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Abstract

Recent works have explored the use of brain signals to
directly control virtual and robotic agents in sequential
tasks. So far in such brain-computer interfaces (BCI),
an explicit calibration phase was required to build a de-
coder that translates raw electroencephalography (EEG)
signals from the brain of each user into meaningful in-
structions. This paper proposes a method that removes
the calibration phase, and allows a user to control an
agent to solve a sequential task. The proposed method
assumes a distribution of possible tasks, and infers the
interpretation of EEG signals and the task by selecting
the hypothesis which best explains the history of inter-
action. We introduce a measure of uncertainty on the
task and on the EEG signal interpretation to act as an
exploratory bonus for a planning strategy. This speeds
up learning by guiding the system to regions that better
disambiguate among task hypotheses. We report exper-
iments where four users use BCI to control an agent on
a virtual world to reach a target without any previous
calibration process.

Introduction

EEG-based brain-computer interfaces (BCI) have been used
successfully to control different devices, such as robotic
arms and simulated agents, using self-generated (e.g. motor
imagery) and event-related potentials signals (see (Millán et
al. 2010) for a review). Error-related potentials (ErrPs) are
one kind of event-related potential appearing when the user’s
expectation diverges from the actual outcome (Falkenstein et
al. 2000). Recently, they have been used as feedback instruc-
tions for devices to solve a user’s intended task (Chavarriaga
and Millán 2010; Iturrate, Montesano, and Minguez 2013a).

As in most BCI applications, ErrP-based BCI requires a
calibration phase to learn a decoder (e.g. a classifier) that
translates raw EEG signals from the brain of each user into
meaningful instructions. This calibration is required due to
specific characteristics of the EEG signals: non-stationary
nature (Vidaurre et al. 2011), large intra- and inter-subject
variability (Polich 1997), and variations induced by the task
(Iturrate, Montesano, and Minguez 2013b). The presence of
an explicit calibration phase, whose length and frequency is
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hard to tune and is often tedious and impractical for users,
hinders the deployments of BCI applications out of the lab.
Thus, calibration free methods are an important step to apply
this technology in real applications (Millán et al. 2010).

Despite the importance of calibration-free BCI, there
are only few related works. For long term operation using
sensory-motor rhythms, it is possible to adapt the decoder
online (Vidaurre and Blankertz 2010). In invasive BCI, Ors-
born et al. (2012) proposed a method to learn from scratch
and in closed loop a decoder for known targets using pre-
defined policies to each target. However, the approach needs
a warm-up period of around 15 minutes. For P300 spellers,
Kindermans et al. proposed a method to auto-calibrate the
decoder by exploiting multiple stimulations and prior in-
formation (Kindermans, Verstraeten, and Schrauwen 2012;
Kindermans et al. 2012; Tangermann et al. 2013). They ex-
ploit the particular fact that only one event out of six encodes
a P300 potential in the speller paradigm.

Our main contribution is a calibration-free BCI method
that infers simultaneously and seamlessly an EEG decoder
of error-related potentials while controlling a device to
achieve a sequential task. The core idea of the method is
to assume a distribution of possible tasks, and infer the in-
terpretation of EEG signals and the task by selecting the hy-
pothesis which best explains the history of interaction. This
inference can be continuously run and updated as new data
comes in, which removes the need for an explicit calibration.

This method is inspired from our previous work (Grizou,
Lopes, and Oudeyer 2013) which considered a robotic set-
ting and speech utterances as feedback signals. In the current
work we improve the algorithm formalism, the robustness to
noisy high-dimensional signals (e.g. EEG), and show that it
is possible to use model-based planning relying on the un-
certainty about the task and the feedback signals interpreta-
tion to explore the space efficiently while learning.

We also present an evaluation of this method with online
experiments where four users control an agent in a virtual
world. The results show that the proposed method allows to
learn a good signal decoder and solve the task efficiently
without any explicit calibration. Offline experiments show
that our unsupervised trained decoder achieves similar per-
formances than calibration based systems and illustrate the
benefits of our planning strategy for speeding up learning.



