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Abstract

In this work, we study the problem of aggregating a finite number of predic-

tors for non stationary sub-linear processes. We provide oracle inequalities relying

essentially on three ingredients: 1) a uniform bound of the ℓ1 norm of the time-

varying sub-linear coefficients, 2) a Lipschitz assumption on the predictors and

3) moment conditions on the noise appearing in the linear representation. Two

kinds of aggregations are considered giving rise to different moment conditions

on the noise and more or less sharp oracle inequalities. We apply this approach

for deriving an adaptive predictor for locally stationary time varying autoregres-

sive (TVAR) processes. It is obtained by aggregating a finite number of well

chosen predictors, each of them enjoying an optimal minimax convergence rate

under specific smoothness conditions on the TVAR coefficients. We show that

the obtained aggregated predictor achieves a minimax rate while adapting to the

unknown smoothness. To prove this result, a lower bound is established for the

minimax rate of the prediction risk for the TVAR process. Numerical experiments

complete this study. An important feature of this approach is that the aggregated

predictor can be computed recursively and is thus applicable in an online predic-

tion context.

1 Introduction

In many applications where high frequency data are observed, we wish to predict the

next values of this time series through an online prediction learning algorithm able to
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process a large amount of data. The classical stationarity assumption on the distribution

of the observations has to be weakened to take into account some smooth evolution of

the environment. From a statistical modelling point of view this is described by some

time-varying parameters. In order to sequentially track them from high-frequency data,

the algorithms must require few operations and a low storage capacity to update the pa-

rameters estimation and the prediction after each new observation. The most common

online methods are least mean squares (LMS), normalised least mean squares (NLMS),

regularised least squares (RLS) or Kalman. All of them rely on the choice of a gradi-

ent step, a forgetting factor, or, more generally on a tuning parameter corresponding to

some a priori knowledge on how smoothly the local statistical distribution of the data

evolves along the time. To adapt automatically to this smoothness, usually unknown

in practice, we propose to use an exponentially weighted aggregation of several such

predictors, with various tuning parameters. We emphasize that to meet the online con-

straint, we cannot use methods that require a large amount of computations (such as

cross validation).

The exponential weighting technique in aggregation have been developed in paral-

lel in the machine learning community (see the seminal paper [30]), in the statistical

community (see [6, 32, 34, 22], or more recently [14, ?, 25]) and in the game theory

community for individual sequences prediction (see [8] and [27] for recent surveys). In

contrast to the classical statistical setting, in the individual sequence setting the obser-

vations are not assumed to be generated by an underlying stochastic process. The link

between both settings has been analyzed in [16] for the regression model with fixed

and random designs.

Exponential weighting has also been investigated in the case of weakly dependent

stationary data in [1]. More recently, an approach inspired from individual sequences

prediction has been studied in [2] for bounded ARMA processes under some specific

conditions on the (constant) ARMA coefficients.

In this contribution, we consider two possible aggregation schemes based on ex-

ponential weights which can be computed recursively. We provide oracle inequalities

applying to the aggregated predictor under the following main assumptions that 1) the

observations are sub-linearly with respect to a sequence of random variables with possi-

bly time varying linear coefficients and 2) the predictors to be aggregated are Lipschitz

functions of the past. An important feature of our observation model is that it embeds

the well known class of locally stationary processes. We refer to [10] and the refer-

ences therein for a recent general view about statistical inference for locally stationary

processes. As an application, we focus on a particular locally stationary model, that of

the time-varying autoregressive (TVAR) process. The minimax rate of certain recur-

sive estimators of the TVAR coefficients is studied in [24]. To our knowledge, there is

not a well-established method on the automatic choice of the gradient step when the

smoothness index is unknown. Here we are interested in the prediction problem which

is closely related to the estimation problem. We show that the proposed aggregation

methods provide a solution to this question, in the sense that they give rise to recursive

adaptive minimax predictors.

The paper is organized as follows. In Section 2, we provide oracle inequalities

for the aggregated predictors under general conditions applying to non-stationary sub-

linear processes. TVAR processes are introduced in Section 3 in a non-parametric

2



setting based on Hölder smoothness assumptions on the TVAR coefficients. A lower

bound of the prediction risk is given in this setting and this result is used to show

that the proposed aggregation methods achieve the minimax adaptive rate. Section 4

contains the proofs of the oracle inequalities. The proof of the lower bound of the mini-

max prediction risk is presented in Section 5. Numerical experiments illustrating these

results are then described in Section 6. Three appendices complete this paper. Ap-

pendix A explains how to build non-adaptive minimax predictors which can be used in

the aggregation step, Appendix B contains some postponed proofs and useful lemmas,

and Appendix C provides additional results with improved aggregation rates.

2 Online aggregation of predictors for non-stationary

processes

2.1 General model

In this section, we consider a time series (Xt)t∈Z admitting the following non-stationary

sub-linear property with respect to the non-negative process (Zt)t∈Z.

(M-1) The process (Xt)t∈Z satisfies

|Xt| ≤
∑

j∈Z

At( j) Zt− j , (2.1)

where (At( j))t, j∈Z are non-negative coefficients such that

A∗ := sup
t∈Z

∑

j∈Z

At( j) < ∞ . (2.2)

Additional assumptions will be required on (Zt)t∈Z to deduce useful properties for

(Xt)t∈Z. Note for instance that the condition on A∗ in (2.2) guarantees that, if (Zt)t∈Z

has a uniformly bounded Lp-norm, the convergence of the infinite sum in (2.1) holds

almost surely and in the Lp-sense, with both convergences defining the same limit. It

follows that (Xt)t∈Z also has uniformly bounded Lp moments. Let us give some partic-

ular contexts where the representation (M-1) can be used.

Example 1 (Weakly stationary processes). Standard weakly stationary processes such

as ARMA processes (see [5]) admit a Wold decomposition of the form

Xt =
∑

j≥0

a( j)ξt− j ,

where (ξt)t∈Z is a weak white noise with, says, unit variance. This model, sometimes

referred to as an MA(∞) representation, is often extended to a two-sided sum represen-

tation

Xt =
∑

j∈Z

a( j)ξt− j ,

and additional assumptions on the existence of higher moments for (ξt)t∈Z or on the

independence of the ξt’s are often used for statistical inference or prediction, see [5,

Chapters 7 and 8].
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Example 2 (Time varying linear processes). Because the sequence (At( j)) j∈Z may vary

with t in (M-1), we may extend Example 1 and also consider linear processes with time

varying coefficients. In this case, we have

Xt =
∑

j∈Z

at( j) ξt− j , (2.3)

where (ξt) is a sequence of centered independent random variables with unit variance

and (at( j))t, j∈Z is supposed to satisfy (2.2) with At( j) = |at( j)|, so that (M-1) holds

with Zt = |ξt|. For this general class of processes, statistical inference is not easily

carried out : each new observation Xt comes with a new unknown sequence (at( j)) j∈Z.

However additional assumptions on these set of sequences allow to derive and study

appropriate statistical inference procedures. A sensible approach in this direction is

to consider a locally stationary model as introduced in [9]. In this framework, the

set of sequences {(at( j)) j∈Z, 1 ≤ t ≤ T } is controlled as T → ∞ by artificially (but

meaningfully) introducing a dependence in T , hence is written as (at,T ( j)) j∈Z,1≤t≤T , and

by approximating it with a set of sequences rescaled on the time interval [0, 1], a(u, j),

u ∈ [0, 1], j ∈ Z, for example in the following way

sup
T≥1

sup
j∈Z

T∑

t=1

∣∣∣∣∣at,T ( j) − a

(
t

T
, j

)∣∣∣∣∣ < ∞ .

