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Gravity-induced mixing of two fluids in long vertical tubes is studied experimentally as a function
of the density contrast characterized by the Atwood number At {16 0.2, the fluid viscosityr

(1 to 1610 ® m?s 1) and the tube diameter (2 to 44 mn). At low density contrasts, a stable
counterflow is observed over a large fraction of the tube and its region of existence increases at high
viscosities and small tube diameters. For larger density contrasts, the flow is either convective or
turbulent and the mean concentration proflgx,t) follows a diffusive spreading law characterized

by a diffusivity D. An unexpected increase &f and of the characteristic velocity; of random

fluid motions is observed whenincreases. This results from the coarser mixing in more viscous
fluids which increases local density contrasts and buoyancy forces. Dimensionless plots of the
diffusion coefficientD/v as a function of the Reynolds number of the flow indicate a transition
between two different diffusive regimes. Scaling arguments are put forward to account for the
dependence ofV; and of the characteristic diffusion length in the convective—diffusive
regime. © 2003 American Institute of Physicg§DOI: 10.1063/1.1624838

I. INTRODUCTION tion profile was not measured. Zukoskt al!* measured
concentration profiles in such a configuration: this study was
Gravity-induced mixing of miscible fluids of different realized at long times where spreading is strongly influenced
densities stratified in an unstable configuration is associately the boundary conditions and the behavior at intermediate
with the development of Rayleigh—Taylor instabilite$. times was not investigated. In both experiments, the initial
There are many examples of such instabilities in a variety ofnterface is located at one of the ends of the tube which
domains: astrophysics and nuclear fustdrextraction col-  makes the corresponding boundary condition more complex.
umns in chemical engineerirt§ fire propagation in vertical In a previous work® we reported buoyancy-induced
shafts!! drilling and completion fluids in petroleum engi- mixing in a long vertical tubéof single diameter 20 mjrfor
neering. The dependence on time of the displacement of thevo miscible fluids with different densities in an unstable
front of the instability has been frequently studied at earlyconfiguration but the same viscosity (10m?s™1). The in-
times. After an initial exponential increase, the displacementerface between the two fluids is initially at the middle height
is often quadratic with time at short tinfés'>*3and then of the tube and the Atwood number At characterizing the
linear!?'* In some numerical simulations t2 regime oc-  density contrast ranged from>210~° to 10! [At=(p,

curred before a transition t3. Self-similar flows with char- —p;)/(p,+p4) in which p; and p, are, respectively, the
acteristic lengths increasing a$?® have also been densities of the light and heavy fluidsFor At>10*, the
predicted® normalized concentration profile@veraged over the tube

In the present paper we deal specifically with buoyantsection) are self-similar and can be superimposed by normal-
mixing in constricted geometrigge., tubeg for amplitudes izing distance by the square root of time. In addition, these
of the Rayleigh—Taylor instability very large compared to theprofiles can be fitted precisely by solutions of a diffusion
tube diameter. In similar configurations, mixing zone widthsequation: this allows us to characterize the phenomenon by a
increasing approximately @& have been reported by other macroscopic diffusion coefficie® and confirms the spread-
authorst®! Baird et al'° studied the mixing of a small vol- ing of the front ag’2.
ume of heavy salt solution dropped at the top of a tube filled ~ This diffusivity D is many orders of magnitudéypi-
with water. However, the time dependence of the concentracally 1 times larger than the molecular diffusion coeffi-

cient since this macroscopic mixing is induced by random
dpresent address: CNAM, Chaire de Chimie Industrielle-iGeles Pro- fluid mO.tlonS and not by r,nOIecwar dlfoSIQn. A surprising
cedés 2 rue Corite75003 Paris, France. feature is the very small increase Bf (typically from 2
PElectronic mail: hulin@fast.u-psud.fr X104 to 6x10 % m?s 1) as At increases by 3 orders of
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¢_[><]_ dense transparent solution (p ) recordings of a small fractioftypically 30 cn) of the height
< of the tube close to the gate valve are also made to obtain a

qualitative view of the flow.
digital Quantitative results are obtained by recording with a
camera digital camera (1308 20 pixels) images of the tube cen-
\ tered on the gate valve. The images correspond to a tube
] length ranging from 1.8 nffor d=2, 3 and 5 mmto 2.6 m
(for d=8, 20 and 44 mm An independent calibration is first
= realized by recording images with the tube filled with differ-
@ ent solutions of constant, well defined concentrations: this
calibration allows one to confirm that the light intensity var-
@ ies exponentially with the dye concentration.
light dyed solution (p,) Du_ring the experiment, dig?tal images are recorded at_ 1
or 2 s intervals and translated into concentration maps using
FIG. 1. Schematic view of experimental setup. the known calibration. They are then normalized by the val-
ues of the heavytransparentand the light(dyed solutions.
Finally, the normalized concentrations are averaged over the
magnitude from 10% to 10°1. The diffusivity D remains tube section at each heightto obtain the mean concentra-