Calibration-Free BCI Based Control

BCI control based on feedback signals

BCI control based on feedback signals differs from classical
brain-computer interfaces in the sense that the user does not
actively deliver commands to the device, but only delivers
feedback about actions performed by the device (Chavar-
riaga and Millán 2010; Iturrate, Montesano, and Minguez
2013a). In this setting, the device needs to actively execute
a sequence of several actions to solve the task and to be able
to learn an intelligent behavior from the feedback. This idea
can be seen as a shared control strategy (Millán et al. 2010),
where both the user and the device help each other to solve
a task.

Essentially, this BCI control follows an iterative sequen-
tial process where the device performs an action which is in
turn assessed by the user. This assessment will elicit poten-
tials into the user’s brain that can be recorded using EEG and
will be different for “correct” and “wrong” assessments. The
potentials elicited in the user’s brain after performing assess-
ments are called error-related potentials (Ferrez and Millán
2008). After a calibration phase and once a usable decoder
of these signals is available, user’s assessments can be trans-
lated into (normally binary) feedback, which the device can
use to adapt its behavior.

This control based on user’s assessments decoded from
brain signals can be exemplified for a reaching task, where
the user wants to reach a target position unknown by the
system. The device performs several discrete actions (e.g.
moving left or right), and learns from the feedback given by
the user. After several iterations, if the meanings of the EEG
assessment signals provided by the users are known, the de-
vice can infer which is the user’s desired position and how to
reach it. The following section explains how we can achieve
similar performances without knowing the brain signal de-
coder beforehand. We will use the term “virtual label” or
“label” to denote the interpretation of a given EEG signal as
a feedback instruction (e.g. “correct” or “wrong”).

Simultaneous Estimation of Task and Signal Model

This section formalizes the problem of executing a task
when the mapping between raw EEG signals to a discrete la-
bel among a set of pre-defined labels is unknown. The main
idea is depicted in Figure 1 for a toy 1D example. The user
wants the device to reach the right-most state. For each de-
vice’s action, he provides a feedback signal which encode
whether the action executed is “correct” or “wrong” accord-
ing to the intended target. Such signals are generated from
an underlying model which maps a binary label (“correct” or
“wrong”) to a continuous signal. However, neither the user’s
desired target nor the labels associated to the user’s feedback
signals are known.

Considering that we can define a finite set of task hypothe-
ses (e.g. reaching one of a finite number of states), we can in-
fer the labels that should be provided by the user with respect
to each hypothesis. Then, given a particular interaction his-
tory, it is possible to compute a different signal decoder for
each task hypothesis. The key point is that only the correct
hypothesis will assign the correct labels to all feedback sig-

T

(a)

T

(b)

Class0

Class1

T

(c)

Figure 1: Representation of inferred signal labels for a
1D grid world in function of the hypothesized task. Three
task hypotheses are displayed in column from left to right
[(a), (b), (c)]. On top is a 1D grid world with the hypothetic
target state marked with a T letter. Notice that this hypo-
thetic target is different for each of the three hypotheses.
The arrows in each cell indicates what action should elicit a
positive feedback, i.e. the optimal policy with respect to the
hypothetic target. The user intended target is shown as the
shaded blue state at the right extremity of the 1D world. Note
that the system does not have access to this information. The
correct hypothesis is the one on the Left [(a)] where the T
state is the same as the shaded blue state. Below the 1D grid
world, the signals received from the user are represented in
a 2D feature space. They represent the user assessment sig-
nals of the past history of device’s actions (e.g. moving ran-
domly left and right). Our algorithm assigns virtual labels
(green for “correct” and red for “wrong”) to those signals
with respect to their respective hypothetic target. Notice that
the data points are the same for all three hypotheses, only
their respective labels differ. With the virtual labels being
assigned, we can compute the corresponding 2D Gaussian
distributions estimates for each class (shown as colored el-
lipses) and each hypothesis. While for the correct hypothe-
sis [(a)] the Gaussian distributions shows a large separabil-
ity, the overlap increases as the hypothetic target (T) moves
away from the real (blue shaded) one [(b), (c)]. This prop-
erty can be exploited to estimate the correct hypothesis and
the model generating the signals.

