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SALEM–SCHAEFFER MEASURES OF DYNAMICAL SYSTEM ORIGIN

A.A.PRIKHOD’KO

Abstract. A class of measure preserving Z
d- and R

d-actions T is constructed possessing
the following properties: the spectrum of T is simple and for a dense set of functions f the
spectral measures σf have an extremal rate of the Fourier coefficient decay:

σ̂f (n) = O(|n|−d/2+ε)

for any ε > 0, where the exponent −d/2 is the minimal possible for singular mesures on T
d.

The work is supported by CNRS (France, Normandie), RFFI grant No. 11-01-00759-a and
the grant “Leading Russian scientific schools” No. NSh-5998.2012.1.

1. Constructions of singular Borel measures on [0, 1]

In this work we construct a new class of dynamical systems with simple spectrum generating
spectral measures characterized by fast Fourier coefficient decay. We start with a well-known
construction due to Riesz [16]. He proposed to consider a formal infinite product

(1)

∞∏

n=1

(
1 + an cos(ωnx+ φn)

)
,

where ωn ∈ 2πZ is an increasing sequence, 0 < an ≤ 1 and φn ∈ R. It is well known that for a
certain choice of parameters an, ωn and φn, for example, if ωn+1/ωn ≥ q > 3 and

∑
n a

2
n = ∞,

this product represents a singular measure on [0, 1] (see [26], § 7). We understand this state-
ment as follows. The finite products

ρN (x) =
∏

n≤N

(
1 + an cos(ωnx+ φn)

)

are interpreted as densities of probability measures on [0, 1], and we have convergence

ρN (x) ds → dσ n → ∞

in the weak topology, where σ is a measure on [0, 1]. The infinite products (1) today refered
to as classical Riesz products as well as generalized Riesz products

P =

∞∏

n=1

Pn(z), where Pn(z) =

qn−1∑

k=0

cn,k z
k, z ∈ C, |z| = 1,

provide an important construction of singular measures broadly applied in analysis and dy-
namical systems (see [1], [2], [4], [5], [21]).

Let us denote M ([0, 1]) or simply M the class of all Borel probability measures on [0, 1].
A measure ν is absolutely continuous with respect to another measure µ, notation: ν ≪ µ,
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2 A.A.PRIKHOD’KO

if ν = p(x)µ, where p(x) is a certain density, p(x) ∈ L1(µ). The relation ν ≪ µ is a partial
order on M . The measures µ and ν in the class M are called mutual singular, µ ⊥ ν, if there
exists a Borel set E such that µ(E) = ν(Ec) = 1, where Ec is the complement to the set E.
Recall that any Borel measure σ on a segment in the real line is uniquely expanded in a sum

(2) σ = σd + σs + σac, σs ⊥ λ, σac = p(x)λ,

of discrete (a sum of atoms), purely singular and absolutely continuous components, where λ
is the normalized Lebesgue measure on the segment. Since every measure σ ∈ M ([0, 1)) can
be considered as a measure on R one can define the Fourier transform of σ by the formula

F[σ](t) =

∫ 2π

0
e−2πi tx dσ(x), t ∈ R.

For probability measures on R the following general observation holds (see [22], ch. 2, § 12).
If the Fourier transform of σ belongs to L1(R), for example, if F[σ](t) = O(t−1−α), α > 0,
then σ in absolutely continuous. At the same time, any measure σ ∈ M ([0, 1)) as a measure
on the compact group T = R/Z ≃ [0, 1) generates the sequence of Fourier coefficients σ̂(n)

supported on the dual group T̂ = Z. Note that

σ̂(n) = F[σ](n) =

∫ 2π

0
e−2πi nx dσ(x), n ∈ Z.

Suppose that σ̂ ∈ l2(Z). Then the Fourier series
∑

n σ̂(n) e
2πi nt converges in the space L2(T)

to some function p(x). Using Cauchy–Schwarz inequality ‖p‖1 = 〈|p|, 1〉 ≤ ‖p‖2 we see that
p(x) is a density of some measure p(x) dx ∈ M (R), and p̂(n) = σ̂(n) (eg. see [25], § 1). Furhter,
notice that any sequence cn = O(n−1/2−α), α > 0, is square summable.

In the case of singular measure σ, as a rule, we deal with a divergent series
∑

n σ̂(n) z
n.