roughly constant up to At5x 10”3 with a typical value 200 tion profile C(x,t). These profiles are either used directly

times that of the viscous diffusivity; it increases then [Figs. 2g)—2()] or grouped into spatiotemporal diagrams

roughly linearly with At for larger density contrasts. This [Figs. 2d)—2(f)] in which the gray levels reflect the normal-

differs from the complete change in the type of flow ob- ized concentratior(the vertical and horizontal coordinates

served: it is turbulent for At 10~ while the instability pat- ~ correspond to the distanceand the timet). Compared to

terns are much more organized for=At0 4. the concentration profiles, these diagrams provide additional
The first part of the present paper is devoted to a discug’pformation about the propagation of concentration fluctua-

sion of the main features of buoyancy-induced mixing re-tions.

gimes in 20 mm diameter tubes for fluids with a viscosity =~ A few test experiments were performed with zero or

equal to that of water: the transition towards a nondiffusiveV€akly stabilizing density contrasts: no significant mixing

flow regime at very low density contrasts will be of particu- occurred for several hours. Otherwise, the Rayleigh numbers,

lar interest. This study will be extended to the domains of Atgd®

existence of the various flow regimes as a function of the R,;= D (1)

fluid viscosity » and of the tube diametat. A quantitative m

analysis will then be achieved by studying the variations ofare always far above the threshold (R#&7.8) for RT

D with At for different values ofd and ». Determining the  instabilities?*’

velocities of the internal density fluctuations in the mixing

zone and their dependence on Atandd will allow us to

A. Dependence of flow regime on density contrast

gate valve

experimental tube

/

Let us first discuss the qualitative experimental results
obtained in the tube of diameted=20 mm with

Experiments are performed # m high vertical transpar- CaClL—water and nigrosine—water solutions of viscosity
ent tubes of internal diameteds=2, 3, 5, 10, 20, and 44 mm equal to that of water.
with a sliding slot valve in the middl€Fig. 1). This large Figures 2Za)—2(c) display sequences of images from di-
length allows us to perform easily measurements before theect video recordings at three different Atwood numbers typi-
mixing zone has reached the end of the tube and thus tcal of the flow regimes observed in the experiments.
neglect their influence. The setup is illuminated from behind.  Figure 2a) (At=5x10"2) corresponds to a weakly tur-
The lighter fluid is water or a water—glycerol solution dyed bulent flow regime. It is characterized by fast, random mo-
with nigrosine (40 mg/L). The heavy fluid is a solution of tions of fluid particles of characteristic scale about 1 cm at
either water or water and glycerol and of CaGhlt at a velocities of a few mm/s over distances of the order of the
concentration between 0.05 and 300 g/L. The viscositf  tube diameter. There is no sharp boundary between the un-
the two fluids is the same and chosen between 1 and 1perturbed fluids and the mixing zone. The concentration
X 10" m?s™* by varying the relative glycerol mass concen- variations are relatively small across the flow section which
tration in the solutions between 0 and 60%. indicates a rather effective mixing similar to eddy

At the beginning of each experiment, the upper anddiffusion!®
lower halves of the tube are, respectively, filled with the At a lower Atwood numbefAt=8x10"* in Fig. 2(b)],
heavy and light solutions. Mixing is initiated by opening the the mixing is much less effective and the internal structure of
slot valve (which takes a few tenths of a secorahd the the flow is more visible. The outer boundary of the mixing
typical duration of the measurements is 1200—-1800 s. Videaone is clearly defined and marked by the front tip of the

Il. EXPERIMENTAL SETUP AND PROCEDURE
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(b)

FIG. 2. (a), (b), (c) Sequences of im-
ages of a 30 cm high section of the
tube right above the gate valvat the
bottom of the imagesat respective de-
creasing Atwood numbers AtS

x 1072 (the time interval between im-
ages 8t=7s), AE=8Xx10"* (46t
=5s), At=5x107% (6t=20 s). (d),
(e), (f) Spatiotemporal diagrams asso-
ciated, respectively, to experiments
(a), (b), and(c) (the vertical scale cor-
responding to distance along the tube
and the horizontal scale to timeThe
vertical field of view is in all cases
equal to 2.65 m and the time lapse
covered to 1200 €g), (h) Normalized
concentration profiles associated to ex-
perimentga) and(b) (t=120, 360 and
960 9 and plotted as a function of
x/+t. The continuous lines are best fits
of the curves with an error functiofi)
Normalized concentration profile plot-
ted as a function of the height (t
=190 s).