nals (Figure 1a), while the other hypotheses will gradually
mix both classes as the hypothetic target gradually differs
more from the correct one (Figure 1b and 1c). Therefore,
the hypothesis which provides the decoder with best accu-
racy and compactness can be selected as the most probable
one. In the remainder of this section we show how this prop-
erty can be exploited to estimate the target and the model
generating the feedback signals.

Formally, we represent the problem as a discrete or con-
tinuous set of states s 2 S, a finite set of possible actions
a 2 A, and a set of possible tasks, or targets, for which the
system is able to plan the best sequence of actions. In the 1D
example in Figure 1, the state space is composed of seven
discrete states, and the agent can perform unitary directional
actions, i.e. move one cell left or right. During an interactive
learning session, the agent will proactively perform actions
which will in turn be evaluated as “correct” or “wrong” by
the user with respect to the desired target state on the grid.
In our case the feedback signals are error-related potentials
measured in the brain activity of the subject.



Let ei 2 R
n denote the feature vector of the EEG mea-

surements obtained at iteration i after the device performed
action ai in state si. The label zi 2 {c, w} of each feedback
signal belongs to one of two classes (“correct” or “wrong”).
Following Blankertz et al. (2010), we will model the EEG
signals using independent multivariate normal distributions
for each class (N (µc,Σc) and N (µw,Σw)). We will denote
by θ this set of parameters {µc,Σc, µw,Σw}.

We assume the system has access to a set of task hypothe-
ses ξ1, . . . , ξT which includes the task the user wants to
solve. We do not make any particular assumption on how
the task is represented but we assume that for each par-
ticular task ξ we are able to compute a policy πξ which
represents the probability of choosing a given action a in
state s, πξ(s, a) = p(a|s, ξ). As mentioned above, these
are the policies that, conditioned on the task, provide la-
bels to the feedback signals of a state-action pair (e.g. in
a reaching task, progressing towards the goal will generate
“correct” feedback while moving apart from it will generate
“wrong”feedback).

The method aims to infer which task ξ̂ the user wants to
solve based on the user’s feedback signals extracted from
EEG measurements collected while the agent executes some
actions. Following the analysis of Figure 1, a sensible option
to estimate the task is to measure the coherence of the sig-
nal model for each possible task using the virtual labels pro-
vided by the target policy. In other words, the best (ξ, θ) pair
provides the lowest predictive error on the observed signals
p(e|s, a, ξ, θ), which themselves were collected in the recent
history of interaction. One possible way of solving this prob-
lem is to maximize the expected classification rate:

ξ̂, θ̂ = argmax
ξ,θ

Ee [δ(z(s, a, ξ), z(e, θ))] (1)

where δ() is an indicator function, z(s, a, ξ) is the label (cor-
rect or wrong) corresponding to the execution of action a
in state s under task ξ and z(e, θ) is the label provided by
classifying the EEG signal e under the Gaussian classifier
parameterized by θ. The expected classification rate (Ecr)
can be explicitly written dependent on the task and decoder
model:

Ecr (δ(z(s, a, ξ), z(e, θ))) =

=
X

k∈{c,w}
p(z = k|s, a, ξ)p(z = k|e, θ) (2)

where p(z = k|s, a, ξ) represents the probability of the user
assigning label k when assessing action a in state s accord-
ing to task ξ. We add a noise term to cope with those situa-
tions where the user assessment may be wrong. The model
for probability of correct assessment is then:

p(z = c|s, a, ξ) =

⇢

1− α if a = argmaxa πξ(s, a)

α otherwise

(3)
with α modeling the assessment error rate of the user, which
was set to 0.1 for our experiments. Finally, the term p(z =
k|e, θ) is just the probability that the signal e belong to class

k under the Gaussian model provided by θ and is given by:

p(z = k|e, θ) =
p(e|z = k, θ)p(z = k)