Understanding analytic properties of a singular measure σ, when we know certain combina-
torial properties of the sequence σ̂(n), becomes a very complicated problem. Louzin [9]
constructed the first example of power series

∑
n cn z

n with cn → 0 divergent everywhere on
the unit circle |z| = 1. Further, Neder [13] proved that any series

∑
n cn z

n with the property∑
n |cn|

2 = ∞ can be transformed to everywhere divergent (for |z| = 1) using some phase

correction c̃n = ei φn cn. Now let us turn to expansion (2) of σ and remark that Riemann–
Lebesgue lemma can be interperted in the folowing way.

Lemma 1. Given an absolutely continuous measure σac,

σ̂ac(n) → 0 as n → ∞.

Definition 2. We call Menshov–Rajchman measure, a singular measure satisfying µ̂(n) → 0,
n → ∞. We denote as R the class of all measures of such kind.

Evidently any discrete measure σd is never of Menshov–Rajchman type since its Fourier
transform σ̂d(n) is a Bohr almost periodic sequence. At the same time, it is easy to see that
the singular Cantor–Lebesgue measure µCL supported on the standard 1/3-Cantor set enjoys
the property µ̂CL(3

kn) = µ̂CL(n), which is explained by fractal symmetry of the Cantor set.
Thus, µCL 6∈ R. Modifying the construction of µCL Menshov [11] provided the first example
of singular measure in the class R. Further, Neder [12] proved that any Menshov–Rajchman
measure cannot be a mixture of discrete and continuous component, and then Wiener [24]
extended this result and showed that the Fourier coefficients of any continuous measure µ
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converge to zero in average, and any set {n : |µ̂(n)| > b > 0} has zero density in Z. Littlewood
[8] found a singular probability measure σ with the rate of decay

σ̂(n) = O
(
|n|−c

)
, c > 0.

Then Wiener and Wintner [25] obtained a stronger result demonstrating that the exponent c
can be arbitrary close to 1/2, but the approach proposed by the authors generates a measure
σ that depends on c = 1/2− α, α > 0. Soon after this work Schaeffer [21] using the idea of
Riesz products proved the existence of a singular σ with

σ̂(n) = O
(
r(|n|) · |n|−1/2

)

for any given increasing sequence r(n) → ∞, n → ∞. In particular, σ satisies

σ̂(n) = O(|n|−1/2+ε) for any ε > 0.

Ivashev-Musatov [6] got a further improvement of Schaeffer’s result. He found a set of singular
measures with sub-|n|−1/2 rate of correlation decay satisfying σ̂(n) = O(ρ(n) · |n|−1/2+ε) with
ρ(n) → 0 but ρ(n) ≫ |n|−ε for any ε > 0. Following [25] let us denote κ(σ) the infinum of
real γ’s such that σ̂(n) = O(|n|γ). In a series of works [18, 19, 20] Salem introduced an
approach that helps to see, in particular, explicit examples of singular distributions with the
property κ(σ) = −1/2.

Definition 3. Let us call singular measures on T
d (respectively, Rd) satisfying the condition

σ̂(n) = O(|n|−d/2+ε) for any ε > 0, measures of Salem–Schaeffer type.

In this note we discover that Salem–Schaeffer measures appear as spectral measures for a
class of group actions with invariant measure. Let us consider a measure preserving invertible
transformation T : X → X of the standard Lebesgue space (X,B, µ) and define Koopman
operator on the space H = L2(X,B, µ),

T̂ : H → H : f(x) 7→ f(Tx).

Clearly, T̂ is a unitary operator in a separable Hilbert space H, hence, it is characterized
up to a unitary equivalence by the pair (σ(T ),M(z)), where σ(T ) is the measure of maximal
spectral type and M(z) is the multiplicity function. Of course, two transformations which
are spectrally isomorphic, need not be isomorphic as dynamical systems. For example, all
Bernoulli shifts have Lebesgue spectrum of infinite multiplicity but they are dinstiguished by
entropy. And, in fact, it is a hard problem far from complete understanding to classify all pairs
(σ(T ),M(z)) that can appear as spectral invariants of a measure preserving transformation

(see [7, 10]). Further, given an element f ∈ L2(X,B, µ), the spectral measure σf ∈ M on
T ≃ [0, 1) is uniquely defined by the relation

σ̂f (n) =

∫
e−2πi xn dσ(x) = Rf (−n)

def
=

〈
T̂−nf, f

〉
.

It is easy to see that σf ≪ σ(T ).

