .
arm model. to guarantee asymptotic stability properties. The extsten
of such a time is not only useful to prove stability but
. INTRODUCTION also because two triggering instants cannot occur arlytrar
. . close in time in practice due to hardware limitations. In
Networked control systems (NCSs) are systems in Wh'cj;O], event-triggered controllers are proposed for lirtiae-

the plant and the controller communicate with each oth . . . ;
Iy : navarlant (LTI) systems which guarantee a uniform ultimate
over a digital channel. NCSs are of great interest for a broab

range of applications due to their advantages in terms O]pundedness property. These controllers are such that the

D . . Smaller the size of the ultimate bound, the shorter the
flexibility, cost and ease of maintenance. A major challenge L . R
uaranteed minimum inter-transmission time. In [17], éven

in such systems is to achieve the control objectives despﬁe :
S S triggered observer-based controllers have been designed t
the communication constraints induced by the network (like 99 an

time-varying sampling, delay, packet drop-out, etc.). dn< énsure an asymptotic stability property for three différen

. N . . architectures of LTI systems. More recently, a discrete-
ventional setups, data transmissions are time-drivenwaad t _. . . .
. o . time event-triggering mechanism for LTI systems has been
successive transmission instants are constrained to be les

than a fixed constant, called ttmeaximum allowable trans- presented in [15] to asymptotically stabilize the system. T
T ' L the best of our knowledge, output feedback event-triggered

mission interval MATI) (seee.qg.[1], [2]). However, it is not . 2=

clear that this paradigm is always suitable. Indeed, theesa controllers for nonlinear systems have only been studied in

amount of transmissions per unit of time is generated in th 2] where passivity tools were used to derive triggering

N .~ . conditions which ensure afi; stability property.
case, even when transmissions are not necessary in view 0 . : . I
n this paper, we are interested in designing output

the control objectives. To overcome this shortcoming, even

. ; feedback event-triggered controllers for nonlinear syste
triggered control has been proposed as an alternative Wh%ﬁich ensure a (global) asymptotic stability property and
the transmission instants are determined by the occurre g ymp Y property

~ihich guarantee the existence of a uniform strictly positiv
of an event, based on the measured output, and not a time- : R .
. S . ower bound on the inter-transmission times. We design the
driven clock, seee.g.[3]-[8]. The main idea is to adapt : .
o controller using the emulation approach (s=g. [5], [7],
transmissions to the state of the plant such that the lo
. o . .. [10]) as we assume that we know an output feedback law
is closed only when it is needed according to the stability " :
. hich stabilizes the system in the absence of network and
or/and the performance requirements. : L )
we then take into account the communication constraints and
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[19]. This two-step procedure is justified by the fact that thcontinuous functiony : R, x Ry, — R, is of class
adaption of the event-triggering condition of [3] to outputCL if for eacht € R.,, v(.,t) is of classk, and, for
feedback on its own may lead to Zeno phenomenon (seachs € R.,, 7(s,.) is decreasing to zero. We denote
[10]). Although the rationale is intuitive, the analysisrist the minimum and maximum eigenvalues of the symmetric
trivial as we show in the paper. This triggering mechanismositive definite matrix4d as A (A) and Apax(A), respec-
has been used in [20] to stabilize nonlinear singularly petively. We usel,, to denote the identity matrix of dimension
turbed systems under a different set of assumptions. Simila. We will consider locally Lipschitz Lyapunov functions
approaches have been followed in [16], [21], [22] to enforcéhat are not necessarily differentiable everywhereygtoze
a lower bound on the inter-transmission times in differentve will use the generalized directional derivative of Clark
contexts, mainly for linear systems. Note that the idea ofhich is defined as follows. For a locally Lipschitz function
enforcing a given time between two transmissions is linket¥ : R* — R., and a vectorv € R", V°(z;v) :=
to time regularization techniques, see [23]. lim supy, o+, . (V (y+hv)—V(y))/h. For a continuously
Our results rely on similar assumptions as in [19] whichdifferentiable functionV, V°(x;v) reduces to the standard
allow us to derive local and global results. These conditiordirectional derivativé VV (x), v), whereVV (z) is the (clas-
are shown to be always verified by LTI systems that arsical) gradient. We will invoke the following result which
stabilizable and detectable, in which case these are refaerresponds to Proposition 1.1 in [26].

mulated as linear matrix inequalities (LMI). Contrary t0] emma 1 (Lemma II.1 [26]). Consider two functiong/; :
[16], the approach is applicable to nonlinear systems angh _, R and U, : R” — R that have well-defined Clarke
the output feedback law is not necessarily based on &frivatives for allz € R and v € R”. Introduce three sets
observer. Compared to [12], we rely on a different set ofy .— {» . U,(z) > Us(2)}, B := {2 : Ui(z) < Us(2)},
assumptions and we conclude a different stability property .— {; . U/;(z) = U,(z)}. Then, for anyv € R", the

In addition, we show that our results are applicable to anynction U (z) := max{U;(z), Us(z)} satisfiesU°(z;v) =
LTI systems that are stabilizable and detectable and to (& (4 1) for all 2 € A, U°(x;v) = US(x;v) for all z € B

nonlinear robotic example for which the results in [12] arynd (/°(z; v) < max{U? (z;v), US(z;v)} for all z € T. O
not applicable since the required conditions in Propasitio