P

l∈{c,w} p(e|z = l, θ)p(z = l)

=
N (e|µk,Σk)p(z = k)

P

l∈{c,w} N (e|µl,Σl)p(z = l)
(4)

As we do not have a priori knowledge on the user intended
meaning, we assume that it is equiprobable p(z = c) =
p(z = w). We will factorize the optimization process using
the fact that given a task ξ, the estimation of θ under the
Gaussian model is straightforward. It basically requires to
compute the maximum-likelihood estimate θML

ξ using the

labels associated to target ξ. We could also consider a prior
distribution on the parameters and update it with new ob-
servations. Using the labels of target ξ, the estimation of θ
under the Gaussian model described above simply returns
to the computation of the posterior mean µz and covariance
Σz for each class z 2 {c, w}. In order to avoid numerical
problems when estimating the covariance for a low number
of examples, a regularization term was applied to penalize
very large and very small eigenvalues (Friedman 1989):

Σz = (1− λ)Σz + λ
trace(Σz)

n
In (5)

with n the feature dimension, In the identity matrix of size
n, and λ the regularization term which was set to 0.5 for our
experiments. An automatic adaptation of the regularization
could also be considered (Ledoit and Wolf 2004).

Using equation 2 to estimate the expected classification
rate is difficult because we ideally want to estimate it on
future, never observed, data. A possible solution is to use
cross-validation or bootstrapping methods using the avail-
able data. However, for small amounts of data, these meth-
ods result in estimates with high variance (Bengio and
Grandvalet 2004) and computational cost.

Alternatively, we propose to use another approximation
of the expected classification rate, the Bhattacharyya co-
efficient. This coefficient has been related to the classi-
fication error of Gaussian models (Kailath 1967) and is
inversely proportional to the classification rate. Although
there is no analytical relation between the coefficient and
the classification rate, it is possible to derive bounds and
good empirical approximations (Lee and Choi 2000). The
Bhattacharyya coefficient ρ 2 [0, 1] between the Gaussian
distributions associated to label “correct” (N (µc,Σc)) and
“wrong” (N (µw,Σw)) is:

ρ = e−DB(θ) (6)

where DB is the Bhattacharyya distance: DB(θ) =
1
8 (µc − µw)

T (Σc+Σw

2 )−1(µc − µw) +
1
2 ln

⇣

det(Σc+Σw

2
)√

detΣcdetΣw

⌘

.

Finally, we approximate the expected classification rate
as:

Ecr / 1− ρ (7)

Confidence on Target Estimation

Now that we have an estimation of the expected classifica-
tion rate, we need to take a decision with respect to which



task is the one intended by the user. To do so we should com-
pare the expected classification rate of every task hypothesis
ξt with t 2 {1, . . . , T}. The hypothesis whose associated
model has the highest expected classification rate, i.e. the
lowest value of ρ, is expected to be the one intended by the
user, however it is meaningless to define an absolute thresh-
old on the value of the expected classification rate itself. In-
deed, different people generate different signals which result
in classifiers of different qualities. To bypass this problem
we rely on a voting system where we attribute each hypoth-
esis ξt a weight that is updated at every iteration.

We rely on a pseudo-likelihood metric that for each
hypothesis ξt accumulate expected classification rate over
time:

L(ξt) =
N
Y

i=1

1− ρ
ξt
i (8)

with N the current number of iteration and ρ
ξt
i the Bhat-

tacharyya coefficient associated to task ξt using all data up
to time i. By normalizing the pseudo-likelihood values be-
tween every hypothesis, we obtain what can be viewed as
the probability of each target:

p(ξt) =
L(ξt)

P

u∈{1,...,T} L(ξu)
(9)

Once a target reaches a probability threshold β we consider
it as being the correct one, i.e. the one intended by the user.
We used β = 0.99.