2. Dynamical systems generating Salem–Schaeffer measures

In this section we define actions of the groups Zd and Rd with invariant measure generating
spectral measures of Salem–Schaeffer type for a dense set of function on the phase space.
Without loss of generality we concentrate our attention on the case of Zd-actions.
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2.1. Main construction. Consider a nested sequence of lattices Γn in the group G = Zd such
that Gn+1 ⊂ Gn, and let Mn = G/Γn be the corresponding sequence of homogeneous spaces
linked by a natural projection πn : Mn+1 → Mn mapping a + Γn+1 onto the point a + Γn.
Let us also fix a Fölner sequence of Γn-fundamental domains Un, such that λ(∂Un) = 0,
where λ is the Haar measure on G (the condition automatically holds for G = Z). To simplify
understanding of the construction let us consider a particular case Γn = hnZ

d, hn+1 = qnhn,
qn ∈ Z, and let Un be rectangles Un = [0, hn)

×d. Let us then introduce a family of maps

φn : Mn+1 → Mn,

φn(γ + u) = u+ αn,γ , γ ∈ Γn/Γn+1, u ∈ Un, αn,γ ∈ G.

The sequence of maps φn difines a dynamical system on a projective limit of the spaces Mn.
Thus, the parameters of our construction are: (a) the group G; (b) a sequence of lattices Γn;
(c) rotation parameters αn,γ . To simplify the construction suppose that

Γn = hnZ
d, hn+1 = qnhn, qn ∈ N, qn+1 > 2qn, Un = [0, hn)

×d.

We represent Mn+1 as a finite union of domains γ + Un, where γ ∈ Γn/Γn+1. Observe that
each domain Un projects one-to-one onto Mn (up to a null set) and then rotated by αn,γ .

Let X be the inverse limit of the spaces Mn,

X =
{
x = (x1, x2, . . . , xn, . . . ) : xn ∈ Mn, φn(xn+1) = xn

}
.

The space X is endowed with the Tikhonov topology and a structure of probability space
(X,B, µ), where µ is a Borel measure that projects to the unique invariant measure µn on
each space Mn. Finally let us define an action of the group G on the space (X,B, µ). Given
t ∈ G and using Borel–Cantelli lemma we see that the probability

µ
{
x ∈ X : ∃n0(x) ∀n ≥ n0(x) γn(xn) = γn(t+ xn)

}
= 1,

hence, for the points x of such kind (belonging to the set above) we can define T t by the rule
(T tx)n = t + xn for n ≥ n0(x). For indexes n < n0(x) the coordinates (T tx)n are recovered
using the fundamental equation φn(xn+1) = xn. The following lemma directly follows from
the definition (see also [15] for the careful examination of the case G = Z).

Lemma 4. The maps T t giges a measure preserving G-action on the space (X,B, µ).

We call the constructed class of G-actions systems of iceberg type. It can be easilily seen
that our construction naturally extends a general (C,F ) construction of rank one actions of
Lie groups (see [3, 14]).

Let us also observe that the Z-action of iceberg type with qn = 2, (αn,0, αn,1) = (0, hn/2), is
identical to the classical Morse transformation (see [23] for the discussion of arithmetic prop-
erties of Morse systems). Actions with infinite invariant measure possessing fast correlation
decay and simple spetrum was studied by Ryzhikov [17].

3. Spectral properties

Theorem 5. Let αn,γ be a family of independent random variables, uniformely distributed
on finite sets Γn/Γn+1. Then for a certain sequence qn → ∞ and for a set of (cylindric)
functions f dense in L2(X,µ) the spectral measures σf satisfy almost surely the condition

(3) σ̂f (t) = O(|t|−d/2+ε)

for any ε > 0. In particular, σ̂f 6∈ L2(G), and σ̂f ∈ Lp(G) for p > 2.
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In the case G = Z the proof of the next theorem is given in [15]. The next theorem,
which proof goes out of this paper explains the interest to dynamical system constructions of
Salem–Schaeffer measures.

Theorem 6. There exist actions of iceberg type having pure singular spectrum falling into
the class of Salem–Schaeffer measures.