1 in [12] are not satisfied. Unlike [11], where LTI systemsBasic definitions on hybrid systems.In this paper, we
have been studied, we do not necessarily consider observepnsider hybrid systems of the following form using the
based output feedbacks and the triggering condition does rformalism of [18]

necessarily rely on estimate§ of the unmeasured st.ates._ The i=F(z) zeC, +* =G(x) zeD, 1)
latter has the advantage to lighten the implementatioresinc

the triggering mechanism only needs to have access to tiwsere z € R” is the state,F' is the flow map,C is
output of the plant, and not the controller variable. Fipatt  the flow set,G is the jump map andD is the jump set.
the particular case of LTI systems, we conclude asymptotithe vector fieldsF" and G' are assumed to be continuous
stability properties as opposed to ultimate boundedness amd the set<” and D are closed. The solutions to system
[10]. It has to be noted that the event-triggering mechdd) are defined on so-called hybrid time domains. A set
nism that we propose is different from the periodic event C R, x Z>( is called acompact hybrid time domain
triggered control (PETC) paradigm, seg.[24], [25], where if £ = ,E{OU J}([tj,tj+1],j) for some finite sequence of
the triggering condition is verified 0r_1|y at some pe”_Od'C[_imesOJ: to < t; < .. < tyanditis ahybrid time
sampllng instants. In our case, the triggering mechanism & main if for all (T,J) € B,EN(0,T] x {0,1,..,J})
cpntmuouslyevaluateq, pncé“ units of time have elapsed 5 4 compact hybrid time domain. A functiah: £ — R”
since the last transmission. _ _is a hybrid arc ifE is a hybrid time domain and if for each
. The remamder_of the paper is organised as folloyvs. Pre_zh "€ Zso,t = &(t,4) is locally absolutely continuous on
inaries are given in Section Il. The system model is provideg; ._ _{t . (t,j) € E}. A hybrid arc ¢ is a solution to

in Section Ill. In Section IV, we present the main results. Iy siem (1) if: (i) $(0,0) € C U D; (i) for any j € Zx,,
Section V, we show that the required conditions are alway(g(tjj) € C and d(t, j) = F(4(t, ) for almost allt € 17
satisfied by stabilizable and detectable LTI systems. Agiy for every (t,j) € dom¢ such that(t,j + 1) € dome
lllustrative example is given in Section VI and conclusions,; ;) ¢ p and o(t,j+1) = G(o(t j))’- A solution ¢ to
are proposed in Section VII. The proofs are given in thgystem (1) ismaximalif it cannot be extended, and it is

Appendix. completeif its domain, domp, is unbounded.
1. PRELIMINARIES I1l. PROBLEM STATEMENT
Notation. We denoteR = (—o0,0), R., = [0,00) and Consider the nonlinear plant model

Z>o = {0,1,2,..}. The Euclidean norm is denoted |as We
use the notatioriz, y) to represent the vectdr”, y7]7 for
x € R™ andy € R™. A continuous functiony : Ry, — R yoo= gp(),

is of classK if it is zero at zero, strictly increasing, and it where 2, € R" is the plant statex € R™ is the
is of classK, if in addition v(s) — co ass — oo. A control input andy € R"v is the measured output of the

T, = fp(:cp,u)

)



plant. We assume that the dynamic controller below globallwherez := (z,,z.) € R" andr € R is a clock variable

asymptotically stabilizes system (2) which describes the time elapsed since the last jump and
‘rbC = fc(xca y)
u = gc(xmy), (3) fp(iCp,gc(CCc,y-i-ey)-i-eu)
x,e) =

wherez. € R" is the controller state. We emphasize that

the z.-system is not necessarily an observer. Moreover, (3) fe(@e,y + ey)

captures static output feedbacks as a particular casetinygset 5
u = ge(y). — 523 9p(Tp) [ (xp, 9o,y + 6y)+eu)
We consider the scenario where controller (3) communi- gla,e) =
cates with the plant via.a digital channel. Hence, the.plgnt —%gc(xc, y+ey)fe(ze,y +ey)
output and the control input are sent only at transmission (5)

instantst;, 7 € Z>o. We are interested in an event-triggeredrne flow and jump sets, respectively denot@dnd D, are
implementation (see Figure 1) in the sense that the sequengsined according to the triggering condition we will define.
of transmission instants is determined by a criterion based ag long as the triggering condition is not violated, the eyst
the output measurements. At each transmission instant, #)&ys on( where no transmission occurs. Jumps occur only

if the triggering condition is verified,e. (x, e, 7) € D. When
(x,e,7) € C N D, the system flows only if flowing keeps
(x,e,7) in C, otherwise the system experiences a jump.
u(ty)  u(t) y(ti)  y(t) The functionsf and g, defined in (5), are assumed to be
3 Controller ey continuous and the set§ and D will be closed (which

ensure that system (4) is well-posed, see Chapter 6 in [18]).
[ Eventtriggering | - - - - The main objective of this paper is to design the flow and