40 40

XV (® XV
[m s03] [m 503

40 -+ . . -40
0.0 05 C 10

fingering instability. The tip moves at a roughly constantrelative concentrations of the heavy fluid, respectively, equal
velocity (dashed lingand its mushroom-like shape is typical to 95% (the upper half of the diagranand 5%(the lower
of structures at finite Reynolds numbers where inertial force$alf). Their parabolic shape is a first indication of an increase
are not negligible. Helical waves develop in the wake of theof the width of the mixing zone as’?. At the lowest density
fingert®?° due to the shear at the interface between the ascontrast{Fig. 2(f)], the domain of stable counterflow corre-
cending and descending fluids. Fluid patches of higher dersponds to the region right above and below the gate valve;
sity contrast[a darker color in Fig. @)] propagate in the the well defined oblique streaks correspond to concentration
wake and move faster than the front tip. Their successivéluctuations moving at a constant velocity all across this re-
arrival at the front enhances the local concentration contragiion. The height of this stable counterflow region is also
there which tends to decrease through mixing with the surebserved to increase with time. Finally, the outer boundary
rounding fluid near the tip. of the mixing zone is very clearly visible. At the intermediate
At a still lower Atwood numbef At=5x10"° in Fig.  density contrast (At8x 10~ %), this outer boundary associ-
2(c)], mixing created by instabilities between the finger andated with the front tip is still visiblg¢the dotted line in Fig.
the surrounding fluid is reduced: the tip is sharply visible and2(e)]. Dark and light streaks marking internal motions of the
moves as before at a roughly constant velocity. Thefluid are more clear than in the turbulent case, confirming
mushroom-like shape of the tip is less clear and the helicathat mixing is coarser.
instability of the wake decays over after a few tube diameters  Figures 2g)—2(h) demonstrate that the spreading of the
(particularly at longer timgs There results a stable counter- mean concentration profil€(x,t) is diffusive at these two
flow region around the gate valve. At values in spite of the strong qualitative difference be-
It will be seen below that these different structures of therween the two flow regimes. In both cases, the mean concen-
flow result in very different mixing properties: in the two tration profiles overlay very well when they are plotted as a
first regimes, efficient transverse mixing is induced by turbufunction ofx/t'? and are, in addition, well fitted by an error

lence or by the wavy motions. In the third one, the two fluids¢nction. This implies thatE(x,t) satisfies the diffusion
flow side by side in opposite directions without mixing side- equation:

ways.
Similar differences are observed on the spatiotemporal (;E(x,t) aZE(x,t)
diagrams of Figs. @)—2(f). In the turbulent regiméFig. Fral S (]

2(d)], the boundary of the mixing domain is fuzzy and the

gray level distribution is finely grained. The amplitude of the Thus,D can be obtained in both regimes by fitting the ex-
concentration fluctuations is also small, confirming the effi-perimental mean concentration curves to solutions of(Eq.
cient mixing in that regime. The dotted lines correspond taln the following, we refer therefore to the regime of higher



Phys. Fluids, Vol. 15, No. 12, December 2003 Buoyant mixing of miscible fluids 3849
20
Y d =20 mm P
vo [m] ,/
(a) [m] 52 i
10+ stable i A
counterflow %
A oo
4 o o
e
e
,I
.’ ¢ o0
2 . .
, ¢ convective *
e diffusive | e
14 o0 o-a A A X3 turbulent
e diffusive
ey LR | T T T
104 1073 102 At 107!
40] <~ A AA AAe e s s e o
d RN N convective
RS \diffusive
20 1 O Oh_ A A A & oo oo
(mm) s turbulent
104 s diffusive
] o ON A & ¢ oo
stable pN %
4 counterflow U B HTsg \A A
u] o O O~_A
21 v=10%m2¢! B e
(b)
14
T v LERA ] ) LR RN | ¥ LI ¥ WAL | L L 2 AL
107 1074 1073 1072 10" At 10°

FIG. 3. (a), (b), (c) Spatiotemporal diagrams obtained fib=20 mm at a
same density contrast A3x 10 2 for three different viscositiesta) »
=10%m?s % (b) v=2.3x10° m?s % (c) v=16.3x10°° m?s™ L. (d),
(e) Spatiotemporal diagrams obtained at a same density contrastOs?
and viscosityr=10"% m?s™* for two different tube diameterd=20 mm

for (a)—(d) and 1.8 m for(e). The time lapse covered is 1200 s fa, (b),
and (d), and 600 s for(c) and (e). In this figure, the global error function

scale is amplified to enhance concentration fluctuations.

density contrasts as turbulent—diffusive and to the interm
diate case as convective—diffusive. However, the concentr

tion profile obtained at the lowest density contidsy. 2(i)]

clearly cannot be fitted by an error function due to the broa
domain of constant average concentration below and abov.
the gate valve. Note that this roughly constant concentratiolﬂuid extend o
of order 0.5 does not reflect a complete mixing of the two
fluids; on the contrary, they are completely separated, eac

occupying roughly half of the tube section.