Proof of theorem 5. We establish for the constructed class of systems the following universal
estimate

EP|Rf (t)|
2 ≤ r(n) · t−d

where hn−1 ≤ ‖t‖ ≤ hn, and r(n) is a slowly increasing function, r(n) ≪ hcn for any c > 0.
Here EPξ denotes the expection of a random variable ξ according to the probability measure
in the space of parameters. Consider a bounded cylindric function f with zero mean that
depends only on the coordinate xn0

, namely, f(x) = fn0
(xn0

). To illustrate the method of the
proof let us first calculate the expectation EPRf (t) for sufficiently large t, and without loss of

generality consider t = hn−1 · s ∈ Γn−1, s ∈ Z
d
r {0}, ‖t‖ ≪ hn. In this case the translation

by t preserves the partition of the space Mn into domains γ + Un−1. Given such t the function
Rf (t) is approximated by the following correlation function

R◦
n(t) = h−d

n

∫

Mn

fn(x− t) fn(x) dλn = Eµn 〈fn(x− t), fn(x)〉 ,

where λn is the standard Haar measure on G = Z
d, further, µn = h−d

n λn is an invariant
probability measure on Mn, and fn is the lift of the function f to the manifold Mn. Then

ER◦
n(t) =

1

Qn−1

∑

γ∈Γn−1/Γn

E
〈
ραn−1,γfn−1, ραn−1,γ+sfn−1

〉
= 0,

Qn−1 = qdn−1 = #Γn−1/Γn,

since αn−1,γ are αn−1,γ+s are independent and
∫
X f dµ = 0. Developping this technique let

further study the expectation EP|Rf (t)|
2. Assume again that t ∈ Γn−1. By analogy approxi-

mating Rf (t) by R◦
n(t) we get

|R◦
n(t)|

2 =
1

Qn−1

∑

γ1,γ2

fn−1(t−αn−1,γ1) fn−1(t−αn−1,γ1+s) f̄n−1(t−αn−1,γ2) f̄n−1(t−αn−1,γ2+s)

Each term is this sum is determined by four indexes γ1, γ1+s, γ2, γ2+. If any of these indexes
becomes free, that is never repeated in the product (does not coincide with the remaining
three indexes), then the expectation of the product will be zero be the independence of
the random variables αn−1,γ . Thus, each non-trivial term in the sum participate in one of
the following configurations: either γ1 = γ2 or γ2 = γ1 + s (mod hn−1) and simultaneously
γ1 = γ2 + s (mod hn−1). The second configuration is statistically rare and can be neglected.
The main influence in the sum is given by the first type of configurations, and we have

EP|R
◦
n(t)|

2 =
1

Q2
n−1

∑

γ

EP|fn−1(t− αn−1,γ)|
2
EP|fn−1(t− αn−1,γ+s)|

2 · (1 + o(1)) ∼

∼
1

Qn−1
Eµn−1

EP|R
◦
n−1(t)|

2.
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Analogously one can check that the same estimate is true for t 6∈ Γn−1. Thus,

EPEµn‖R
◦
n‖

2 ≤ EPEµn−1
‖R◦

n−1‖
2 + hdn · h−d

n−1EPEµn−1
‖R◦

n−1‖
2 ≤

≤ 2 EPEµn−1
‖R◦

n−1‖
2 · (1 + o(1)) = O((2 + ε0)

n), ε0 > 0,

hence,

EP|Rf (t)|
2 ∼ EP|R

◦
n(t)|

2 = O(t−d · (2 + ε0)
n), t ≪ hn,

and for some slowly increasing function ρ(t) such that ρ(t) = o(hcn) for any c > 0 and

hn−1 ≤ ‖t‖ ≤ hn, we have |Rf (t)| ≤
√

ρ(t) · t−d/2, and the proof is finished. �

It follows directly from theorem 5 that σf ∗ σf ≪ λ, where λ is the normalized invariant

measure on Ĝ. Thus, our observation is connected to the open question due to Banach, —
“Does there exist a Z-action with invariant probability measure having Lebesgue spectrum of
multiplicity one?” — since the spectral multiplicity for almost every action in theorem 5
equals one (and for all systems of iceberg type we have M(z) ≤ 4).

Open questions and hypotheses.

(i) Is it true that dynamical systems in theorem 5 have singular spectrum almost surely

(ii) Can we find a speed of Fourier coefficient decay σ̂(t) = O(|t|−1/2 ρ(t)), that can be
reached in the class of all singular measures, but impossible for measures of maximal
spectral type generated by measure preserving transformations?

(iii) Given a measure of Salem–Schaeffer type, κ(σ) = −1/2, is it posible to reach any
speed of decay of type

σ̂(t) = O(|t|−1/2 ρ(t)) with ∀ ε > 0 |t|−ε ≤ ρ(t) ≤ |t|ε

just multiplying by some density p(x) ∈ L1(σ) ?
(v) Is it true that all Zd- and R

d-actions of iceberg type have singular spectrum?

The author is grateful to A.M.Vershik, S.V.Konyagin, V.V.Ryzhikov and A.V. Egorov for
the fruitful discussions and helpful remarks.
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