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The influence of the density contrgsharacterized by the Atwood number)Amn gravity-induced

mixing between two miscible fluids in a long vertical tube has been studied experimentally.
Cross-section averaged fluid concentration profiles along the tube are measured optically: for large
enough At values, they display a self-similar dependence in a broad range of times and distances and
verify a diffusion law with an effective diffusivity 10times higher than for molecular diffusion. At

lower At values, this diffusive domain is limited by a sharp front moving at a velocity increasing
with At. Below a threshold At value the diffusive behavior disappears.2@1 American Institute

of Physics. [DOI: 10.1063/1.1405442

_ Raylei_gh—Ta_onr instabiléties can develop when a densenixing zone reaches either end of the tuket<20 min)
fluid overlies a lighter oné-® We shall be concerned here which allows to neglect their influence. Above a threshold
with the case of miscible fluids which is relevant to many density contrast At, these profiles display a self-similar de-

practical situatiorfs® such as laser induced nuclear fusion, pendence on the ratio of distance and of the square root of
extraction columns or fire propagation in vertical shafts.time.

Most studies have been devoted to the characterization of the  Experiments are realized in a 4 m high vertical perspex
growth of the mixing zone through the displacement of thetube of internal diametedt=20 mm with a sliding slot valve
average front. After initial transient regimes, it is often ob-in the middle. The setup is illuminated from behind. The
served to be quadratic with time and then lin&df Front  |ighter fluid is water dyed with nigrosiné40 mg/). The
displacement laws close t8° have been reported in vertical heavy fluid is a solution of water and CaGhlt at a concen-
tubes for displacements larger than the tube dianiét8elf-  tration between 0.05 and 300 g/l. Density contrasts are char-
similar structures of Rayleigh—Taylor flows with character-acterized by the Atwood number Ai(p,—p;)/(p2+ p1)
istics lengths increasing ag’® have also been predicted that varies from % 10°° to 10~ * (p, and p, are the densi-
theoretically:® _ ~ ties of the two fluids and their viscosity is nearly equal to
The present Letter is focused on the study of self-similathat of watey. At the beginning of each experiment, the up-
c_oncent_ratlgn profiles crgated by buoyant mixing of two Mis-per and lower halves of the tube are, respectively, filled with
C|b|e7f|U|dS in a long vertical tube. In a previous study, Bairdthe heavy and light solutions. Mixing is initiated by opening
etal” analyzed the mixing of a volume of salt solution the slot valve(which takes a few tenths of a secorahd the
dropped at the top of a tube filled with water but the timetypical duration of the measurements is 1200 s. A few test
dependence of the concentration profile was not identified. Ixperiments were performed with zero or weakly stabilizing
addition to the ot;servanon of a front displacement law neadensity contrasts: no significant mixing occured for several
t9%, Zukoskiet al® measured, in the same setup, concentrahours. Otherwise, the Rayleigh numbers are always far above
tion profiles after this front had reached the end of the tubeghe threshold67.8 for RT instabilities?*®
these results were analyzed in terms of a turbulent diffusivity  Figure 1 displays frames from video recordings at two
model. In our experiments, the interface is initially at mid- different Atwood numbers close to the lower and upper lim-
height; the concentration profiles are measured before thigs of the studied range. At a low density contrast
[At=8X10"%, Figs. Xa)—1(c)], the initial instability finger
aAuthor to whom correspondence should be addressed. Electronic maifliSplays @ mushroom shape characteristic of finite R_eyn0|d3
hulin@fast.u-psud.fr numbers(10 or more. Transverse waves develop in the
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FIG. 1. (a)—(c) Video images obtained for At8x10 * at equal time inter-
vals At=2 s. Height of field of view: 300 mm. The slot valve is visible at
the bottom of the images. Dashed lines mark the trajectories of the front tip o5 o
(upper ling and of concentration fluctuations moving inside the mixing zone ’