B. Dependence of flow regime on viscosity

The above experiments all correspond to a viscosity
=10 ® m?s '. Figures 8a)-3(c) display spatiotemporal
diagrams obtained for three different fluid viscosities
=108, 2.3x10°%, and 16.3% 10 ® m?s™* and for similar
density contrasts (At3x 10 %). In the experimental range

by 10%. For the sake of simplicity, the viscosityis there-

eénd,u the dynamic viscosity of the solution. While the dia-

ag'ram obtained for=10"% m?s™! corresponds to a weakly

urbulent mixing, that obtained for=2.3x10 6 m?s~
pical of the convective—diffusive regime. For=16.3

, Sstreaks marking the internal motions of the

ver very long distances, as for stable counter-

}Igws. These experiments have been repeated over a broad

nge of Atwood numbers At and viscosity values order

d

FIG. 4. Domains of observation of the various flow regin@sas a function
of the fluid viscosityr and of the Atwood number Atd=20 mm); (b) as a
function of the tube diameted and of the Atwood number At y

=109 m?s71).

(®) Turbulent—diffusive

regime; (A) convective—

diffusive regime;(J) stable counterflow regime. The dotted lines dividing
andd=5 mm. The vertical extension of the field of view is equal to 2.65 m the stable convective regime from the convective—diffusive regime corre-
spond to power laws of exponents 1/2 (@ and —1/3 in (b) and are
discussed in Sec. VA 1. The more complex division between convective—
trend is substracted out from raw spatiotemporal diagrams and the gray levdiffusive and turbulent—diffusive is discussed in Sec. V D.

fore taken equal tau/pq in which pg is the density of water

108 m?s?

lis

to confirm these trends. Figurdal displays a map of the
flow regimes identified as a function of At amdIn all cases,
increasing viscosity shifts the type of flow regime observed
from turbulent—diffusive towards convective—diffusive and
from convective—diffusive towards stable counterflow. This
is in agreement with qualitative expectations that viscosity
should damp out velocity fluctuations and reduce the local
Reynolds number of the flow. The boundary between the
of Atwood numbers, the density of the mixture varies at mosstable counterflow and the diffusive regimes corresponds to
At values proportional tov?. The transition between the
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convective— and turbulent—diffusive regimes is quite smooth 2.0
so that the values of At corresponding to the transition can- D ] () V=106 m2 sl )
not be defined precisely. m2s-11 hd
1.5 i /
C. Dependence of flow regime on tube diameter 3: o ,'l
The influence of the tube diametihas been studied for x10 1 /
d=44, 20, 8, 5, 3 and 2 mm. The influencedis often quite 1.0 4 o,/'
drastic as can be seen in Figgd3-3(e) in which two spa- ] 4
tiotemporal diagrams corresponding to a sdtasye density d =44 mm o’
contrast (At=102) and a same viscosity=10"° m?s™! 05.] o d=20mm ™
are compared: while the flow regime is turbulent for 1 ._,,f/’ ,"’
=20 mm, a well defined counterflow region is observed ] l'-'-l‘.'—"-'-"-‘—.———_-—_-_-_-_—_-_l_"_’_.——” K
around the gate valve fat=5 mm. The same trend is ob- 0.0 ¢ * d=8mm
served in the map of Fig.(d) displaying mixing regimes B TP o T R 1 O S ki
observed as a function of At ardl Reducingd shifts the 10 10 10 At 10
flow regime observed from turbulent—diffusive towards ] o
convective—diffusive and from convective—diffusive towards D 1 ()  d=20mm &//
stable counterflow. The Atwood numbers corresponding tom2s-1 ] .
the transition between the convective—diffusive and stable ] v=6x10 192 sl
counterflow regimes vary this time as 3. As above, the 1'0'_ L EE/,’EE
boundary between the convective— and turbulent—diffusive . -- 12!"\,=4‘3 X106 m2 -1 O°
regimes cannot be defined precisely. = | a2t o
= E"/ [
0.5 = 625l L7
IV. QUANTITATIVE RESULTS _ SR "
A. Macroscopic diffusion coefficients I T R P _.1;;70-6 412 51
1. Dependence on At and tube diameter oo 1
The macroscopic diffusion coefficielt is the key pa- Tt i @ A 4o