Estimation of further Tasks and Online
Re-Estimation of Signal Model

Once we have identified a first task, the user can change his
desired target and our system has to identify the new tar-
get. However, the model of the feedback signals does not
change and does not have to be re-learned from scratch. In-
deed, once the system has correctly identified a task, it is
possible to reuse acquired data by assigning to all the previ-
ously collected signals the labels associated to the previously
estimated task.

The use of the Bhattacharyya coefficient provides a sim-
ple and efficient way to estimate a first target from scratch
(when the number of examples is small) but does not allow
a fast adaptation to new targets as the majority of collected
signals now belong to the previous task. To avoid this prob-
lem we compute a classifier (e.g. a Gaussian Bayes classi-
fier), and use it similarly to calibrated approaches in BCI.
For this we factorize the joint distribution:

p(ξt, θ | Dξt
i ) / p(ξt | D

ξt
i )p(θ | ξt, D

ξt
i ) (10)

where D
ξt
i contains all the quadruplet (ei, si, ai, zi) up to

time i, with the associated labels zi assigned with respect to
task ξt. The factorization makes explicit that given the task

ξt, the distribution p(θ | ξt, D
ξt
i ) can be easily evaluated

using the labels of each target. We approximate this poste-
rior using the maximum likelihood point estimate θML

ξt
per

target. For the term p(ξt | Dξt
i ), we use a recursive Bayes

filter:

p(ξt | D
ξt
i ) / p(ei | ξt, (s, a)i, D

ξt
i−1)p(ξ | Dξt

i−1)

⇡ p(ei | θ
ML
ξt

)p(ξt | Di−1). (11)

Notice that we are keeping a different symbol model θML
ξt

for each possible target ξt, the maximum likelihood estima-

tion needs to be done in relation to a dataset D
ξt
i−1 which

include the expected labels of target ξt up to time i− 1.
We use the same threshold mechanism as described in

previous subsection to decide whether or not a task can be
considered the correct one. Whenever a task is identified,

its labels are transferred to the quadruplets D
ξt
i of all the

other tasks to correct the prior for the next step with the
right labels. This scheme performs a long term adaptation
of θ to accommodate slight variations of EEG such as non-
stationarities or variations induced by the task.

However, as tasks are identified, the prior becomes more
informative and the adaptation may have problems to cope
with drastic changes such as strongly modifying the signals.
To handle this problem, we chose to limit the size of the
prior through the use of a sliding window on past iterations
which allows to estimate a moving average of parameters θ.

In practice, we limited D
ξt
i to the last 250 elements.

Planning

Our algorithm is able to identify a task among a set of pos-
sible tasks. To do so it has to explore regions allowing to
disambiguate among task hypotheses. There are several effi-
cient model-based reinforcement learning exploration meth-
ods that add an exploration bonus for states that might pro-
vide more learning gains. Several theoretical results show
that these approaches allow to learn tasks efficiently (Braf-
man and Tennenholtz 2003; Kolter and Ng 2009). We define
an uncertainty measure and use model-based planning to se-
lect sequences of actions that guide the agent towards states
that better identify the desired task.

Our algorithm is based on comparing the expected clas-
sification rate between different task hypotheses. Therefore,
to disambiguate between hypotheses, it has to collect data
which are likely to affect differently the dataset quality of
competing hypotheses. As we have access to the optimal
policies of each task, we can choose for a given task an ac-
tion in a given state and predict to receive a “correct” or
“wrong” label. Such label is linked to a signal generation
model (parameterized by θML

ξt
) which differs from task to

task, and to the optimal action at that particular state. A state-
action pair where the optimal actions and the signal models
are the same for all hypotheses is unlikely to tell them apart
and will be less informative that any other state-action where
either optimal actions or signal models differ between hy-
potheses.