Then various interesting statistical inference problems based on X1, . . . , XT can be tack-

led by assuming some smoothness on the mapping u 7→ a(u, j) and, possibly, additional

assumptions on the structure of the sequence (a(u, j)) j∈Z for each u ∈ [0, 1] (see [10]

and the references therein).

Example 3 (TVAR model). A particular instance of Example 2 is the time varying

autoregressive (TVAR) process, which is assumed to satisfy the recursive equation

Xt =
∑

j∈Z

θ j,tXt− j + σtξt ,

where (ξt)t∈Z is a white noise process, see [18]. It turns out that, in the framework

introduced by [9], under suitable assumptions, such processes admit a time varying

linear representation of the form (2.3), see [20, 9]. In Section 3, we focus on such a

class of processes and use the aggregation of predictors to derive adaptive minimax

predictors under specific smoothness assumptions on the time varying coefficients.

Our goal in this section is to derive oracle bounds for the aggregation of predic-

tors that hold for the general model (M-1) with one of the two following additional

assumptions on (Zt)t∈Z.

(N-1) The non-negative process (Zt)t∈Z satisfies

mp := sup
t∈Z

E

[
Z

p
t

]
< ∞ .

(N-2) The non-negative process (Zt)t∈Z is a sequence of independent random vari-

ables fulfilling

φ(ζ) := sup
t∈Z

E

[
eζZt

]
< ∞ .
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Assumptions (N-1) and (N-2) appear to be quite mild. As mentioned in Example 1,

basic assumptions in stationary time series usually include moments of sufficiently high

order for the innovations and their independence, or rely on the Gaussian assumption,

which is contained in (N-2). We also note that, in the context of locally stationary time

series, our assumptions on the innovations are weaker than those used in the recent

works [12, 13, 10]. Precise comparisons between our assumptions and usual ones in

the aggregation literature will be given after Corollary 1.

2.2 Aggregation of predictors

Let (xt)t∈Z be a real valued sequence. We say that x̂t is a predictor of xt if it is a

measurable function of (xs)s≤t−1. Throughout this paper, the quality of a sequence of

predictors (x̂t)1≤t≤T is evaluated for some T ≥ 1 using the ℓ2 loss averaged over the

time period {1, . . . , T }

1

T

T∑

t=1

(
x̂t − xt

)2
.

Now, given a collection of N sequences of predictors
{
(x̂

(i)
t )1≤t≤T , 1 ≤ i ≤ N

}
, we wish

to sequentially derive a new predictor which predicts almost as accurately as or more

accurately than the best of them.

In the present paper and for our purposes, aggregating the predictors amounts to

compute a convex combination of them at each time t. This corresponds to choosing at

each time t an element αt of the simplex

SN =

s = (s1, . . . , sN) ∈ RN
+ :

N∑

i=1

si = 1

 . (2.4)

and compute

x̂
[αt ]
t =

N∑

i=1

αi,t x̂
(i)
t .

We consider two strategies of aggregation, which are studied in the context of bounded

sequences in [8, 7]. More recent contributions and extensions can be found in [16]. See

also [27] for a pedagogical introduction. These strategies are sequential and online,

meaning that

(i) to compute the aggregation weights αt at time t, only the values of {x̂
(i)
s , 1 ≤ i ≤

N} and xs up to time s = t − 1 are used

(ii) the computation can be done recursively by updating a set of quantities, the num-

ber of which does not depend on t.

These two properties are met in the Algorithm 1 detailed below.

We consider in the remaining of the paper a convex aggregation of predictors

x̂t = x̂
[̂αt ]
t =

N∑

i=1

α̂i,t x̂
(i)
t , 1 ≤ t ≤ T ,

with some specific weights α̂i,t defined as follows.
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Strategy 1: building weights from the gradient of the quadratic loss

The first strategy is to define for all i = 1, . . . ,N and t = 1, . . . , T , the weights α̂i,t by

α̂i,t =

exp

−2η

t−1∑

s=1


N∑

j=1

α̂ j,s x̂
( j)
s − xs

 x̂(i)
s



N∑

k=1

exp

−2η

t−1∑

s=1


N∑

j=1

α̂ j,s x̂
( j)
s − xs

 x̂(k)
s



, (2.5)

with the convention that a sum over no element is zero, so α̂i,1 = 1/N for all i.

The parameter η > 0, usually called the learning rate, will be specified later.

Strategy 2: building weights from the quadratic loss

The second strategy is to define for all i = 1, . . . ,N and t = 1, . . . , T , the weights α̂i,t by

α̂i,t =

exp

−η
t−1∑

s=1

(
x̂(i)

s − xs

)2


N∑

k=1

exp

−η
t−1∑

s=1

(
x̂(k)

s − xs

)2



, (2.6)

with again the convention that a sum over no element is zero.

Algorithm 1: Online computation of the aggregation algorithms.

parameters the learning rate η (in (0,∞)) and the strategy (1 or 2);

initialization t = 1, α̂t = (1/N)i=1,...,N ;

while input the predictions x̂
(i)
t for i = 1, . . . ,N;

do

x̂t = x̂
[̂αt ]
t =

∑N
i=1 α̂i,t x̂

(i)
t ;

return x̂t;

and when input a new xt;

do
t = t + 1;

for i = 1 to N do

switch strategy do

case 1

vi,t = α̂i,t−1 exp
(
−2η

(
x̂

[̂αt−1]

t−1
− xt−1

)
x̂

(i)

t−1

)
;

case 2

vi,t = α̂i,t−1 exp

(
−η

(
x̂

(i)

t−1
− xt−1

)2
)
;

α̂t =
(
vi,t/

∑N
k=1 vk,t

)
i=1,...,N

;

Both strategies yield the same algorithm up to the line where vi,t is computed. For

sake of brevity we write only one algorithm (see Algorithm 1) and use a switch/case
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statement to distinguish between the two strategies. Note, however, that the choice of

the strategy (1 or 2) holds for the whole sequence of predictions.

2.3 Oracle bounds

We establish oracle bounds on the average prediction error of the aggregated predictors.

These bounds ensure that the error is equal to that associated with the best convex

combination of the predictors or with the best predictor (depending on the aggregation

strategy), up to two remaining terms. One remaining term depends on the number N

of predictors to aggregate and the other one on the variability of the original process.

The learning rate η can then be chosen to achieve the best trade-off between these two

terms.

The second remaining term indirectly depends on the variability of the predictors. We

control below this variability in terms of the variability of the original process by using

the following Lipschitz property.

Definition 1. Let L = (Ls)s≥1 be a sequence of non-negative numbers. A predictor x̂t

of xt from (xs)s≤t−1 is said to be L-Lipschitz if

∣∣∣̂xt

∣∣∣ ≤
∑

s≥1

Ls |xt−s| .

We more specifically consider a sequence L satisfying the following assumption.