R mechanism the jump sets of system (4i)ge. the triggering condition, to

ensure a (global) asymptotic stability property for sys{dmn

Fig. 1. Event-triggered control schematic [10]
IV. MAIN RESULTS

plant output is sent to the controller which computes a new |, this section, we first present the conditions that we im-
We assume that this process is performed in a synchronoggd finally we state the main result. We make the following
manner and we ignore the computation times and the possiblgsumption on system (4), which is inspired by [19].
transmission delaysIn that way, we obtain

Assumption 1. There existA,, A, > 0, locally Lipschitz

T = Tolep, @), e fel(we,§) 1€ [t ti] positive definite function¥ : R"= — R., and W : R" —
7 =0, =0 t € [ti,tit1) R, continuous function/ : R"> — R, real numbers
LN f o B . v,L > 0, a,@ € Ko and continuous, positive definite
yt) = yt), w(t;) = ulti), U= gele, 9), functionsé : R"™ — R, anda : Ry, — Ry, such that,

whereg and respectively denote the last transmitted valuefor all z € R"=

of the plant output and of the control input. We assume that .

zero-order-hold devices are used to generate the sampled a(fz]) < V(z) < a(lz)), (6)

valuesj and @, which leads toy = 0 anda = 0. We for i |¢| < A, and almost alljz| < A,

introduce the network-induced errer:= (ey,e,) € R",

wheree, :=§ —y ande, := 4 — u which are resett® at  (VV(2), f(z,¢)) < —a(|z]) — H*(z) = 8(y) +*W?(e)

each transmission instant. (7)
We model the event-triggered control system using th

hybrid formalism of [18] as in [10], [16], [7], for which a &nd for allz| < A, and almost alle| < A,

jump corresponds to a transmission. In that way, the system (VW(e),g(z,e)) < LW (e) + H(x). (8)

can be modeled as ) )
We say that Assumption 1 holds globally if (7) and (8) hold

j.c f(@,e) for almost allz € R™* ande € R™e. O

é = g(z,e) (x,e,7) € C

7 1

I (4) Conditions (6)-(7) imply that the system = f(z,¢)
x+ B g D is Ly-gain stable fromW to (H,+/§). This property can
€+ o 0 (,e,7) € D, be analysed by investigating the robustness property of the
-

closed-loop system (2)-(3) with respect to input and/opatit
Iwe think that the effect of computation and transmissioraytelcan be measure_ment_e_rrors '_n_the absen(?e of SamP“”Q-_ Note that,
studied by using similar arguments as in [5]. sincelV is positive definite and continuous (since it is locally



Lipschitz), there existyc € K such thatW(e) < x(le|) o The constanf in (11) is such thatl’ € (0,7 (v, L)).

(according to Lemma 4.3 in [27]) and hence (6), (7) implyrhen, there existh > 0 and 3 € KL such that any solution

that the systemi = f(z,e) is input-to-state stable (ISS),  — (¢, 4., ¢,) with |(¢.(0,0), 6. (0,0))| < A satisfies
see [28]. We also assume an exponential growth condition

of the e-system on flows in (8) which is similarly used in |¢.(t, )| < B(|(¢2(0,0), ¢(0,0))|,t+7) V(¢ j) € domeg,

[2], [19]. As we will show in Sections V-VI, Assumption 1 (13)
can always be satisfied by LTI systems that are stabilizabferthermore, if¢ is maximal, then it is complete. If Assump-
and detectable and is shown to hold for a nonlinear robotiton 1 holds globally, then (13) holds globally. O
system for example.
In view of Assumption 1, the adaptation of the idea of [5] V. LINEAR SYSTEMS
leads to a triggering condition of the form Consider a linear time-invariant plant of the form
2 2
aé w (6) < 6(y) (9) S.Cp _ APIP +Bpu, y = Opxpv (14)

Note that the termsy(|z|) and H?(x) cannot be used to

define the triggering condition as these depend on the stff@€reéz» € R™, u € R™, y € R™ and 4,, B, C), are
2 which is not known a priori. The problem is that the Zendn@trices of appropriate dimensions. We design the follgwin
phenomenon may occur with (9). Indeed, wher- 0, an dynamic controlier

infinite number of jumps occurs for any value ofuch that . _

gp(z,) = 0. In [10], this issue was overcome by adding a fe=Acze + By, u=Cee + Dy, (15)
constant to (9), which would lead t9*W?(e) < 6(y) +¢  wherez, € R™ and A,, B, C,, D, are matrices of appro-
here fore > 0, from which we can derive a practical stability priate dimensions. We take into account the network-induce
property. The event-triggered mechanism that we propogenstraints. Then, the hybrid model (4) is

allows us to guarantee an asymptotic stability propertytier

closed-loop while ensuring that the inter-transmissiomes @ Arz + Bie
are lower bounded by a strictly positive constant. The idea ¢ | = | Az +Boe | (x,e,7)€C
is to evaluate (9) only afte¥’ units have elapsed since the 7 1
last transmission, whefE corresponds to the MATI given by - . (16)
[19]. In that way, the triggering mechanism benefits from the N
advantages of the event-triggered [5] and time-trigget@®d [ € =10 (z,e,7) € D,
strategies and allows the user to directly tune the minimum T 0
inter-jump interval, up to a specified bound given in the A B.D.C. BO b B
following. We thus redesign (9) as follows where A, = (" ch o : "), By = < ; ‘ Op>,

Y*W2(e) < 6(y) or T €10,T], (10) S —Cy(Ap+BpDeCy)  —CpByCe g

2 ( ~C.B.C, ~C.A. ) an

where we recall that € R is the clock variable introduced
in (4). Consequently, the flow and jump sets of system (4&
2 =

—-CpyByD. —Cu,B, ) )
are . . We obtain the following result.