rameter characterizing the dynamics of mixing between the
two fluids. It is determined by fitting with an error function EIG. 5. (a) Variations of the macroscopic diﬁusi_on coeﬁicieﬁ)tas_ a func-
the normalized mean concentration variation curves al%, ?T:HIT;YAS’LOZOS n?n‘iT.bira/:L 50;8”;:;9( f')ﬁgi”iot,‘ébrizi'ﬁ?egs
shown in Figs. &9)—2(h). This procedure can of course only the variation ofd with At for fluid viscosities:»=10"° m?s™* (W), 2.3
be applied in the turbulent—diffusive and convective—x10%m?s ! (0), 4.3x10 ¢ m?s * (@), and 6.0¢10 * m?s ! (X) (d
diffusive regimes. In a first step, the variation Bf as a =20 mm). Dotted lines are only provided as guides for the eye.
function of the Atwood number At has been studied for the
three different tube diameters for which a clear diffusive re-
gime was observedd= 8, 20 and 44 mm the fluids always Note that the large values &f reported above suggest a
have the same viscosity=10 ° m?s™* [Fig. 5a)]. Experi-  simple interpretation of the relatively slow fluid mixing, even
mentalD values range between 1Hand 2x10 3 m?s !  at very large At values. An effective Rayleigh number,Ra
and are much larger than the molecular diffusion coefficiencan indeed be defined by replacing in Efj) the molecular
(typically 10 ° m?s 1). The coefficientD reflects indeed diffusion coefficientD,, by the macroscopic coefficierid
the random displacements of small fluid volumes with a sizdthis is a logical change since, in these flows, iDisind not
of a few mm or cm and not the thermal motion of individual D, that characterize the interdiffusion of the fluidRa is
molecules. lower than the threshold value Rand one can consider that
An important result is the weak variation Bfwith At at ~ the system has reached a dynamical equilibrium in which no
low density contrastgalso in Fig. %a)]. For instance, fod large scale instabilities can develop. Mixing results then only
=20 mm, D is almost independent of At over a very broad from the effect of the macroscopic diffusiviy.
range of values (10*<At<10 2). This contrasts with the
very diverse qualitative properties of the flow regimes in that ) )
same range. The value 8f in the low At regime increases 2 Dépendence on viscosity
also weakly with the tube diametdr(Fig. 5). Figure §b) displays variations oD with At in the 20
At higher density contrastd) increases faster with At: mm diameter tube for different viscosities between 4and
the threshold At value for this increase gets lower for large6x 10 ® m?s™ . Surprisingly,D increases with the viscos-
tube diametersd; the value ofD for the highest Atwood ity », implying that the mixing region between the two fluids
numbers (A0.1) may be slightly overestimated due to anspreads out faster for more viscous flui@sincreases by a
increased viscosity of the higher density solution at large salfactor of 4 for At=10 2 when v varies from 10° to 6
concentrations. X10°® m?s L.
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Figure @b) displays the variation o¥/; with At in the

(a) v=106m2 sl tube of diameted=20 mm for different viscosities. An un-
0.03 1 expected feature is the increase\6f with viscosity (by a
Vi | e factor of 5 for At=0.1) whenw varies from 10° m?s™* to
ws) . 6x10 % m?s 1. This increase o¥; with v is probably re-
d=44mmr ® lated to that ofD reported above. As foD, this effect is
°~°1': & o omen weaker ford=44 mm: V; is still 100% larger at low density
. o o« e M contrasts (A=10 %) for »=4.3x10"® m?s ! while it is
- . m e almost the same for A¢10 2.
o _ _-'m u e Measurements of the macroscopic diffusion coefficient
0003{ W g d=20 m‘j‘,x"::Smm D and of the characteristic velocity; have provided there-
e fore two particularly intriguing aspects. One is the weak de-
S L B L A pendence oD on the density contrast in spite of the broad
10° 10° 07 At 10" range of At values investigated and the other the increase of

V; andD with viscosity.
It will be shown below that a possible explanation of

0.03 1 ® d=20mm . these results is the fact that buoyancy forces that drive the
) B mixing process are determined by local density contrgsts
Vi B0 and not by the global density differencd®. On the one
(mls) v=6x100m2sl g~ hand, increasing At enhances mixing and reduces the ratio
/,/E;=2.3 <106 m2 51 m oplAp: this partly offsets the direct effect of the increase of
0.014 - /,/’ ‘/,/’- the density contrast. On the other hand, increasing viscosity
] - S -a (] at a constanfAp decreases the Reynolds number and leads to
. " 5,,»;: 106 m2 s 1 a coarser mixing: thereforép (and the buoyancy forcgs
1 u -7 increases.
0.003 - m

N V. DISCUSSION OF EXPERIMENTAL RESULTS
10 10 10 At 10

o _ , A. Characteristic velocities
FIG. 6. The variation ofV; with At (a) for several tube diametersl

=44 mm (@), 20 mm (M) and 8 mm( ¢ ). Viscosity v=10"% m?>s™ 1. (b) )
For several viscositiesy=10"% m?s™! (M), 2.2x10 ¢ m®s™! (O), 6.0 1. Counter-current regime
—6 2 o1 H —
|>.<10 ms * (). Tube diameter=20 mm. The slope of the dashed In all flow regimes buoyancy forces are the driving
ines=0.25[see Eq(14)]. . .
mechanism. The stable counter-current regime observed at
low At values may be modeled as a Poiseuille-like flow of
This influence ofv on D is much smaller at larger diam- the two unmixed fluids in opposite directions at a character-
eters: ford=44 mm, D still increases with viscosity but istic velocity V.. Buoyancy forces per unit volume are of
only by a factor 2.5 at low density contrasts EAt0™ %), order Apg and are balanced by viscous forces of order
while there is almost no variation at large onesA0" 1)  pvV./d% V., must then satisfy
(in both cases for an increase of viscosity by a factor )of 4 1 Ap ga?
B 3