(lower lines. (d)—(e) Video images obtained for A9 10”2 at an interval 50 5 x/\/t—[m $05) &5
At=14 s(same field of view.

wake of the finger which takes a helical Shéﬁ)gf These EIG. 3. Ea) Variations of C(x,t) with dls_tance from vglve at successive

features reflect instabilities due to the strong shear gradient %ﬂisl(;; igf)z?_ (E)O ga;e irlj(:velsogg):fr:Jntcr:ﬁ)ne;}p\%r_ln(q:;“,:i?t,vi't:r:génz

the interface between the ascending and descending fluidsiror function =2.75< 1074 m? s7%).

they induce transverse mixing across the pipe and thus de- =~ . ) )

termine the final concentration profile. Two fluid patches ofc@libration, these images are translated into concentration

higher density contrasfdarker color in Figs. (—-1(c)] Maps and normallzeq betweer_1 refere:-nce images obtained

propagate in the wake of the leading tip and move faster thalith the heavy and light solutions. Finally, values corre-

it. Their successive arrival at the front prevents the frontSPonding to a same heightare averaged to obtain the in-

speed to decrease through mixing with the surrounding fluigStantaneous profil€(x,t). o _ _

At higher density contrasts At5x 10", the initial instabil- A typical result is shown in Fig. 2 at a high density

ity finger is rapidly destroyed and the mixture is more homo-contrast (At 3.5x10"%). The time dependence of the mix-

geneougFigs. Xd) and 1e)]. Fluid volumes of characteristic "9 Process has.been V|sual|_zed by grouping the successive

scale about 1 cm move randomly at velocities of the order oProfiles into spatiotemporal diagrarffsig. 2@)]: gray levels

a few mm/s over distances of the order of the tube diametefrrespond to the value @(x,t) (black for the dyed lighter

this flow is weakly turbulent and induces an efficient mixing Selution, white for the transparent heavy an@nly a con-

similar to eddy diffusiort® The displacement front is there- tinuously varying gray shade is visible implying that the am-

fore quite fuzzy in the opposite of the well defined one at thePlitude gnd size of relative concentration fluctuations are

lower Atwood number. small [Figs. 1d) and Xe)]. No clear-cut boundary of the
Quantitative results are obtained by recording with am_ixing_zone is obseryed either. The conce_ntratio_n pr_ofiles at

digital camera images of a 2.6 m long central section of th&iven times are well fitted by an error function as in Fig)2

tube (1300< 20 pixels) a2 s intervals. Using an independent for t=500s, which suggests the@X(x,t) verifies a diffusion
equation. To test this hypothesis, concentration profiles ob-

1.2f x [m] tained at different times in the same experimgfig. 3a)]
are plotted as a function of the scaling variallg/t [Fig.
t=500s 3(b)]. All curves collapse onto a single of@(x/+/t): such
fully self-similar sets of profiles are observed at all high At-
wood numbers (%10 3<At<101). Different scaling
0 N laws have been tested by plotting the profiles as a function of
x/t*. A good superposition is only obtained for
a=0.5+0.03. The fit of the profiles by error function solu-
tions of a ID diffusion equation provides an effective diffu-
sivity D, which has thus a purely macroscopic meaning.
(b) The behavior at lower Atwood numbers (k30 4

0s 500s T — <At<2x10"3) is different. In contrast with the previous

FIG. 2. Soatiot i . ired triont) case, the mixing region has a sharp bounddfg. 4(a)]
. 2. Spatiotemporal diagram ol normalized mean concentration . . . . .
(At=1.5X102). Abscissa is timé and ordinate distancefrom valve. (b) associated to the tip of the finger in Figsial-1(c) and