_CCBC

Proposition 1. Consider system (16). Suppose that there
existey, g9, > 0 and a positive definite symmetric real
matrix P such that

ATP + PA, + AL Ay + 10, 0, + e21,,  PB, -0
B,’lrp _ILL]InG T

C = {(x,e,T) cy2W2(e) < d(y) or 7 € [O,T]}
D = {(x,e,T) : ('yQWQ(e) =4(y) andr > T) or (11)

(72W2(e) > 6(y) and T = T) } an

Hence, the inter-jump times are uniformly lower bounded byhereC,, = [C,,  0]. Then Assumption 1 holds with(z) =
T. This constant is selected such tHak 7 (v, L), where 27 Pz, a(|z]) = Amin(P)z[%, @(|z]) = Amax(P)|z|?,
W(e) = le|, H(z) = |Axz|, L = |Bz2| := \/Amax (B2 B2),

- arctan(r) v>L 2 4
Ty =4 I V1 g2 7=V all) =eslef andd(y) = ey, 0
+ arctanh(r) vy <L The proof of Proposition 1 has been omitted due to space

constraints. Proposition 1 provides a sufficient condition
with 7 := \/|(})? = 1| and L,y come from Assumption 1 namely (17), for the verification of Assumption 1, which thus
as in [19]. We are ready to state the main result. allows us to use the results of Section IV for LTI systems.
It has to be noted that the LMI (17) can always be satisfied
Theorem 1. Consider system (4) with the flow and jump setg/hen system (14) is stabilizable and detectable. Indeed, in
defined in (11) and suppose the following hold. this case, we can select the controller (15) such that
o Assumption 1 is satisfied. is Hurwitz. Noting that (17) is equivalent to the following



inequalities, by using the Schur complement of (17) (selee M = [11 30]T. As a result, the closed-loop system in

Section A.5.5 in [29]), the absence of sampling is given by
—pln, <0 ip = Axp+ Bu—¢(y)
AT P+ PA -+ AL Ay +€1C, Cptesll,, + L PBIBTP <0. y = Cuz, (25)
(18) ie = (A—=MC)xc+ Bu—¢(y)+ My

We see that we can select the matfixsuch thatA{ P+ u = Kz.+ BT¢(y).
PA; +A2TA2+51€ZUP+52]IM is negative definite. It then
suffices to select sufficiently large to ensure (18).

In view of Proposition 1, Assumption 1 holds with = .
On the other hand, the smaller the larger the upper-bound

We now take into account the effect of the network. We
consider the scenario where the controller receives theubut
measurements only at transmission instantse Z, while

the controller is directly connected to the plant actuators

onT n (12). Hence, we can minimizg under the linear We design a triggering condition of the form (10). As a

constraint (17) to enlarge the constdhtNote thatl = |Bs| : : .

C . consequence, the network-induced erroeis e, = § — y

is fixed, sinceB, depends on the plant and the controller, :
. ) .—and we obtain, fot € [t;,t;11)

matrices and the controller is assumed to be known a priori,

and hence, we can only play withto enlargeT". iy = Azp + B(Kxc i BT¢@)) — 6(y)
VI. | LLUSTRATIVE EXAMPLE = Az, + BKz.+ ¢y +¢e) — o(y) (26)
A. MOde| and
Consider the dynamics of a single-link robot arm b= (A—MC):CC+B(K:¢C+BT¢(§)) — 6()+ Mi
ol = 2 = (A~ MC + BK)z. + MCx, + Me,. (27)
Epe = —sin(zp) +u (19)
y = 2, Let x := (xp,z.). Then, system (26)-(27) has the following
dynamics on flows
wherez,,; denotes the angle;,, the rotational velocity and
u the input torque. The system can be written as - A BK Trl 4 0 e
MC A—-MC+ BK| |z, M
&, = Ax,+ Bu-—
p = ot Bumdl) 20) S+ €)= 6(1) 29)
y = Cuxp, + 0
wherez,, := (xp1, zp2) and = Az + Be+ ¢(y,e).
T . ~ . .
0 1 0 1 0 Sincee = y — y and in view of (19), we have
a=fo o] 2=l =fo] o= L],
(21) y p2

In order to stabilize system (22), we first construct a stalgence, in view of (28), (29), the functiong ¢ in (4) are
feedback controller of the form = Kz, + BY ¢(y). Hence, f(z,e) = Az + Be + ¢(y, ¢) andg(z, €) = —xpo.