Cz
B. Experimental velocities of internal fluid motions 48 p v

The previous results were derived from mean gIobaIT_he factqr 1/45_3 is obt_ained by approxim_ating the flow in a
concentration profiles measurements. At a more local scal&rcular pipe with the interface along a diameter. The shear-
mixing and spreading of the two fluids is associated withi"9 flow assomafced to this counter-current will become un-
random internal fluid motions in the mixing zone. The diffu- Stable at a certain value of the Reynolds number:
sivity D can be considered as the prodilxt V£ of their Vd gAtd®
characteristic velocity/; and a characteristic lengthas for Re= 2, 48,2 (4)
every random walk process. These internal motions are di-
rectly visible in Figs. 2a)—2(b). They are marked in the Experimental results displayed in Figsias-4(b) indicate
spatiotemporal diagrams of Figs.(aB-3(e) by oblique indeed that the value of At at the transition with the diffusive
streaks of slope correspondingVg. Figure Ga) displays in ~ regime varies asl~® and v* as expected from Eq4). The
log—log coordinates the variation of; with At for d corresponding critical value of Rés of the order of 130.
=20 mm and d=44 mm at a same viscosityv
=10 %m?s ' V; increases slowly with At for v
=10"® m?s . The variation ofV; with d is also slow: for
a given Atwood number, the values obtained &8 mm In the convective—diffusive and turbulent—diffusive re-
and 20 mm are similar and only two times lower than forgimes, inertial rather than viscous forces balance buoyancy,
d=44 mm. leading to a new velocity scale:

2. Diffusive regimes
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gible compared with inertial ones and so one should expect
(a) the velocity fluctuations to be independent of viscosity. If
frictional forces were not entirely negligible, one would ex-
o) pect the velocity fluctuations to decrease with increasing vis-
] .9'.(‘9 i3 cosity. An explanation of this counter-intuitive trend must
X @ﬁ therefore be sought in terms of the viscosity decreasing the
» local Reynolds numbethowever larger than)lwhich in-

0.1 .69 oo creases the local density differences. This discussion would
not apply to fluids of very high viscosities: the Reynolds
a® o number is then low enough so that viscous forces slow down
directly the fluid motion and redud® andV;. It is indeed
. observed thaD no longer increases with viscosity far

1 >10 °*m?s ! andd=20 mm.

el
on
m O
®
8

&

1 B. Nondimensionalization

b
e ) s} Figure 7{a) plots the velocity fluctuations as a function

Ve - 9I®O Q e® of the Atwood number At which is a parameter that is easily
| o X n @O adjusted in the experiments. While At has no dimension, it is
'3 ] °o. not an appropriate nondimensional group. When the density
@,E& ° . contrast is small, one should use the Boussinesq approxima-
* u ° tion in which the inertial terms involve the average density
0.1 - ¢ F‘jf PY and the buoyancy terms the varying density. Hence, the den-
] ® b sity differenceAp only occurs when multiplied by the grav-
] ity accelerationg. Using the two other external parameters,
] the tube diameted and the fluid viscosity, we can form
RS I S L R RS i only one nondimensional group. A second Reynolds number,
10° 10° Re,  10° now based on the velocity scalg and expected to be the
relevant one in the diffusive regime, is therefore

FIG. 7. Variation of the ratioV;/V, for several tube diametersl
=44 mm: @, O, ®; d=20 mm: W, [J, #, X; d=8 mm: ¢ and several