(L-1) The sequence L = (Ls)s≥1 satisfies

L∗ =
∑

j≥1

L j < ∞ . (2.7)

This condition is trivially satisfied by constant linear predictors depending only on

a finite number of previous observations, i.e. x̂t =
∑d

s=1 Ls xt−s. In Appendix A.1,

we extend this case in the context of the TVAR process where the coefficients Ls

are replaced by estimates of the time-varying autoregressive coefficients. More gen-

erally, Assumption (L-1) appears to be quite natural in the general context where

E[Xt|(Xt−s)s≥1] = ft((Xt−s)s≥1), where ft is a Lipschitz function from RN
∗

to R, with

Lipschitz coefficients satisfying a condition similar to (2.7); see for instance [15] in the

case of stationary time series.

We now state two upper-bounds on the mean quadratic prediction error of the ag-

gregated predictors defined in the previous section, when the process X fulfills the

sub-linear property (M-1).

Theorem 2.1. Assume that Assumption (M-1) holds. Let {(X̂
(i)
t )1≤t≤T , 1 ≤ i ≤ N} be a

collection of sequences of L-Lipschitz predictors with L satisfying (L-1).

(i) Assume that the noise Z fulfills (N-1) with p = 4 and let X̂ = (X̂t)1≤t≤T denote the

aggregated predictor obtained using the weights (2.5) with any η > 0. Then, we
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have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ inf

ν∈SN

1

T

T∑

t=1

E

[(
X̂

[ν]
t − Xt

)2
]

+
log N

Tη
+ 2η (1 + L∗)

4 A4
∗m4 . (2.8)

(ii) Assume that the noise Z satisfies (N-1) with a given p > 2 and let X̂ = (X̂t)1≤t≤T

denote the aggregated predictor obtained using the weights (2.6) with any η > 0.

Then, we have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ min

1≤i≤N

1

T

T∑

t=1

E

[(
X̂

(i)
t − Xt

)2
]

+
log N

Tη
+ (2η)p/2−1A

p
∗ (1 + L∗)

pmp . (2.9)

(iii) Assume that the noise Z fulfills (N-2) for some positive ζ and let X̂ = (X̂t)1≤t≤T

denote the aggregated predictor obtained using the weights (2.6) with η > 0.

Then, for any

λ ∈

(
0,

ζ

a∗(L∗ + 1)

]
with a∗ := sup

j∈Z

sup
t∈Z

At( j) ≤ A∗ , (2.10)

we have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ min

1≤i≤N

1

T

T∑

t=1

E

[(
X̂

(i)
t − Xt

)2
]

+
log N

Tη
+

2

e
λ−2

(
2 + λ(2η)−1/2

)
e−λ(2η)−1/2

(φ(ζ))λA∗(1+L∗)/ζ . (2.11)

The proof can be found in Section 4.2.

Remark 1. The bounds (2.8), (2.9) and (2.11) are explicit in the sense that all the

constants appearing in them are directly derived from those appearing in Assump-

tions (M-1), (L-1), (N-1) and (N-2).

The following corollary is obtained by choosing η (and λ in the case (iii)) ade-

quately in the three cases of Theorem 2.1.

Corollary 1. Assume that Assumption (M-1) holds. Let {(X̂
(i)
t )1≤t≤T , 1 ≤ i ≤ N} be a

collection of sequences of L-Lipschitz predictors with L satisfying (L-1).

(i) Assume that the noise Z fulfills (N-1) with p = 4 and let X̂ = (X̂t)1≤t≤T denote the

aggregated predictor obtained using the weights (2.5) with

η =
1

(2m4)1/2 (1 + L∗)2 A2
∗

(
log N

T

)1/2

. (2.12)
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This gives

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ inf

ν∈SN

1

T

T∑

t=1

E

[(
X̂

[ν]
t − Xt

)2
]
+ C1

(
log N

T

)1/2

, (2.13)

with C1 = 2 (2m4)1/2 (1 + L∗)
2 A2
∗.

(ii) Assume that the noise Z satisfies (N-1) with a given p > 2 and let X̂ = (X̂t)1≤t≤T

denote the aggregated predictor obtained using the weights (2.6) with

η =
1

2m
2/p
p (1 + L∗)2 A2

∗

(
log N

T

)2/p

. (2.14)

We then have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ min

1≤i≤N

1

T

T∑

t=1

E

[(
X̂

(i)
t − Xt

)2
]
+C2

(
log N

T

)1−2/p

, (2.15)

with C2 = 3m
2/p
p (1 + L∗)

2 A2
∗.

(iii) Assume that the noise Z fulfills (N-2) for some positive ζ and let X̂ = (X̂t)1≤t≤T

denote the aggregated predictor obtained using the weights (2.6) with

η =
ζ2

2(1 + L∗)2A2
∗

(
log

(
T

log N

))−2

. (2.16)

Then, we have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ min

1≤i≤N

1

T

T∑

t=1

E

[(
X̂

(i)
t − Xt

)2
]

+
2A2
∗(L∗ + 1)2

ζ2

log N

T



(
log

(
T

log N

))2

+
φ(ζ)

e

(
2 + log

(
T

log N

)) . (2.17)

(Note that when (log N)/T → 0, the term between curly brackets is equivalent to

(log(T/ log N))2).

Cases (i) and (ii) in Corollary 1 follow directly from Theorem 2.1. The Case (iii)

is more delicate since it requires optimizing λ as well as η in the second line of (2.11).

The details are postponed to Section 4.3.

Remark 2. We observe that the bound in (2.17) improves that in (2.15) for any p > 2.

For p > 4, the remaining term (log N/T )1−2/p in (2.15) is smaller than the remaining

term (log N/T )1/2 in (2.13). Similarly, the remaining term log N (log T )2/T in (2.17)

is smaller than (log N/T )1/2 in (2.13). Yet, we emphasize that the oracle inequali-

ties (2.15) and (2.17) compare the prediction risk of X̂ to the prediction risk of the best

predictor X̂(i), while the oracle inequality (2.13) compare the prediction risk of X̂ to the

prediction risk of the best convex combination of the predictors X̂(i), so they cannot be

directly compared.
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Remark 3. As explained in Appendix C, under the hypotheses of Cases (ii) and (iii)

and for certain values of T and N, using a more involved aggregation step, we can get

a new predictor satisfying an oracle inequality better than that in (2.13). For example,

under the hypotheses of Case (iii), for T > N2(log T )6, the remaining term (log N/T )1/2

in (2.13) can be replaced by N(log T )3/T which is smaller, see the inequality (C.7)

page 40. Yet, this aggregation has a prohibitive computational cost and seems difficult

to implement in practice.

Remark 4. In Cases (ii) and (iii), which correspond to the weights (2.6), the choice of

the optimal η depends on the assumptions on the noise, namely (N-1) or (N-2). Under

a moment condition of order p, the optimal η is of order (log N/T )2/p and under an

exponential condition, it is of order (log T )−2. It is know from [7, Proposition 2.2.1]

that under a bounded noise condition, η can be chosen as a constant (provided that

it is small enough). Hence, coarsely speaking, the heavier the tail of the noise, the

smallest η should be chosen. Observing that η allows us to tune the influence of the

empirical risk on the weights from no influence at all (η = 0 yielding uniform weights)

to the selection of the empirical risk minimizer (η → ∞), the specific choices of η can

be interpreted as follows : the heavier the tail of the noise, the less we can trust the

empirical risk.

Comparison with previous works In the literature, prediction risk bounds of the

form (2.13) (Case (i) of Corollary 1) are sometimes called convex regret bounds, and

prediction risk bounds of the form (2.15) and (2.17) (Cases (ii) and (iii) of Corollary 1)

are sometimes called best predictor regret bounds.