system (19) reduces to

B. Verification of Assumption 1

(22) We now verify Assumption 1. Lei¥(e) := |e| for all
e € R. Consequently, for almost adl and all =
We design the gaik’ such that the eigenvalues of the closed

i, = (A+BK)z,
y = Czp.

loop system (22) ar¢—1, —2) (which is possible since the (VW (e), g(z,€)) < |zpal. (30)
pair (A, B) is controllable). .Hence, the gaii is selected to Hence, condition (8) holds with(z) = |z, and L =
be X' =[-2 —3]. Next, since only the measurementof | ot y(;) — 47 Py, where P is a real positive definite
is available, we construct a state-observer of the fongw'”symmetric matrix such that” P+PA = —Q (such a matrix
form

P always exist sinced is Hurwitz) and( is real positive
Go = Awet Bu—o(y) + My — Ca.), (23) definite and _symmetric sgch .thmnin(Q) > 4. We select)

as a block diagonal matrix with the diagonal elements equal
wherez,. € R? is the estimated state and is the observer to 4.2, thus\,i,(Q) = 4.2. Then, we have, for alk € R
gain matrix. We rewrite (23) as and almost al: € R*

i.=(A— MQC)zx.+ Bu— ¢(y) + My. (24) (VV(2),f(z,e)) = 2T (AT P+PA)z+22" P(Be+v(y,e€))

We design the gain matri2/ such that the eigenvalues of < —Amin(Q)|z[* + 2| PBl|zle]
(A — MC) are (—5,—6) (which is possible since the pair +2|P||z||¢(y, €)|.
(A, C) is observable). Thus, the observer gain is selected to (32)



In view of (28), 04
[W(y,e)l = |o(y + €) — d(y)| = |sin(y + €) —sin(y)| < [e].
As a consequence,
(VV (@), f(2,€)) < =Amin(Q)|2|* + 2(|PB| + | P|)|[e].
(32)

0.3

021

Inter-transmission times

0.1r
0.059 g

1 )\min
Using the fact tha(|PB| + |P|)|x|le] < #MQ +

%MQ and recalling that’\mi+@) > 1, we obtain Trnamlssion sarts |
Amin(Q), o = 2(|PB|+|P))?, , Fig. 3. Inter-transmission times.
(VV(z), f(z,e)) < — |lz|” + le]
2 Amin () T =001 | T=004 | T=0.059

) =o. =o. =o.

<_ )\min(Q)|x|2_|x 2|2_/\min(Q) 2+2(|PB|+|P|) |e|2' Tmin 0.01 0.04 0.059

= 4 P 4 Amin(Q) Tavg 0.0489 0.0567 0.0625
(33) TABLE |

e . e . ; MINIMUM AND AVERAGE INTER -TRANSMISSION TIMES FOR200
Thus, condition (7) is verified withy(|z[) = 2=n(@)|;2)
Amin(Q) 9 9 2(‘P6‘+IPD2 RANDOMLY DISTRIBUTED INITIAL CONDITIONS SUCH THAT
d(y) = =5==y? andy® = = ——57—.

Amin(Q) |(z(0,0), e(0,0))| < 100 AND 7(0,0) = O AND FOR A SIMULATION
C. Simulation results TIME OF 10s.

We obtain the numerical value = 26.5333, which gives,
in view of (12),7 = 0.0592. We takeT = 0.059. Figure 2
shows that the plant and the estimated state asymptotical
converge to the origin as expected. The generated inte
transmission times by the proposed mechanism (10) ar
shown in Figure 3 where we can observe the interactiol
between the time-triggered [19] and the event-triggerdd [5

0.04-

o

Q

[
T

Inter-transmission times
o
o
R

techniques. Table | gives the minimum and the averag 001
inter-sampling times for the proposed triggering mechanis WW .
(11) for 200 randomly distributed initial conditions such 005 o ois 02 o 03 o3 o4 oa5 o5 s

that |(x(0,0),¢(0,0))] < 100 and 7(0,0) = 0 and for Transmission instants

different values of 7. We can see that the average anq:ig. 4. Inter-transmission times generated by a triggecimgdition of the

the minimum inter-transmission times, respectively dedot form 42W?2(e) < 5(y).

as Tayg and Ty, iNncrease wherd” increases as shown in

Table I. To justify the proposed triggering mechanism, Fégu

4 presents the inter-transmission times with the triggerinan asymptotic stability property and enforces the exisgenc

conditiony2W?2(e) < 6(y) without enforcing a constant time of a (uniform) strictly positive lower bound on the inter-

T between transmissionsd. 7' = 0 in (10), (11)). We note transmission times. The structure of the proposed meamanis

that Zeno phenomenon occurs in this case, as discussedpiovides insight into the interaction between event-iiggl

Section V. and time-triggered approaches which opens the door for
future developments.