; ities y=10-% M2 s~ 1: © 23%10° 8 m2s It 4 V.d ;Atgd3
\Qslc; Sf:tlrigs],}’ 1:129, Ean: GS.OX 1(?* 5 :’2 s’i: %i(;)ovarri‘;t;n of% /\?t’ ais; RQZT - V2 =(48 RQ)l/Z' ©)
function of the Atwood number Atb) Variation of V;/V, as a function of
the Reynolds number ReVid/v. The clear failure of the present plota)  Figure (b) plots the observed velocity fluctuatiok’s scaled
and(b) to prc_)Vid(_e a satisfactory cqllapse of the data using nor_1dimensionaby the inertial velocityV, as a function of Re We see that
parameters is dlgcussed further_ in Secs. VA2 and VB. Thls leads to ?h . . . . -
model discussed in Sec. V C which suggests an alternative(Fipt 9. e data for different tube diameters and different fluid vis
cosities do not collapse onto a single curve: there are clear
systematic variations from the average data as the diameter
Ap and viscosity change. This failure to collapse the data sug-
V= \/2—gd= Vg At d. (5)  gests that there must be another hidden parameter in the ex-
p periments. The molecular diffusiviti ,, of the salt is more
This velocity corresponds to the fluid in an eddy being ac-than three orders of magnitude smaller than the kinematic
celerated through a distanced® starting from resthe 1/4  viscosity: it should therefore be irrelevant to mixing pro-
factor is put for convenience to have a simpler expression ofesses at the scale of the present experiments. Mordoyer,
V,). Figure Ta) displays the observe¥; divided by this has the same dimensions as the viscosity and would not help
velocity scaleV, as a function of At. One first observes that eliminate the systematic variations with the diameter in Fig.
the measured velocities are at most of the ordevgfand  7(b).
more than one order of magnitude smaller at the highest Despite this lack of success of dimensional analysis to
values of At. Now, the vertical extension of the eddies, atcollapse together the different velocity fluctuation curves, we
least in the convective—diffusive regime, is greater td&h  consider now a nondimensional plot of the measured diffu-
and often as high as several tube diamefassobserved in sivity D. In Fig. 8,D divided by the kinematic viscosity is
Figs. 2b) and 2e)]. Allowing the heavier fluid to accelerate plotted as a function of the second Reynolds numbegr Re
through these large distances would lead to velocities higherontrast with the previous case, the data points collapse onto
thanV, rather than lower as observed in Fig. 7. Hence, onex same global variation and two regimes are observed. For
must conclude that local density differenc&saccelerating most experiments, corresponding toR&000, the ratid /v
the flow are less thadp. is roughly constant and equal to 200: a large part of these
Figures 6b) and fa) also show a systematic increase of data points corresponds to the convective—diffusive regime.
the velocity fluctuationsVy with increasing viscosity. As The first order approximatioB/v= cost amounts to neglect
noted above, this is counter-intuitive. In the diffusive regimethe slow increase ob with the diameterd noted in Sec.
where Rg>130, frictional viscous forces should be negli- IVA1). At high Reynolds numbers (Re1000), always cor-
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2000 tional to pV% balanced by viscous forces proportionaptdr
D (7 being the characteristic time scale for the growth of the
v ¢ instabilities leads to
1500
pv
® 7 = va2 ' (10)
1000 ° in which C is a numerical factor. The characteristic time
o may be expected to correspond to fluid displacements of ve-
° locity V, over a distanceé so that
500 o " €=V,. (11
]
s u C .:ﬁ_gg g:f . Combining Egs(10) and(11) leads to the relation
""" E?&"C Tttt TTTTTTTTTTTTT
0 Vot
T ——— — - C=7, (12
107 10° Re, 10

FIG. 8. Variation of the rati/» with the Reviold ber ReV.d/y f between velocity fluctuations and the distance over which
. 8. Variation of the ratid/» with the Reynolds number ReV,d/v for :

tubes of diameterd=8,20, and 44 mm and fluids of viscosities- 106, they remain correlated. On the _OtheTr ,hand’ the _prOdUM_"Of
2.3x10°¢, 4.3x10°5, and 6.0<10°® m?s™%. Horizontal dashed line cor- @Nnd € should represent the diffusivitp associated with
responds t®/»=200. Meanings of symbols are identical to those in Fig. 7. these fluctuations so that

D=V {=Cu. (13)

. e ) ) The experimental results displayed in Fig. 8 confirm this
responding to the turbulent—diffusive regini®|v increases scaling law in the convective-diffusive regime witg

with Re. In the following parts, we seek to account for these _ 5’ Eliminatingl between Eqs(9) and (12) leads to the

results. scaling prediction
C. Modeling the convective—diffusive regime o Atgr?\
Vg =C T . (14)

This section is devoted to a tentative model of mixing in
the convective—diffusive regime (Re1000) for which the  The velocity scaleV, may be expected to follow the same
ratio D/v is constant and of the order of 200. As statedscaling law as the characteristic velociy determined ex-
above, the local density fluctuationp determining the perimentally from spatiotemporal diagrams. Indeed, (#d)
buoyancy forces driving convection are only a fraction of thepredicts a slow increase &f, with viscosity and a slow
global density differencép. This dp can be taken equal to variation with At as actually observed experimentally Yar.
the variation in mean density over a distaricehich may be  The dashed lines in Figs(®# and &b) represent the At
several tube diameterg: represents the characteristic verti- variation in Eq.(14) and follow reasonably well the trends of
cal size of an eddy or the typical extension of a convectiorthe various data sets. The variation fd=20 mm andv

event. Then =10"% m?s ! appears to be slowéthe larger error on the
dp determination ofV; at large At values may account in part
5,):65, (7)  for this discrepancy The scaling law(14) is tested more

quantitatively in Fig. 9 in which the rativ;/V, is plotted as
in which p is the average density at height If the global  a function of the Reynolds number Rier different tube
mixing region extends at a tinteover a distancé, one may diameters and fluid viscosities. The theoretical velovityis
alternatively write computed from Eq(14) with L=1 m which is an order of
magnitude of the front width in the zones of the spatiotem-
(8) poral diagram wheré&/; is generally determined. Values of
the ratio obtained fod=8 mm and 20 mm are nearly con-