[26] exhibits convex regret bounds in a setting close to ours, namely for an online

aggregation of predictors for a sequence of possibly dependent random variables. Un-

der our moment condition (N-1) with p = 4, [26, Theorem 2] provides an upper bound

similar to (2.13) but with our remaining term (log N/T )1/2 replaced by (N log(N)/T )1/2.

Under the exponential condition (N-2), [26, Theorem 1] provides an upper bound sim-

ilar to (2.13) but with a remaining term (log N/T )1/2 × (log(NT ))2, which is still larger

than our remaining term under moment conditions.

Best predictor regret bounds can be found in [34] for some sequences of possi-

bly dependent random variables. He assumes that the innovation noise has a known

distribution (satisfying a certain technical condition) and that the predictors remain at

a bounded distance to the conditional means. The regret bounds are presented in a

slightly different fashion from ours but it is easy to see that a similar result as our

bound (2.17) is obtained in this setting. However, we do not require to have bounded

prediction errors and we do not require the precise knowledge of the distribution of the

noise.

The i.i.d. setting has received much more attention and, even if the setting is quite

different, it is interesting to briefly compare our results to previous works in this case.

Let us start with the convex regret bound in Case (i) of Corollary 1. Most of the exist-

ing results, see for instance [19, 32, 28] or [31] for recent extensions to ℓq aggregation,

assume the predictors to be bounded and specific noises are considered (very often the

noise is assumed to be Gaussian). In such settings, the best possible remaining term

typically takes the form (log N/T )1/2 when N is much larger than T 1/2 and of the form
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N/T if N is smaller than T 1/2. Hence our bound (2.13) is similar only in the case where

N is much larger than T 1/2. However, as explained in Remark 3 and Appendix C, when

T is larger than N2 and under the moment condition (N-2), we can get via a more

involved aggregation procedure, a convex regret bound with a remaining term of the

same order N/T up to a (log T )3 factor (see (C.7) page 40). Let us now compare our

bound (2.15) in Case (ii) to optimal bounds in the i.i.d. setting under moment conditions

on the noise. Corollary 7.2 and Theorem 8.6 in [?] shows that the optimal aggregation

rate is (log N/T )1−2/(p+2) in the i.i.d. setting with bounded predictors and moment con-

ditions of order p on the noise. Our remaining term (log N/T )1−2/p in (2.15) is slightly

larger, yet an inspection of the proof of [?, Corollary 7.2] shows that the aggregation

rate would also be (log N/T )1−2/p in this corollary, if the predictors were assumed to

have a moment condition of order p instead of being uniformly bounded (we are not

aware of any lower bound in this setting matching this rate). Finally, when the data and

the predictors are bounded, the best aggregation rate is known to be (log N)/T in the

i.i.d. setting, see for example [?, Theorem 8.4]. Our bound (2.17) in Case (iii) achieves

the same rate up to a (log T )2 factor.

3 Time-varying autoregressive (TVAR) model

3.1 Non-parametric TVAR model

3.1.1 Vector norms and Hölder smoothness norms

We introduce some preliminary notations before defining the model. In the remaining

of this article, vectors are denoted using boldface symbols and |x| denotes the Euclidean

norm of x, |x| = (
∑

i |xi|
2)1/2.

For β ∈ (0, 1] and an interval I ⊆ R, the β−Hölder semi-norm of a function f : I →

R
d is defined by

|f |β = sup
0<|s−s′|<1

|f(s) − f(s′)|

|s − s′|β
.

This semi-norm is extended to any β > 0 as follows. Let k ∈ N and α ∈ (0, 1] be such

that β = k + α. If f is k times differentiable on I, we define

|f |β = |f
(k)|α ,

and |f |β = ∞ otherwise. We consider the case I = (−∞, 1]. For R > 0 and β > 0, the

(β,R)− Hölder ball is denoted by

Λd(β,R) =
{
f : (−∞, 1]→ Rd, such that |f |β ≤ R

}
.

3.1.2 TVAR parameters in rescaled time

The idea of using a rescaled time with the sample size T for the TVAR parameters goes

back to [9]. Since then, it has always been a central example of locally stationary linear

processes. In this setting, the time varying autoregressive coefficients and variance

which generate the observations Xt,T for 1 ≤ t ≤ T are represented by functions from

11



[0, 1] to Rd and from [0, 1] to R+ respectively. The definition sets of these functions are

extended to (−∞, 1] in the following definition.

Definition 2 (TVAR model). Let d ≥ 1. Let θ1, . . . , θd and σ be functions defined on

(−∞, 1] and (ξt)t∈Z be a sequence of i.i.d. random variables with zero mean and unit

variance. For any T ≥ 1, we say that (Xt,T )t≤T is a TVAR process with time varying

parameters θ1, . . . , θd, σ
2 sampled at frequency T−1 and normalized innovations (ξt) if

the two following assertions hold.

(i) The process X fulfills the time varying autoregressive equation

Xt,T =

d∑

j=1

θ j

(
t − 1

T

)
Xt− j,T + σ

(
t

T

)
ξt for −∞ < t ≤ T . (3.1)

(ii) The sequence (Xt,T )t≤T is bounded in probability,

lim
M→∞

sup
−∞<t≤T

P(|Xt,T | > M) = 0 .

This definition extends the usual definition of TVAR processes, where the time-

varying parameters θ1, . . . , θd and σ2 are assumed to be constant on R−, see e.g. [9,

Page 144]. The TVAR model is generally used for the sample (Xt,T )1≤t≤T . The defini-

tion of the process for negative times t can be seen as a way to define initial conditions

for X1−d,T , . . . , X0,T , which are then sufficient to compute (Xt,T )1≤t≤T by iterating (3.1).

However, in the context of prediction, it can be useful to consider predictors X̂t,T which

may rely on historical data Xs,T arbitrarily far away in the past, that is, with s tending

to −∞. To cope with this situation, our definition of the TVAR process (Xt,T ) holds for

all time indices −∞ < t ≤ T and we use the following definition for predictors.

Definition 3 (Predictor). For all 1 ≤ t ≤ T, we say that X̂t,T is a predictor of Xt,T if it

is Ft−1,T -measurable, where

Ft,T = σ
(
Xs,T , s = t, t − 1, t − 2, . . .

)
(3.2)

is the σ-field generated by (Xs,T )s≤t. For any T ≥ 1, we denote by PT the set of

sequences X̂T = (X̂t,T )1≤t≤T of predictors for (Xt,T )1≤t≤T , that is, the set of all processes

X̂T = (X̂t,T )1≤t≤T adapted to the filtration (Ft−1,T )1≤t≤T .

In practice, this general framework allows to use data with possibly long available

history, although the prediction is only considered on time indices t = 1, . . . , T . Of

course, this definition also includes the case where the predictor X̂t,T only depends on

(Xs,T )1≤s≤t−1. Having both situations in the same framework may appear to be confus-

ing at first. It is important to note that, in contrast to the usual stationary situation,

having observed the process Xs,T for infinitely many s’s in the past (for all s ≤ t − 1) is

not so decisive for deriving a predictor of Xt,T , since observations far away in the past

may have a completely different statistical behavior.
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3.1.3 Stability conditions

The next proposition proves that under standard stability conditions on the time-varying

parameters θ1, . . . θd and σ2, Condition (ii) in Definition 2 ensures the existence and

uniqueness of the solution of Equation (3.1) for t ≤ 0 (and thus for all t ≤ T ). We

define the time-varying autoregressive polynomial by

θ(z; u) = 1 −

d∑

j=1

θ j(u)z j .