Tpl — - == Tp2 - — = Tel Te2

APPENDIX

Proof of Theorem 1. First, we prove the result when
Assumption 1 holds globally. Lef : R., — R be the

Magnitude

solution to
-0 1 2 3 4 Tlmi[S] s 7 s s 10 C = —2L( — /\(C2 + 1) C(O) — 9—1’ (34)
Fig. 2. Actual and estimated states of the plant whered € (0,1), A = /+*+n for somen > 0 and

~ comes from Assumption 1. We dendigd,n,, L) the
time it takes for¢ to decrease fron®~! to 6. This time
VIl. CONCLUSION T(0,1,~,L) is a continuous function of@,7) which is
An emulation-based approach has been presented for ttiecreasing i andn (by invoking the comparison principle).
design of output-based event-triggered controllers fan-no On the other hand, we note that{#,n,~, L) — T (v, L) as
linear systems. The results apply to a class of nonlinegf,n) tends to(0,0) (whereT (v, L) is defined in (12)). As a
systems, which includes stabilizable and detectable L4 syconsequence, since < T, there exist46, ) such thatl’ <

tems as a particular case. The proposed technique ensuig®,n,~,L). We fix the couple(d, ). Let ¢ := (z,e, 7).



We define for allq € C U D
R(q) := V(x) + max{0, \{(T7)W?2(e)}. (35)
Let ¢ € D, we obtain, in view of (4) and the fact th&lt is
positive definite,
R(G(q)) = V(x) + max{0, A((0)W?(0)}
=V(z) < R(q), (36)
whereG(q) := (z,0,0). Letq € C and suppose thal(r) <
0. As a consequence it holds that> 7. Indeed,((7) is

strictly decreasing inr, in view of (34), and((T") > C(7~') =
0 > 0asT < T. As a consequencg(r) < 0 implies

thatT > T. Hence,?W?2(e) < §(y) in view of (11) since

In view of (38), (45) and Lemma 1, wheg(r) =

0,R°(¢; F(q)) < max{—p1(R(q)), —ps(R(q))}. Conse-
quently, it holds that, for aly € C

R*(q; F(a)) < —p(R(a))

wherep := min{p1, p3} is continuous and positive definite.
Let ¢ be a solution to (4), (11). In view of (46) and by
definition of the Clarke’s derivative (see for instance page
99 in [30]), it holds that, for allj and for almost alk € 17
(wherel’ = {t : (t,j) € domg})

R(¢(tvj)) S RO((b(tv])vF(d)(tvj))) S _p(R(d)(tvj))z‘l?)
Thus, in view of (36), (47) and since inter-jump times are

(46)

g € C. Consequently, in view of page 100 in [30], Lemma10wer bounded byI" in view of (11), we conclude that,

1, Assumption 1 and (35)

R°(q; F(q)) = V°(, f(x,e)) < —a(lz]),
where F'(q)

37)

positive definite functiorp; such that

R(g; F(q) < =p1(V(2)) = —p1(R(q)).  (38)
Wheng € C and((7) > 0, we have
R(q) = V(2) + A(T)W*(e). (39)

As above, in view of Lemma 1, Assumption 1 and (34) and
by following the same lines as in the proof of Theorem 1 in

[19], we obtain

R°(¢;F(q)) < —a(lz|) — H*(x) — d(y) +v*W3(e)
+2XC(T)W (e)H (z) — N2C3(T)W2(e) — A2W2(e).
(40)
Using the fact thaA((T)W (e)H (z) < N2C2(T)W?2(e) +
H?(z),

R°(q;F(q)) < —a(lz]) +4°W2(e) = N*W3(e).  (41)
Recall that\? = 42 + 5, it holds that
R°(q; F(q)) < —a(|a]) —nW(e). (42)

By using the same argument as in (38), we derive that
R°(¢; F(q)) < —p1(V(2)) = nW?(e)
= V(@) - oW e)
= —p1(V(2)) = p2(A0™1W?(e)),

wherepy : s — 77795 € Koo. Since¢(r) <=t forall >0
in view of (34), it holds that

R°(q; F(q)) < —p1(V(2)) = p2(AC(T)W?(e)).

(43)

(44)

= (f(z,e),g(x,e),1). Hence, by following
similar arguments as in the proof of Theorem 1 in [19]
sinceq is continuous and positive definite afdis positive

definite and radially unbounded, there exists a continuo

by following the same lines as in the end of the proof of
Theorem 1 in [19], there exist8 € KL such that for any
solution¢ to (4), (11) and anyt, j) € dome,

R(4(t, 7)) < B(R(4(0,0)),0.5t +0.5T).  (48)

dg view of Assumption 1 and sincd’ is continuous (since it

is locally Lipschitz) and positive definite, there existg €
K such thatW(e) < aw(|e|) for all e € R™ according
to Lemma 4.3 in [27]. As a result, in view of Assumption
1, (34) and (35), it holds that, for ajl €« C U D,

V(@) < Rlg) < V() + 30

A
a(l2]) < Rlg) < a(la)) + Faw (le]
ao(lz]) < R(q) < @r(|(z,e)]),
whered@y : s — a(s) + 3aw(s) € K. Hence, in view of
(48) and (49), we deduce that for any solutipno (4), (11)
and for all (¢, j) € domg
a(le=(t, 5)]) < R(o(t, )

= B(WRO(%(& 0), ¢(0,0))]), O.5t+0.5Tj).
(50)

(49)

Consequently,

|02(t,5)] < B([(62(0,0), ¢e(0,0))]),  + 5),

whereg : (s1, s2) — a *(B(ar(s1),s2)) € KL. Thus, (13)
holds.