Assuming that the local density fluctuatiolp accelerates Stant and close to 1 as expected;(V,=0.9£0.2); those
from rest over the vertical distande it will induce a veloc-  corresponding tal=44 mm are also constant with Reut

¢
5p:ApE.

ity fluctuationV, of the order of 50% higher.
op Atge? D. Characteristic diffusion length
Vi= de:\/ L. )

Combining Egs(9) and(12) also provides a scaling law
The distance’ is expected to increase with viscosity as thefor the characteristic lengtth=D/V,,
flow becomes more laminar and the vertical correlation L \L4
length of the velocity fluctuations becomes longer. For simi- ~ ¢=CY%12 —| . (15)
. . Atg
lar reasons, the distané€eshould also increase at low values
of At. Assuming that eddies and/or convective motions de-This prediction can be tested assuming that the experimental
velop through instabilities driven by inertial forces propor- characteristic diffusion lengtB/V; follows the same scaling
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FIG. 9. Variation of the ratid/; /V, as a function of the Reynolds number 10 4
Re for different tube diameterd and viscosities. The dashed line corre- ] (b)
sponds to an ordinate 0.9. Meanings of symbols are identical to those irL 1 Y%
Fig. 7. Vid 1 &
\\ '
X \u X
] :: M| | =
law as ¢. Figure 1@a) displays variations oD/V;¢ as a . % 3 u
function of the Reynolds number Rér'he theoretical length fm}a.@@ga © é
€ is computed from Eq(15) with the same value=1m as GBG}Q\\OQ o
above. The rati®/V{ remains globally constant and of the o 8\“‘.‘!‘:"""
order of 0.8-0.2 for all diameters and fluid viscosities over 15 . °
the same range of Reynolds numbersfR&00) for which 1 b
D/v is constant(Fig. 8). This confirms the validity of the

scaling law, at least in the convective—diffusive regime. T ——
The diffusion length decreases with the Atwood number 100 Rep 1000

[See Eq'(15)] in this regime. It may be expected to have theFIG. 10. (a) Variation of the ratioD/V¢¢ with the Reynolds number Réor

tube diameterd as a lower limit when the turbulent— different tube diameterd and different fluid viscositie. The ordinate of

diffusive regime develops. In order to analyze this point, thene horizontal dashed line is 0.80) Variation of the ratioD/V,d as a

normalized ratidD/V;d is alternatively plotted in Fig. 10) function of the Reynolds number: ReVid/v for the same set of experi-

as a function of a new Reynolds numberfRVfd/V. The ments. slope of the obliqqe dashed kne 1, ordinatg of the hori_zonFaI

ratio D/V;d can be thought of as a ratio of an eXperim(:mta“ydashed line=1.2. The meanings of symbols are identical to those in Fig. 7.

observed correlation lengt®/V; to the tube diameted

while the new Reynolds number Reses the observed ve- i , ,

locities V¢ rather than the overestimating theoretival Us- tion 9f D with Re is faster for larger tube diameters and

ing Re instead of one of the previous definitions allows thedensity contrasts—probably due to a weaker effect of the

collapse of the low Reynolds number data onto the samgonfinement by the tube walls. _

global trend[an oblique line of slope-1 in Fig. 10b)]: the An analysis of the spatiotemporal diagrams suggests a

product D/V,dx Re is indeed equal td/v and therefore global picture of the phenomenon. A crucial point is that

constant for Res200. For higher density contrasB/V; no ~ buoyancy forces inducing the flow are determined by the

longer decreases and reaches values of the order of the tulal density contrasép between moving fluid particles and

diameter: 1.8 for d=20 mm andd for d=44 mm. the surrounding fluid rather than by tlydobal contrastAp
between unmixed fluids. The local contraft depends not

only on Ap but also on the efficiency of mixing inside the
VI. CONCLUSION flow which redu_ces den_sity cor_ltrasts, and therefore buoy-
ancy forces. This explains for instance the observed slow
The set of experiments reported in the present paper hascrease of the fluid velocitiesVg=At%2 or slowe) com-
confirmed that gravity-induced mixing in long vertical tubes pared to the At? dependence expected from E&). The
is diffusive over a broad range of viscosities, density con-effect of increasing\p is, in this case, largely compensated
trasts and tube diameters. Several characteristics of the préer by enhanced mixing.
cess are, at first sight, unexpected, e.g., the increase of both For a constantAp, both D and V; increase with the
the macroscopic diffusion coefficielt and the characteris- viscosity v. This does not reflect direct effect of viscous
tic velocitiesV; of the fluid motions with the fluid viscosity. forces: they are small compared to inertia and buoyancy
Using dimensional analysis, the variation@fwith the  forces in all cases. Viscosity has here iadirect effect by
global Reynolds number Ref the flow has demonstrated a reducing the local Reynolds numberRand slowing down
transition between two diffusive mixing regimes. The varia-mixing): there results an enhancement of the local density
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