Let us denote, for any δ > 0,

sd(δ) =
{
θ : (−∞, 1]→ Rd, θ(z; u) , 0,∀|z| < δ−1, u ∈ [0, 1]

}
. (3.3)

Define, for β > 0, R > 0, δ ∈ (0, 1), ρ ∈ [0, 1] and σ+ > 0, the class of parameters

C (β,R, δ, ρ, σ+) =
{
(θ, σ) : (−∞, 1]→ Rd × [ρσ+, σ+] : θ ∈ Λd(β,R) ∩ sd(δ)

}
.

The definition of the class C is very similar to that of [24]. The domain of definition

in their case is [0, 1] whereas it is (−∞, 1] in ours. We have the following stability result.

Proposition 1. Assume that the time varying AR coefficients θ1, . . . , θd are uniformly

continuous on (−∞, 1] and the time varying variance σ2 is bounded on (−∞, 1]. As-

sume moreover that there exists δ ∈ (0, 1) such that θ ∈ sd (δ). Then, there exists

T0 ≥ 1 such that, for all T ≥ T0, there exists a unique process (Xt,T )t≤T which satis-

fies (i) and (ii) in Definition 2. This solution admits the linear representation

Xt,T =

∞∑

j=0

at,T ( j) σ

(
t − j

T

)
ξt− j, −∞ < t ≤ T , (3.4)

where the coefficients (at,T ( j))t≤T, j≥0 satisfy that for any δ1 ∈ (δ, 1),

K̄ = sup
T≥T0

sup
−∞<t≤T

sup
j≥0

δ
− j

1
|at,T ( j)| < ∞ .

Moreover, if (θ, σ) ∈ C (β,R, δ, 0, σ+) for some positive constants β, R and σ+, then the

constants T0 and K̄ can be chosen only depending on δ1, δ, β, and R.

A proof of Proposition 1 is provided in Appendix B. This kind of result is classical

under various smoothness assumptions on the parameters and initial conditions for

X1−k,T , k = 1, . . . , d. For instance, in [13], bounded variations and a constant θ for

negative times are used for the smoothness assumption on θ and for defining the initial

conditions. The linear representation (3.4) of TVAR processes was first obtained in

the seminal papers [20, 9]. We note that an important consequence of Proposition 1 is

that for any T ≥ T0, the process (Xt,T )t≤T satisfies Assumption (M-1) with Zt = |ξt| and

At( j) =
∣∣∣at,T ( j) σ ((t − j)/T )

∣∣∣ for j ≥ 0. Moreover, the constant A∗ in (2.2) is bounded

independently of T , and we have, for all (θ, σ) ∈ C (β,R, δ, 0, σ+),

A∗ ≤
K̄σ+

1 − δ1

, (3.5)

where K̄ > 0 and δ1 ∈ (0, 1) can be chosen only depending on δ, β, and R.
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3.1.4 Main assumptions

Based on Proposition 1, given an i.i.d. sequence (ξt)t∈Z and constants δ ∈ (0, 1),

ρ ∈ [0, 1], σ+ > 0, β > 0 and R > 0, we consider the following assumption.

(M-2) The sequence (Xt,T )t≤T is a TVAR process with time varying standard devi-

ation σ, time varying AR coefficients θ1, . . . , θd and innovations (ξt)t∈Z, and

(θ, σ) ∈ C (β,R, δ, ρ, σ+).

Let ξ denote a generic random variable with the same distribution as the ξt’s. Under

Assumption (M-2), the distribution of
(
Xt,T

)
1−d≤t≤T only depends on that of ξ and on

the functions θ and σ. For a given distribution ψ on R for ξ, we denote by P
ψ

(θ,σ)
the

probability distribution of the whole sequence (Xt,T )t≤T and by E
ψ

(θ,σ)
its corresponding

expectation.

The next two assumptions on the innovations are useful to prove upper bounds of the

prediction error.

(I-1) The innovations (ξt)t∈Z satisfy mp := E
[
|ξ|p

]
< ∞.

(I-2) The innovations (ξt)t∈Z satisfy φ(ζ) := E
[
eζ |ξ|

]
< ∞.

The following one will be used to obtain a lower bound.

(I-3) The innovations (ξt)t∈Z admit a density f such that

κ = sup
v,0

v−2

∫
f (u) log

f (u)

f (u + v)
du < ∞ .

Assumption (I-3) is standard for proving lower bounds in non-parametric regression

estimation, see [29, Chapter 2]. It is satisfied by the Gaussian density with κ = 1.

3.1.5 Non-parametric setting

The setting of Definition 2 and of Assumptions derived thereafter is essentially non-

parametric, since for given initial distribution ψ, the distribution of the observations

X1,T , . . . , XT,T are determined by the unknown parameter function (θ, σ). The doubly

indexed Xt,T refers to the fact that this distribution cannot be seen as a distribution

on RZ marginalized on RT as the usual time series setting but rather as a sequence of

distributions on RT indexed by T . It corresponds to the usual non-parametric approach

for studying statistical inference based on this model. In this contribution, we focus

on the prediction problem, which is to answer the question: for given smoothness

conditions on (θ, σ), what is the mean prediction error for predicting Xt,T from its past?

The standard non-parametric approach is to answer this question in a minimax sense

by determining, for a given sequence of predictors X̂T = (X̂t,T )1≤t≤T , the maximal risk

S T

(
X̂T ;ψ, β,R, δ, ρ, σ+

)
= sup

(θ,σ)

1

T

T∑

t=1

(
E
ψ

(θ,σ)

[(
X̂t,T − Xt,T

)2
]
− σ2

(
t

T

))
, (3.6)

where
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(a) X̂T is assumed to belong to PT as in Definition 3,

(b) the sup is taken over (θ, σ) ∈ C (β,R, δ, ρ, σ+) within a smoothness class of func-

tions,

(c) the expectation E
ψ

(θ,σ)
is that associated to Assumption (M-2).

The reason for subtracting the average σ2(t/T ) over all 1 ≤ t ≤ T in this prediction

risk is that it corresponds to the best prediction risk, would the parameters (θ, σ) be

exactly known. We observe that dividing Xt,T by the class parameter σ+ amounts to

take σ+ = 1. In addition, we have

S T

(
X̂T ;ψ, β,R, δ, ρ, σ+

)
= σ2

+ S T

(
X̂Tσ

−1
+ ;ψ, β,R, δ, ρ, 1

)
,

so the prediction problem in the class C (β,R, δ, ρ, σ+) can be reduced to the prediction

problem in the class C (β,R, δ, ρ, 1). Accordingly, we define the reduced minimax risk

by

MT (ψ, β,R, δ, ρ) = inf
X̂T∈PT

S T

(
X̂T ;ψ, β,R, δ, ρ, 1

)
(3.7)

= inf
X̂T∈PT

σ−2
+ S T

(
X̂T ;ψ, β,R, δ, ρ, σ+

)
for all σ+ > 0 .

