A three line proof for traces of H1 functions on special Lipschitz domains

Sylvie Monniaux

To cite this version:

Sylvie Monniaux. A three line proof for traces of H1 functions on special Lipschitz domains. Ulmer Seminare, 2014, pp.355-356. hal-00984231

HAL Id: hal-00984231
https://hal.science/hal-00984231
Submitted on 28 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A three lines proof for traces of H^1 functions on special Lipschitz domains

Sylvie Monniaux
Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373
13453 Marseille, France

1 Introduction

It is well known (see [2, Theorem 1.2]) that for a bounded Lipschitz domain $\Omega \subset \mathbb{R}^n$, the trace operator $\text{Tr}_{|\partial \Omega} : C(\overline{\Omega}) \to C(\partial \Omega)$ restricted to $C(\overline{\Omega}) \cap H^1(\Omega)$ extends to a bounded operator from $H^1(\Omega)$ to $L^2(\partial \Omega)$ and the following estimate holds:

$$\|\text{Tr}_{|\partial \Omega} u\|_{L^2(\partial \Omega)} \leq C (\|u\|_{L^2(\Omega)} + \|\nabla u\|_{L^2(\Omega, \mathbb{R}^n)})$$

for all $u \in H^1(\Omega)$, (1.1)

where $C = C(\Omega) > 0$ is a constant depending on the domain Ω. This result can be proved via a simple integration by parts and Cauchy-Schwarz inequality if the domain is the upper graph of a Lipschitz function, i.e.,

$$\Omega = \{x = (x_h, x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}; x_n > \omega(x_h)\}$$

(1.2)

where $\omega : \mathbb{R}^{n-1} \to \mathbb{R}$ is a globally Lipschitz function.

2 The result

Let $\Omega \subset \mathbb{R}^n$ be a domain of the form (1.2). The exterior unit normal ν of Ω at a point $x = (x_h, \omega(x_h))$ on the boundary Γ of Ω:

$$\Gamma := \{x = (x_h, x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}; x_n = \omega(x_h)\}$$

is given by

$$\nu(x_h, \omega(x_h)) = \frac{1}{\sqrt{1 + |\nabla_h \omega(x_h)|^2}} (\nabla_h \omega(x_h), -1)$$

(∇_h denotes the “horizontal gradient” on \mathbb{R}^{n-1} acting on the “horizontal variable” x_h). We denote by $\theta \in [0, \frac{\pi}{2})$ the angle

$$\theta = \arccos \left(\frac{1}{\sqrt{1 + |\nabla_h \omega(x_h)|^2}}\right),$$

(2.1)

so that in particular for $e = (0_{\mathbb{R}^{n-1}}, 1)$ the “vertical” direction, we have

$$-e \cdot \nu(x_h, \omega(x_h)) = \frac{1}{\sqrt{1 + |\nabla_h \omega(x_h)|^2}} \geq \cos \theta > 0,$$

for all $x_h \in \mathbb{R}^{n-1}$. (2.2)

Theorem 2.1. Let $\Omega \subset \mathbb{R}^n$ be as above. Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a smooth function with compact support. Then

$$\int_{\Gamma} |\varphi|^2 \, d\sigma \leq \frac{2}{\cos \theta} \|\varphi\|_{L^2(\Omega)} \|\nabla \varphi\|_{L^2(\Omega, \mathbb{R}^n)},$$

(2.3)

where θ has been defined in (2.1).
Proof. Let $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}$ be a smooth function with compact support, and apply the divergence theorem in Ω with $u = \varphi^2 e$ where $e = (0_{R^{n-1}}, 1)$. Since $\text{div} (\varphi^2 e) = 2 \varphi (e \cdot \nabla \varphi)$, we obtain
\[
\int_{\Omega} 2 \varphi (e \cdot \nabla \varphi) \, dx = \int_{\Omega} \text{div} (\varphi^2 e) \, dx = \int_{\Gamma} \nu \cdot (\varphi^2 e) \, d\sigma.
\]
Therefore using (2.2) and Cauchy-Schwarz inequality, we get
\[
\cos \theta \int_{\Gamma} \varphi^2 \, d\sigma \leq -2 \int_{\Omega} \varphi (e \cdot \nabla \varphi) \, dx \leq 2 \| \varphi \|_{L^2(\Omega)} \| \nabla \varphi \|_{L^2(\Omega, \mathbb{R}^n)},
\]
which gives the estimate (2.3).

\[\square\]

Corollary 2.2. There exists a unique operator $T \in \mathcal{L}(H^1(\Omega), L^2(\Gamma))$ satisfying
\[T \varphi = \text{Tr}_{\Gamma} \varphi, \quad \text{for all } \varphi \in H^1(\Omega) \cap \mathcal{C}(\overline{\Omega})\]
and
\[
\| T \|_{\mathcal{L}(H^1(\Omega), L^2(\Gamma))} \leq \frac{1}{\sqrt{\cos \theta}}.
\]

Proof. The existence and uniqueness of the operator T follow from Theorem 2.1 the density of $\mathcal{C}_c^\infty(\Omega)$ in $H^1(\Omega)$ (see, e.g., [1, Theorem 4.7, p. 248]). Moreover, (2.3) implies
\[
\| \varphi \|_{L^2(\Gamma, d\sigma)}^2 \leq \frac{1}{\cos \theta} \left(\| \varphi \|_{L^2(\Omega)}^2 + \| \nabla \varphi \|_{L^2(\Omega, \mathbb{R}^n)}^2 \right),
\]
for all $\varphi \in \mathcal{C}_c^\infty(\overline{\Omega})$, which proves (2.4).

\[\square\]

References