Thus, we define a measure of global uncertainty U(s, a)
that is higher when, for a given state-action, there is a high
incongruity between either optimal actions or signal mod-
els. For this we compute a similarity matrix S where each
element Sij(s, a) corresponds to the similarity of the dis-
tributions of signals associated to the expected label from



tasks i and j if action a is performed in state s. The final
uncertainty value U(s, a) is computed as the opposite of the
weighted sum of the similarity matrix elements:

U(s, a) = −
T
X

i=1

T
X

j=1

Sij(s, a)p(ξi)p(ξj) (12)

Computing the similarity between two Gaussian distribu-
tions for all state-action pairs was not feasible in real time. In
order to improve computation efficiency we do not rely on a
precise metric between Gaussian distributions and only con-
sider the similarity between their means (empirical tests did
show that this approximation does not impact the results).

Computed for each state and action, this measure is then
used as an exploration bonus, whereas we switch to a pure
exploitation of the task after reaching the desired confidence
level β.

Experimental Protocol and Results

Control task

We consider a 5x5 grid world, where an agent can perform
five different discrete actions: move up, down, left, right, or
a target-reached action. The user goal is to teach the agent
to reach one, yet unknown to the agent, of the 25 discrete
states which represent the set of possible tasks (i.e. one task
per possible target state). We thus consider that the agent
has access to 25 different task hypotheses. We use Markov
Decision Processes (MDP) to represent the problem (Sutton
and Barto 1998). From a given task ξ, represented as a re-
ward function, we can compute the corresponding policy πξ

using, for instance, Value Iteration (Sutton and Barto 1998).

EEG-based feedback signals

EEG signals were recorded with a gTec system (2 gUS-
Bamp amplifiers) with 32 electrodes distributed according
to the 10/10 international system, with the ground on FPz
and the reference on the left earlobe. The EEG signals were
digitized with a sampling frequency of 256 Hz, common-
average-reference (CAR) filtered and band-pass filtered at
[0.5, 10] Hz.

During operation, the role of the users was to mentally
assess the agent’s actions as correct or wrong with respect
to a selected target, obtaining this way error-related poten-
tials. Previous studies have demonstrated that these signals
can be detected online (Ferrez and Millán 2008). Follow-
ing these studies, features were extracted from two fronto-
central channels (FCz and Cz) within a time window of
[200, 700] ms (0 ms being the action onset of the agent) and
downsampled to 32 Hz. This leaded to a vector of 34 fea-
tures that was the input for our system.

Calibration-Free Online BCI Control

This experiment evaluates if we can identify the task de-
sired by the user even without an explicit calibration phase
and without prior knowledge of the brain signals. The ex-
periments were conducted with four subjects (aged between
25 and 28). Each subject was asked to mentally assess the
agent’s actions with respect to a given target. The system

was not calibrated to decode the user EEG signals before-
hand. Each subject performed 5 runs, for each run a new tar-
get was randomly selected and provided to the user. There
was an action every three seconds. Each run lasted 200 ac-
tions, and the time between runs was around one minute.

The algorithm was able to identify the correct target for
all runs of all the subjects, see Figure 2. There are strong
variations among subjects but we note that our system iden-
tified each task in less iterations than a normal calibration
phase requires (between 300 and 600 examples depend-
ing on the user performance (Chavarriaga and Millán 2010;
Iturrate, Montesano, and Minguez 2010)).

Figure 2: Results from the online experiment: Evolution of
the probability of the correct task for each subject and run.
The algorithm was able to identify the correct target for each
subjects and runs in less than 200 iterations.

Table 1 shows for each subject and run the number of
iterations needed to reach the confidence threshold for the
subject selected target. On average, the number of iterations
needed to identify the target was of 85 ± 32.

Run1 Run2 Run3 Run4 Run5 mean±std

S1 95 62 56 60 64 67 ± 16
S2 89 77 98 60 62 77 ± 17
S3 68 80 118 76 157 100 ± 37
S4 98 142 57 142 47 97 ± 45

Table 1: Results from the online experiment: Number of it-
erations needed to identify the correct target for each sub-
ject and run. On average, the number of iterations needed to
identify the target was of 85 ± 32.