We now investigate the completeness of the maximal
solutions to system (4), (11). Létbe a maximal solution to
(4), (11). We first show thap is nontrivial, i.e. its domain
contains at least two points (see Definition 2.5 in [18]).
According to Proposition 6.10 in [18], it suffices for that
purpose to prove thal'(q) € Te(q) for any ¢ = (z,e,7) €
C\D, where Tc(q) is the tangent corfeto C at ¢. Let
q € O\D. If ¢ is in the interior ofC, T¢(q) = R*=Fnet!

(51)

We deduce that there exists a continuous positive definig®d the required condition holds. ¢fis not in the interior

function p3 such that

R°(q; F(q)) < —ps(V () + X (T)W?(e)) = —ps(R(q()‘)l,S

2The tangent cone to a s6tC R™ at a pointz € R™, denotedls (z),
is the set of all vectorsu € R"™ for which there existr; € S,7; > 0
with ; — x,7 — 0 as¢ — oo such thatw = lim; o (z; — z)/7; (See
Definition 5.12 in [18]).



of C, necessarilyr = 0 asq € C\D, in this casel¢(q) = 7
Rt x R, and we see thaF'(¢q) € Tc(g), in view
of (4). Hence,¢ is nontrivial according to Proposition 6.10
in [18]. In view of (4), (11) and (51)¢, and ¢, cannot [8]
explode in finite time. Recall that the network-induced erro
is ¢ = (¢eya¢eu) with ¢ey = ¢y(tjaj) - ¢y(t7j)’ Pe,, = [9]
Ou(t;, ) — du(t,j) for j > 0 and (¢, j) € dom¢ where we
write dom¢ = Ujeqo,.... 1y ([t5, t541],7) with some abuse of 10
notation. Hence, in view of (2), (3), (51) and singg g. are [10]
continuous, it holds that, for all > 0 and (¢, j) € dom¢
|¢ey (t,])| = |gp(¢mp (tjaj)) - gp(‘bﬂﬁ;, (tv_]))| (11]
< |gp(¢wp (tja]))| + |gp(¢1p (tvj))| (52) [12]
<2 max|g(2)]
[21<B(1(¢2(0,0),¢¢(0,0))],0)
Similarly, we obtain, for allj > 0 and (¢, j) € dom¢ 3]
. . ) [14]
(e, (6 0)] < ge( P, (t5,5), Dy (5, 9))]
+|gC(¢ZEc (taj)a ¢u(t37]))| [15]
= |g¢:(¢zc (tj,j),gp(¢xp (tjvj)” (53)
+|9C(¢xc (t,j),gp(ébxp (tjaj))| [16]
< 2 max|ge(21, 22)]-
Izll Sﬂ(‘(‘br(ovo)a‘be(ovo))‘ao) [17]
[22| < max |gp(21)]
When j = 0, we have that|¢., (t,0)] < |¢.,(0,0)] + [18l
19p(02,,(0,0))—gp(¢s, (,0))| and|ge, (t,0)| < |¢e, (0,0)|+
19¢(¢2.(0,0), #4(0,0)) — ge(¢z. (2, 0), ¢y (0,0))| and we can  [19]
derive similar bounds on the intervfll, ¢;]. Thus, in view
of (52) and (53) and since. is reset to 0 at each jump,
cannot blow up in finite time. As a consequengegannot [20]

explode in finite time. LeG(z, e, 7) := (z,0,0) denotes the
jump map in (11). The solutions to (4), (11) cannot leave
the setC'U D after a jump sinc&z(D) C C in view of (4), [21]
(11). Thus, we conclude that maximal solutions to (4), (11)
are complete according to Proposition 6.10 in [18]. Finally;yy
we note that if Assumption 1 holds locally, then there exists
A > 0 such that (36) and (47) hold on the invariant Sefzs]
|(x,e)] < A and consequently (13) holds locally. O

REFERENCES [24]

[1] G.C Walsh, O. Beldiman, and L.G. Bushnell, “Asymptotiehavior of
nonlinear networked control system#EE Trans. on Control System
Technology vol. 46, no. 7, pp. 1093-1097, 2001.

D. NeSic and A. Teel, “Input-output stability propies of networked
control systems,1IEEE Trans. on Aut. Contrplvol. 49, no. 10, pp.
1650-1667, 2004.

K. Arzen, “A simple event-based PID controllehi 14" IFAC World
Congress, Beijing, Chinavol. 18, pp. 423-428, 1999.

K.J. Astrom and B. Bernhardsson, “Comparison of periodic arehtv
based sampling for first-order stochastic systemmsI4t" IFAC World
Congress, Beijing, Chinavol. 11, pp. 301-306, 1999.

P. Tabuada, “Event-triggered real-time schedulingtabsizing control
tasks,”IEEE Trans. on Aut. Controlvol. 52, no. 9, pp. 1680-1685,
2007.

X. Wang and M.D. Lemmon, “Event-triggering in distrilmat net-
worked control systems/EEE Trans. on Aut. Controlol. 56, no. 3,
pp. 586-601, 2011.