In Section 3.2, we provide a lower bound of the minimax rate in the case where the

smoothness class is of the form C (β,R, δ, ρ, σ+). Then, in Section 3.3, relying on the

aggregation oracle bounds of Section 2.3, we derive an upper bound with the same rate

as the lower bound using the same smoothness class of the parameters. Moreover, we

exhibit an online predictor which does not require any knowledge about the smooth-

ness class and which is thus minimax adaptive. In other words, it is able to adapt to

the unknown smoothness of the parameters from the data. To our knowledge, such

theoretical results are new for locally stationary models.

3.2 Lower bound

A lower bound on the minimax rate for the estimation error of θ is given by [24, Theo-

rem 4]. Clearly, a predictor

X̂t,T =

d∑

k=1

θ̂t,T (k)Xt−k,T

can be defined from an estimator θ̂t,T , and the resulting prediction rate can be con-

trolled using the estimation rate (see Appendix A.1 for the details). The next theorem

provides a lower bound of the minimax rate of the risk of any predictor of the process

(Xt,T )1≤t≤T . Combining this result with Lemma 8 in the Appendix A.1, we show that a

predictor obtained by (A.1) from a minimax rate estimator of θ automatically achieves

the minimax prediction rate.
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Theorem 3.1. Let δ ∈ (0, 1), β > 0, R > 0 and ρ ∈ [0, 1]. Suppose that Assump-

tion (M-2) holds and assume (I-3) on the distribution ψ of the innovations. Then, we

have

liminf
T→∞

T 2β/(1+2β) MT (ψ, β,R, δ, ρ) > 0 , (3.8)

where MT is defined in (3.7).

The proof is postponed to Section 5.

3.3 Minimax adaptive forecasting of the TVAR process

In [3], an adaptive estimator of the autoregressive function of a Gaussian TVAR process

of order 1 is studied. It relies on the Lepskiı̆’s procedure (see [21]), which seems

difficult to implement in an online context.

Our minimax adaptive predictor is based on the aggregation of sufficiently many

predictors, assuming that at least one of them converges at the minimax rate. The

oracle bounds found in Section 2.3 imply that the aggregated predictor is minimax rate

adaptive under appropriate assumptions. Seminal works using the aggregation to adapt

to the minimax convergence rate are [33] (density estimation) and [28] (nonparametric

regression), see also [7] for a more general presentation.

In the TVAR model (M-2), it is natural to consider L-Lipschitz predictors (X̂t,T )1≤t≤T

of (Xt,T )1≤t≤T with a sequence L supported on {1, . . . , d}. Then L∗ in (2.7) corresponds

to the maximal ℓ1-norm of the TVAR parameters. Since for the process itself to be

stable, this norm has to be bounded independently of T , Condition (L-1) is a quite

natural assumption for the TVAR model, see Appendix A.1 for the details.

A practical advantage of the proposed procedures is that, given a set of predictors

that behaves well under specific smoothness assumptions, we obtain an aggregated pre-

dictor which performs almost as well as or better than the best of these predictors, hence

which behaves well without any prior knowledge on the smoothness of the unknown

parameter. Such an adaptive property can be formally demonstrated by exhibiting an

adaptive minimax rate for the aggregated predictor which coincides with the lower

bound given in Theorem 3.1.

The first ingredient that we need is the following.

Definition 4 ((ψ, β)-minimax-rate predictor). Let ψ be a distribution on R and β > 0.

We say that X̂ = (X̂T )T≥1 is a (ψ, β)-minimax-rate sequence of predictors if, for all

T ≥ 1, X̂T ∈ PT and, for all δ ∈ (0, 1), R > 0, ρ ∈ (0, 1] and σ+ > 0,

lim sup
T→∞

T 2β/(1+2β)S T

(
X̂T ;ψ, β,R, δ, ρ, σ+

)
< ∞ , (3.9)

where S T is defined by (3.6).

The term minimax-rate in this definition refers to the fact that the maximal rate

in (3.9) is equal to the minimax lower bound (3.8) for the class C (β,R, δ, ρ, σ+). We

explain in Appendix A how to build such predictors which are moreover L-Lipschitz

for some L only depending on d. To adapt to an unknown smoothness, we rely on

a collection of (ψ, β)-minimax-rate predictors with β within (0, β0), where β0 is the

(possibly infinite) maximal smoothness index.
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Definition 5 (Locally bounded set of ψ-minimax-rate predictors). Let ψ be a distribu-

tion on R and β0 ∈ (0,∞]. We say that {X̂(β), β ∈ (0, β0)} is a locally bounded set of

ψ-minimax-rate predictors if for each β, X̂(β) is a (ψ, β)-minimax-rate predictor and if

moreover, for all δ ∈ (0, 1), R > 0, ρ ∈ (0, 1], σ+ > 0 and for each closed interval

J ⊂ (0, β0),

lim sup
T→∞

sup
β∈J

T 2β/(1+2β)S T

(
X̂

(β)

T
;ψ, β,R, δ, ρ, σ+

)
< ∞ ,

where S T is defined by (3.6).

The following lemma shows that, given a locally bounded set of minimax-rate pre-

dictors, we can always pick a finite subset of at most N = ⌈(log T )2⌉ predictors among

which the best one achieves the minimax rate of any unknown smoothness index.

Lemma 1. Let ψ be a distribution on R. Let β0 ∈ (0,∞] and {X̂(β), β ∈ (0, β0)} be a

corresponding locally bounded set of ψ-minimax-rate predictors. Set, for any N ≥ 1,

βi =


(i − 1)β0/N if β0 < ∞,

(i − 1)/N1/2 otherwise,
1 ≤ i ≤ N . (3.10)

Suppose moreover, in the case where β0 < ∞, that N ≥ ⌈log T ⌉, and, in the case where

β0 = ∞, that N ≥
⌈ (

log T
)2 ⌉

. Then, we have, for all β ∈ (0, β0), δ ∈ (0, 1), R > 0, ρ > 0

and σ+ > 0,

lim sup
T→∞

T 2β/(1+2β) min
i=1,...,N

S T

(
X̂

(βi)

T
;ψ, β,R, δ, ρ, σ+

)
< ∞ .

The proof of this lemma is postponed to Section B.3 in Appendix B. Lemma 1

says that to obtain a minimax-rate predictor which adapts to an unknown smoothness

index β, it is sufficient to select it judiciously among log T or (log T )2 well chosen

non-adaptive minimax-rate predictors.

As a consequence of Theorem 2.1 and Lemma 1, we obtain an adaptive predictor

by aggregating them (instead of selecting one of them), as stated in the following result.

Theorem 3.2. Let ψ be a distribution on R. Let β0 ∈ (0,∞] and {X̂(β), β ∈ (0, β0)}

be a locally bounded set of ψ-minimax-rate and L-Lipschitz predictors with L satisfy-

ing (L-1). Define (X̂t,T )1≤t≤T as the predictor aggregated from {X̂(βi), 1 ≤ i ≤ N} with N

defined by

N =


⌈log T ⌉ if β0 < ∞,

⌈(log T )2⌉ otherwise,
(3.11)

βi defined by (3.10), and with weights defined according to one of the following setting

depending on the assumption on ψ and β0 :

(i) If ψ satisfies (I-1) with p ≥ 4 and β0 ≤ 1/2, use the weights (2.5) with η =

σ−2
+ (log(⌈log T ⌉)/T )1/2,

(ii) If ψ satisfies (I-1) with p > 2 and β0 ≤ (p − 2)/4, use the weights (2.6) with

η = σ−2
+ (log(⌈log T ⌉)/T )2/p,
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(iii) If ψ satisfies (I-2), use the weights (2.6) with η = σ−2
+

(
log T

)−3
.