Algorithm Offline Analysis

The objective of the offline analysis is to study the impact of
our exploration method and evaluate if the classifier learned
from scratch with our algorithm can be reused for learning
new tasks. Finally we want to evaluate how robust the sys-
tem is to abrupt changes in the signal properties. For these
experiments, to ensure we have sufficient data to achieve sta-
tistically significant results, we rely on a large dataset of real
EEG data. We used a dataset from (Iturrate, Montesano, and
Minguez 2013b), which covers ten subjects that performed



two different control problems (denoted T1 and T2). The
role of the users was similar (assess the agent’s actions),
but the problems differs in the state-action space size and
visual representations. For each subject, T1 was composed
of 1800 assessments, and T2 of 1200. Despite the fact that
both problems elicit error-related potentials, the EEG sig-
nals presented significant differences (Iturrate, Montesano,
and Minguez 2013b).

For each subject, and each dataset (T1 and T2), we sim-
ulated 20 runs of 400 iterations following the control task.
Each time the device performed an action, we sampled the
dataset using the ground truth labels corresponding to the
correct task and then removed the chosen signal from it. Af-
ter a first task was identified, and following our approach,
we continued running the system to identify new tasks.

We present most of the results in terms of the quality of
the dataset, measured as the classification accuracy that a
calibrated brain signal classifier would obtain. Results vary
strongly between subjects and we will see that it is a direct
consequence of the difficulty of finding a classifier with high
accuracy.

Planning Methods We compared the average number of
steps (with maximum values of 400 steps) needed to iden-
tify the first task when learning from scratch with different
planning methods.
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Figure 3: Comparison of different exploration methods. Our
proposed method, based on the uncertainty on the task and
the signals interpretation, allows to lead the system to re-
gions that improve disambiguation among hypotheses in a
faster way. For the greedy method, all values were 400 which
indicates it never allowed to identify any task.

Figure 3 shows the results averaged across subjects, runs
and datasets. Values of 400 means the confidence threshold
was not reached after 400 iterations. Our proposed method,
based on the uncertainty on the task and the signals inter-
pretation, allows to lead the system to regions that improve
disambiguation among hypotheses in a faster way. Trying
to follow the most probable task does not allow the system
to explore sufficiently (Greedy), and at least some random
exploration is necessary to allow a correct identification of
the task (ε-greedy). Assessing uncertainty only on the task
performs poorly as it does not take into account the signal
interpretation ambiguity inherent to our problem. The large
variability in the results is mainly due to the large variations
in classification accuracy across subjects and datasets. Given

these results, the remainder of this section will only consider
our proposed planning method.

Online re-estimation of classifier After identifying the
first task, and following our approach, we continued running
the system and measured how many tasks were identified af-
ter 400 steps. The quality of our unsupervised method can be
measured according to the percentage of labels correctly as-
signed (according to the ground truth label), see Figure 4. In
general, having dataset with classification accuracies higher
than 75% guaranteed that more than 90% of the labels were
correctly assigned. This result shows that our algorithm can
also be used to collect training data for calibrating any other
state-of-the-art error-related potentials classifier, but has the
important advantage of controlling the device at the same
time.
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Figure 4: Percentage of labels correctly assigned according
to the ground truth label (the markers show the median val-
ues and the error bars the 2.5th and 97.5th percentiles). In
general, having dataset with classification accuracies higher
than 75% guaranteed that more than 90% of the labels were
correctly assigned.

Figure 5 demonstrates the advantage of switching to a
Bayes filter method after identification of a first target in-
stead of keeping the estimation given by the Bhattacharyya
coefficient. On the one hand, Bhattacharyya coefficient
works very well for small amounts of data because it directly
compares model parameters. On the other hand, when there
is sufficient data, training a classifier allows for a faster iden-
tification since the classifier makes a much harder decision
when evaluating a new EEG signal.