[25]

(2]
[26]
(31

(4

[27]
(28]

[29]
(30]

(5]

(6]

R. Postoyan, A. Anta, D. NeSi¢, and P. Tabuada, “A uniy
Lyapunov-based framework for the event-triggered contohon-
linear systems,In IEEE Conference on Decision and Control and
European Control Conference, Orlando, U.S.pp. 2559-2564, 2011.
W.P.M.H. Heemels, K.H. Johansson, and P. Tabuada, “fodiuction
to event-triggered and self-triggered contrdly’IEEE Conference on
Decision and Control, Hawaii, U.S.App. 3270-3285, 2012.

E. Kofman and J.H. Braslavsky, “Level crossing samplingfeed-
back stabilization under data-rate contraints,JEEE Conference on
Decision and Control, San Diego, U.S.pp. 44234428, 2006.
M.C.F. Donkers and W.P.M.H. Heemels, “Output-basedenév
triggered control with guaranteefi~-gain and improved and decen-
tralised event-triggering,JEEE Trans. on Aut. Controlvol. 57, no. 6,
pp. 1362-1376, 2012.

P. Tallapragada and N. Chopra, “Event-triggered dyioawutput
feedback control for LTI systems|h IEEE Conference on Decision
and Control, Hawaii, U.S.A.pp. 6597-6602, 2012.

H. Yu and P.J. Antsaklis, “Event-triggered output feadk control
for networked control systems using passivity: Achievifig stability
in the presence of communication delays and signal qudiotiza
Automatica vol. 49, no. 1, pp. 30-38, 2013.

P. Tallapragada and N. Chopra, “Decentralized eveggering for
control of nonlinear systemsgrXiv:1302.4019v2 [cs.SYPR013.

C. Peng and Q. Han, “Output-based event-triggeféd, control
for sampled-data control systems with nonuniform samglirig
American Control Conference, Washington, U.Sgp. 1727-1732,
2013.

X. Zhang and Q. Han, “Event-based dynamic output feekllzmntrol
for networked control systemsjh American Control Conference,
Washington, U.S.App. 3008-3013, 2013.

F. Forni, S. Galeani, D. Nesi¢, and L. Zaccarian, “Biviiggered
transmission for linear control over communication chasheiuto-
matica vol. 50, no. 2, pp. 490-498, 2014.

P. Tallapragada and N. Chopra, “Event-triggered dgabred dy-
namic output feedback control for LTI systemsii Estimation and
Control of Networked Systemeol. 3, no. 1, pp. 31-36, 2012.

R. Goebel, R.G. Sanfelice, and A.R. Teadlbrid Dynamical Systems:
Modeling, Stability, and Robustness Princeton University Press,
2012.

D. Nesi¢, A.R. Teel, and D. Carnevale, “Explicit coutation of the
sampling period in emulation of controllers for nonlineanypled-data
systems,"IEEE Trans. on Aut. Controlvol. 54, no. 3, pp. 619-624,
2009.

M. Abdelrahim, R. Postoyan, and J. Daafouz, “Everggéred control
of nonlinear singularly perturbed systems based only onsibes
dynamics,”IFAC Symposium on Nonlinear Control, Toulouse, France
vol. 9, no. 1, pp. 347-352, 2013.

M. Mazo Jr. and P. Tabuada, “Decentralized event-aigd control
over wireless sensor/actuator networkEEE Transactions on Auto-
matic Contro) vol. 56, no. 10, pp. 2456-2461, 2011.

X. Wang, Y. Sun, and N. Hovakimyan, “Asynchronous tagkaeition
in networked control systems using decentralized evéydering,”
Systems & Control Lettersvol. 61, no. 9, pp. 936-944, 2012.

K.H. Johansson, J. Lygeros, S. Sastry, and M. Egerst8atulation
of zeno hybrid automata,In IEEE Conference on Decision and
Control, Arizona, U.S.A.pp. 3538-3543, 1999.

W.P.M.H. Heemels, M.C.F. Donkers, and A.R. Teel, “Bdit event-
triggered control for linear systemslEEE Trans. on Aut. Control
vol. 58, no. 4, pp. 847-861, 2013.

R. Postoyan, A. Anta, W.P.M.H. Heemels, P. Tabuada, Gndlesic,
“Periodic event-triggered control for nonlinear systémb) IEEE
Conference on Decision and Control, Florence, lighp. 7397-7402,
2013.

D. Liberzon, D. Nesi¢, and A.R. Teel, “Lyapunov-bessemall-gain
theorems for hybrid systemdEEE Trans. on Aut. Contrpko appear.
H.K. Khalil, Nonlinear Systems3rd ed. Prentice Hall, 2002.

E.D. Sontag and Y. Wang, “New characterizations of ifpustate
stability,” IEEE Trans. on Aut. Controlhol. 41, no. 9, pp. 1283-1294,
1996.

S. Boyd and L. Vandenbergh&onvex Optimization Cambridge
University Press, 2004.

A.R. Teel and L. Praly, “On assigning the derivative ofliaturbance
attenuation control Lyapunov functionflathematics of Control, Sig-
nal and Systemssol. 13, no. 2, pp. 95-124, 2000.