Normalized concentration profi@(x,t= 500 s) fitted with an error function m_arkEd by concentration stegarrows on the profiles of
(dashed—dotted line Figs. 4b) and 5a). The local slope of the boundary repre-
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FIG. 4. (a) Spatiotemporal diagram of normalized concentrat®{x,t) FIG. 6. Variation of the measured diffusivify (®) and velocityV; (O)
(At=4x10"%). The slopes of the continuous and of the dashed lines corWith the Atwood number At. The characteristic length=D/Vi(+) is also
respond respectively to the instantaneous velogjtpf the front tip and to  Plotted. The relative error ob is below 10% except for At 1.5x10 * for

the characteristic velocity of the internal fluid motions(b) Concentration ~ Which itis of the order of 30%. The gray zone at the left corresponds to At
profile C(x,t=500's). Note concentration steps bounding the mixing zonedomain for which the spreading of the concentration profile is not diffusive.
(arrows.

sents the instantaneous Ve|oc‘{lyof the t|p of the disp|ace_ fluctuations of the concentration values. The self-similar
ment front. At low At values)V, is roughly constant with variation is however only followed between the concentra-
time as in the linear regime found in other geometfiag.  tion steps(except at long times where the profile can be
higher density contrastd/, decreases with timgFig. 4(a)] considered as diffusive at all distant€Bhis latter evolution
and the coordinate, of the tip varies approximately 48°as  towards a fully macroscopically diffusive regimes occurs
already observed by other authdfsNote however that the later as At decreases. It is likely due to the influence of
typical front velocityV, (measured at short timemcreases, helical instabilities of the wake of the displacement fingers
as expected physically, from 1 to 5 mm/s over the range ofnhhancing mixing across the pipe.
At values investigated_ At still lower Atwood numbers (A(Atmz 1.5X 1074),
However, in Spite of these important differences betweeﬁhe flow configuration is quite different. In particular, a stable
this regime and the pre\/ious one, all successive prof”es (ﬁounterflow of the two fluids is observed in the central part
Fig. 5a) still overlay as above when plotted as a function ofof the tube. Its length increases with time and helical insta-
the reduced variablg/t [Fig. 5(b)]. This master curve is bilities persist then only near the ends of the tube. In this

also well fitted by an error function inspite of the larger regime, the global concentration profiles cannot be fitted by
error functions.

Variations of the macroscopic diffusivity as a function
of the Atwood number are displayed in Fig.Bis always at
least 16 times larger than typical molecular diffusion coef-
ficients (a few 10°m?s™1). At lower At values (At
<10 ?) but above the threshold (At1.5x10 %), D is
about constant and of the order of 250 *m?s™1. At large
At values (At>102), D increases roughly linearly with At
from 2.5x 10 *m?s 1 to 6x 10 *m?s ! (for At=10"1).

Since the mixing and spreading of the two fluids is as-
sociated to internal fluid motions in the mixing zomemay
be considered as the product of their characteristic velocity
V; and a length/. Such fluid motions are visible in Figs.
1(a—1(c) and are marked by oblique streaks in the spa-
tiotemporal diagramfFig. 4@)]. V; values determined from
the slope of these streaks are plotted in Fig. 6: they increase
slowly with At from 2 to 10 mm/s over the range studied.
The variation of the characteristic length= D/V; with At is
also displayed in Fig. 6. From this point of view, the fact that
D¢ D is roughly constant in the range K30 4<At<10 2

| | results from variations o¥; and / in opposite directions

=0 0 x/\/t- [ms03] 30 with At while retaining a constant product. For AL0 2,
Fig. 6 indicates that” reaches a lower limit of the order of
from valve at successive timés=240s, 600 s, and 1080 & the experi- 45 mm’ probably related to the tube diameter: the increase of
ment of Fig. 4 (At=4x10"%). Note successive front positions indicated by D with At, would then reflect that O‘f/f )

arrows.(b) Same curves as a functionxfyt. (X) Fit with an error function _ _The_se experiments dem(_mStrate that_ g_ravity induced
(D=2.5x10"*m?s™}). mixing in long vertical tubes displays self-similar character-

0.0 =

FIG. 5. (a) Variations of normalized concentratid@(x,t) with distance
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