Figure 6 shows the number of tasks correctly and incor-
rectly identified in 400 iterations. For datasets of good qual-
ities, we are able to identify more than 20 tasks in 400 it-
erations without the need for a calibration procedure (re-
cap that previous works needed between 300 and 600 exam-
ples for the calibration phase (Chavarriaga and Millán 2010;
Iturrate, Montesano, and Minguez 2010)). The number of
correctly identified tasks is strongly correlated to the quality
of the dataset.
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Figure 5: Number of targets correctly identified in 400 it-
erations (the markers show the median values and the er-
ror bars the 2.5th and 97.5th percentiles). Comparison be-
tween switching to a Bayes filter method after identification
of a first target instead of keeping the estimation given by
the Bhattacharyya coefficient. The Bayes filter allows for a
faster identification.
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Figure 6: Number of targets correctly and incorrectly iden-
tified in 400 iterations (the markers show the median val-
ues and the error bars the 2.5th and 97.5th percentiles). For
datasets of good qualities, we are able to identify more than
20 tasks in 400 iterations without the need for a calibration
procedure.

Robustness to Abrupt Changes in the Signals’ Proper-
ties We now want to determine whether the system is ro-
bust to changes in the signals’ properties that occur when we
change between different problem settings (Iturrate, Monte-
sano, and Minguez 2013b). We modeled this by changing
from T i to Tj (i 6= j) after 400 steps, and then executing
400 more steps from Tj. Both combinations (T1 to T2 and
T2 to T1) were tested.

Figure 7 shows the number of tasks identified depending
on the classification accuracy on Tj when training a classi-
fier from dataset T i. For abrupt changes which conserve a
classification accuracy above 70% on the new signals, our
method, based on a limited size prior, is able to recover
and solve more than 20 tasks in 400 iterations. For those
cases where the accuracy change is too drastic, starting from

scratch may be a better solution than relying on the adapta-
tion properties of our algorithm.
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Figure 7: Number of targets correctly and incorrectly iden-
tified in 400 iterations after an abrupt change in the signals
properties (the markers show the median values and the er-
ror bars the 2.5th and 97.5th percentiles). For abrupt changes
which conserve a classification accuracy above 70% on the
new signals, our method, based on a limited size prior, is able
to recover and solve more than 20 tasks in 400 iterations.

Conclusion

We introduced a novel method for calibration-free BCI
based control of sequential tasks with feedback signals. The
method provides an unsupervised way to train a decoder
with almost the same performance as state-of-the-art super-
vised classifiers, while keeping the system operational and
solving the task requested by the user since the beginning.
The intuition for our method is that the classification of the
brain signals is easier when they are interpreted according
to the task desired by the user. The method assumes a distri-
bution of possible tasks and relies on finding which pair of
decoder-task has the highest expected classification rate on
the brain signals.

The algorithm was tested with real online experiments,
showing that the users were able to guide an agent to a de-
sired position by mentally assessing the agent’s actions and
without any explicit calibration phase. Offline experiments
show that we can identify an average of 20 tasks in 400 iter-
ations without any calibration, while in previous works the
calibration phase used between 300 and 600 examples. To
improve the efficiency of the algorithm, we introduced a new
planning method that uses the uncertainty in the decoder-
task estimation. Finally, we analyzed the performance of the
system in the presence of abrupt changes in the EEG signals.
Our proposed method was able to adapt and reuse its learned
models to the new signals. Furthermore, in those cases when
the transfer is not possible, our method can still be used to
recalibrate the system from scratch while solving the task.

A current limitation of the work is the need for a finite
set of task hypotheses. This limitation could be solved by
the use of a combination of particle filter and regularization
on the task space. Additionally, our method can not dissoci-
ate fully symmetric hypotheses, e.g. right and left most state



of our 1D grid world (Fig. 1), as the interpretation of feed-
back signals will also be symmetric and therefore as likely.
This latter problem can be solved by redefining the set of
hypotheses or the action set, for instance by adding a “stop”
action valid only at the target state.

This work opens a new perspective regarding the global
challenge of interacting with machines. It has application
to many interaction problems which requires a machine to
learn how to interpret unknown communicative signals. A
promising avenue, outside the BCI field, lies in human robot
interaction scenarios where robots must learn from, and in-
teract with, many different users who have their own limita-
tions and preferences.
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