Then, we have, for any β ∈ (0, β0), δ ∈ (0, 1), R > 0, ρ ∈ (0, 1] and σ+ > 0,

lim sup
T→∞

T 2β/(1+2β)S T

(
X̂T ;ψ, β,R, δ, ρ, σ+

)
< ∞ . (3.12)

The proof of this theorem is postponed to Section B.4 in Appendix B.

Remark 5. The limitation to β0 ≤ 1/2 in (i) under Assumption (I-1) for ψ follows

from the factor (log N/T )1/2 obtained in the oracle inequality (2.8) of Theorem 2.1 after

optimizing in η (see (2.13)). If p > 4 this restriction is weakened to β0 ≤ (p−2)/4 in (ii)

taking into account the factor (log N/T )1−2/p obtained in the oracle inequality (2.9) of

Theorem 2.1 after optimizing in η (see (2.15)). In the last case, the limitation of β0

drops when applying the oracle inequality (2.11) of the same theorem. However a

stronger condition on ψ is then required.

Remark 6. It may happen that the locally bounded set of ψ-minimax-rate predictors is

limited to some β0 < ∞ (see the example of the NLMS predictors in Appendix A.2).

In this case, the result roughly needs log T predictors and the computation of the ag-

gregated one requires less operations than if β0 were infinite. For these reasons, we do

not consider in general that β0 = ∞. On the one hand, a finite β0 yields a restriction

on the set of (unknown) smoothness indices β for which the aggregated predictors are

minimax rate adaptive. On the other hand, if β0 = ∞, Theorem 3.2 then requires the

stronger Assumption (I-2) on the process.

Remark 7. The constant σ−2
+ present in the definitions of η in the three cases (i), (ii)

and (iii) corresponds to the homogenization of the remaining terms appearing in Theo-

rem 2.1 (the second lines of (2.8), (2.9) and (2.11)). Indeed with the proposed choices

and in the three cases, the constant σ2
+ factors out in front of the remaining terms (see

the last three displayed equations in Section B.4 of Appendix B). However the σ−2
+ in

the definitions of η does not impact the convergence rate in the sense that Theorem 3.2

is still valid using any other constant (1 for example) in these definitions.

4 Proofs of the upper bounds

4.1 Preliminary results

We start with a lemma which gathers useful adaptations of well known inequalities

applying to the aggregation of deterministic predicting sequences.

Lemma 2. Let (xt)1≤t≤T be a real valued sequence and {(x̂
(i)
t )1≤t≤T , 1 ≤ i ≤ N} be

a collection of predicting sequences. Define (x̂t)1≤t≤T as the sequence of aggregated

predictors obtained from this collection with the weights (2.5). Then, for any η > 0, we

have

1

T

T∑

t=1

(
x̂t − xt

)2
≤ inf

ν∈SN

1

T

T∑

t=1

(
x̂

[ν]
t − xt

)2
+

log N

Tη
+

2η

T

T∑

t=1

y4
t , (4.1)
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where yt = |xt| +max1≤i≤N |̂x
(i)
t |.

Define now (x̂t)1≤t≤T as the sequence of aggregated predictors obtained with the

weights (2.6). Then, for any η > 0, we have

1

T

T∑

t=1

(
x̂t − xt

)2
≤ min

i=1,...,N

1

T

T∑

t=1

(
x̂

(i)
t − xt

)2
+

log N

Tη
+

1

T

T∑

t=1

(
y2

t −
1

2η

)

+

, (4.2)

where yt = |xt| +max1≤i≤N |̂x
(i)
t |.

Proof. With the weights defined by (2.5), by slightly adapting [27, Theorem 1.7], we

have that

1

T

T∑

t=1

(
x̂t − xt

)2
− inf
ν∈SN

1

T

T∑

t=1

(
x̂

[ν]
t − xt

)2
≤

log N

Tη
+

η

8T
s∗T ,

where s∗
T
=

∑T
t=1 s2

t and st = 2 max1≤i≤N |2(
∑N

j=1 α̂ j,t x̂
( j)
t − xt)x̂

(i)
t |. The bound (4.1)

follows by using that
{
α̂i,t

}
1≤i≤N is in the simplex SN defined in (2.4).

We now prove (4.2). We adapt the proof of [7, Proposition 2.2.1.] to unbounded

sequences by replacing the convexity argument by the following lemma.

Lemma 3. Let a > 0 and P a probability distribution supported on [−a, a]. Then we

have

∫
exp

(
−x2

)
dP (x) ≤ exp

−
(∫

xdP (x)

)2

+

(
a2 −

1

2

)

+

 .

The proof of Lemma 3 is postponed to Section B.5 in Appendix B. Now, let η > 0

and t = 1, . . . , T . Using Lemma 3 with the probability distribution P defined by P(A) =∑N
i=1 α̂i,t1A(η1/2(x̂

(i)
t − xt)) and a = η1/2yt, we get that

N∑

i=1

α̂i,t exp

(
−η

(
x̂

(i)
t − xt

)2
)
≤ exp

(
−η

(
x̂t − xt

)2
+ η

(
y2

t −
1

2η

)

+

)
.

Taking the log, multiplying by −η−1 and re-ordering the terms, we obtain that

(
x̂t − xt

)2
≤ −

1

η
log


N∑

j=1

α̂i,t exp

(
−η

(
x̂

(i)
t − xt

)2
) +

(
y2

t −
1

2η

)

+

.

Taking the average over t = 1, . . . , T and developing the expression of α̂i,t we obtain

1

T

T∑

t=1

(
xt − x̂t

)2
≤ −

1

ηT
log


1

N

N∑

i=1

exp

−η
T∑

t=1

(
x̂

(i)
t − xt

)2




+
1

T

T∑

t=1

(
y2

t −
1

2η

)

+

. (4.3)

Using that
∑N

i=1 exp(−η
∑T

t=1(x̂
(i)
t − xt)

2) ≥ exp(−ηmini=1,...,N

∑T
t=1(x̂

(i)
t − xt)

2), we get the

bound (4.2). �
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4.2 Proof of Theorem 2.1

We prove the cases (i), (ii) and (iii) successively. We denote Yt = |Xt| +max1≤i≤N |X̂
(i)
t |.

Case (i). Applying (4.1) in Lemma 2 with E[inf . . . ] ≤ inf E[. . . ], we obtain

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ inf
ν∈SN

1

T

T∑

t=1

E

[(
X̂

[ν]
t − Xt

)2
]

+
log N

Tη
+

2η

T

T∑

t=1

E

[
Y4

t

]
. (4.4)

Using that the predictors are L-Lipschitz and the process (Xt)t∈Z satisfies (M-1), we

have, for all 1 ≤ t ≤ T ,

Yt = |Xt| + max
1≤i≤N

∣∣∣∣X̂(i)
t

∣∣∣∣ ≤
∑

j∈Z

At( j) Zt− j +
∑

s≥1

∑

j∈Z

Ls At−s( j) Zt−s− j

≤
∑

j∈Z

Bt( j)Zt− j, (4.5)

where

Bt( j) = At( j) +
∑

s≥1

Ls At−s( j − s) .

Applying the Minkowski inequality together with (4.5), (2.2) and (2.7), we obtain, for

all 1 ≤ t ≤ T ,

E

[
Y4

t

]
≤ E




∑

j∈Z

Bt( j)Zt− j


4
 ≤ A4

∗(1 + L∗)
4 sup

t∈Z

E

[
Z4

t

]
.

Since the process Z fulfills (N-1) with p = 4, plugging this bound in (4.4) we ob-

tain (2.8).

Case (ii). We use (4.2) in Lemma 2 and the inequality (x2 − 1/(2η))+ ≤ (2η)p/2−1xp

which holds for x ≥ 0 and p ≥ 2. We get, taking the expectation,

1

T

T∑

t=1

E

[(
X̂t,T − Xt,T

)2
]
≤ min

i=1,...,N

1

T

T∑

t=1

E

[(
X̂

(i)

t,T
− Xt,T

)2
]
+

log N

Tη

+ (2η)p/2−1 max
t=1,...,T

E

[
Y

p
t

]
. (4.6)

Applying the Minkowski inequality, (4.5) and Assumption (N-2)

E

[
Y

p
t

]
≤


∑

j∈Z

Bt( j)
(
E

[
Z

p

t− j

])1/p


p

≤ A
p
∗ (1 + L∗)

p sup
t∈Z

E

[
Z

p
t

]
.

Using this bound which is independent of t, with (N-1) and (4.6), the inequality (2.9)

follows.
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Case (iii). To obtain (2.11), we again use (4.2) in Lemma 2 but now with an expo-

nential bound for (Y2
t − 1/(2η))+. We note that, or all u > 0,

sup
x≥1

(
x2 − 1

)
e−ux =

(
x2

0 − 1
)

e−u x0 with x0 = u−1
(
1 +

(
1 + u2

)1/2
)
.

It follows that, for all x ∈ R and u > 0,

(
x2 − 1

)
+
≤ eux

(
x2

0 − 1
)

e−u x0 ≤ eux2u−2 (2 + u) e−1−u .

Applying this bound with x = (2η)1/2Yt and u = λ(2η)−1/2 we get

(
Y2

t −
1

2η

)

+

= (2η)−1
(
x2 − 1

)
+
≤ 2λ−2

(
2 + λ(2η)−1/2

)
e−1−λ(2η)−1/2

eλYt .

Plugging this into (4.2) and taking the expectation, we obtain that

1

T

T∑

t=1

E

[(
X̂t,T − Xt,T

)2
]
≤ min

i=1,...,N

1

T

T∑

t=1

E

[(
X̂

(i)

t,T
− Xt,T

)2
]
+

log N

Tη

+ 2λ−2
(
2 + λ(2η)−1/2

)
e−1−λ(2η)−1/2

max
t=1,...,T

E

[
eλYt

]
. (4.7)

We now use Assumption (N-2). Since Bt( j) ≤ a∗(1 + L∗) for all j, t ∈ Z and

∑

j∈Z

Bt( j) ≤ A∗(1 + L∗),

Jensen’s inequality and (4.5) gives that, for any λ ≤ ζ/(a∗(1 + L∗)),

E

[
eλYt

]
≤ E

[
eλ

(
|Xt |+max1≤i≤N |X̂

(i)
t |

)]

≤
∏

j∈Z

E

[
eλBt( j) Zt− j

]

≤
∏

j∈Z

(φ(ζ))λBt( j)/ζ ≤ (φ(ζ))λA∗(1+L∗)/ζ .

The combination of this bound with (4.7) gives (2.11). The proof of Theorem 2.1

is complete.

4.3 Proof of Case (iii) in Corollary 1

Minimizing the sum of the two terms appearing in the second line of (2.11) is a bit

more involved, since it depends both on η and λ. Under Condition (2.10), the quan-

tity (φ(ζ))λA∗(1+L∗)/ζ remains between two positive constants while, for any η > 0,

λ−2(2 + λ(2η)−1/2) is decreasing as λ increases. To simplify (φ(ζ))λA∗(1+L∗)/ζ into φ(ζ),

we simply take

λ =
ζ

A∗(1 + L∗)
,

21



which satisfies (2.10). Now that λ is set, it remains to choose a value of η which

(almost) minimizes

log N

Tη
+

2φ(ζ)

e
λ−2

(
2 + λ(2η)−1/2

)
e−λ(2η)−1/2

.

The η defined as in (C.6) is chosen so that (log N)/T = e−λ(2η)−1/2

, and we get (2.17).

5 Proof of the lower bound

We now provide a proof of Theorem 3.1. We consider an autoregressive equation of

order one

Xt,T = θ

(
t − 1

T

)
Xt−1,T + ξt, (5.1)

where (ξt)t∈Z is i.i.d. with density f as in (I-3). In this case, if supu≤1 |θ(u)| < 1, the

representation (3.4) of the stationary solution reads, for all t ≤ T as

Xt,T =

∞∑

j=0

j∏

s=1

θ

(
t − s

T

)
ξt− j , (5.2)

with the convention
∏0

s=1 θ((t − s)/T ) = 1. The class of models so defined with θ ∈

Λ1(β,R) ∩ s1(δ) corresponds to Assumption (M-2) with (θ, σ) in C (β,R, δ, ρ, 1) such

that only the first component of θ is nonzero and σ is constant and equal to one.

We write henceforth in this proof section Pθ for the law of the process X =

(Xt,T )t≤T,T≥1 and Eθ for the corresponding expectation.

Let X̂ = (X̂t,T )1≤t≤T be any predictor of (Xt,T )1≤t≤T in the sense of Definition 3.

Define θ̂ = (̂θt,T )0≤t≤T−1 ∈ R
T by

θ̂t,T =


X̂t+1,T/Xt,T if Xt,T , 0,

0 otherwise.

For any vectors u, v ∈ RT , we define

dX(u, v) =


1

T

T−1∑

t=0

X2
t,T (ut − vt)

2



1/2

. (5.3)

By (5.1), since Xt,T and θ̂t,T are Ft,T -measurable, they are independent of ξt+1 and we

have

1

T

T∑

t=1

Eθ

[(
X̂t,T − Xt,T

)2
]
− 1 = Eθ

[
d2

X (̂θ, vT {θ})
]
,

where, for any θ : (−∞, 1] → R, vT {θ} ∈ R
T denotes the T -sample of θ on the regular

grid 0, 1/T, . . . , (T − 1)/T ,

vT {θ} =

(
θ

(
t

T

))

0≤t≤T−1
.
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Hence to prove the lower bound of Theorem 3.1, it is sufficient to show that there exist

θ0, . . . , θM ∈ Λ1(β,R) ∩ s1(δ), c > 0 and T0 ≥ 1 both depending only on δ, β, R and the

density f , such that for any θ̂ = (̂θt,T )0≤t≤T−1 adapted to (Ft,T )0≤t≤T−1 and T ≥ T0, we

have

max
j=0,...,M

Eθ j

[
d2

X

(̂
θ, vT {θ j}

)]
≥ c T−2β/(2β+1). (5.4)

We now face the more standard problem of providing a lower bound for the minimax

rate of an estimation error, since θ̂ is an estimator of vT {θ}. The path for deriving such

a lower bound is explained in [29, Chapter 2]. However we have to deal with a loss

function dX which depends on the observed process X. Not only the loss function

is random, but it is also not independent of the estimator θ̂. The proof of the lower

bound (5.4) thus requires nontrivial adaptations. It relies on some intermediate lemmas.

Lemma 4. We write K(P, P′) for the Kullback-Leibler divergence between P and P′.

For any functions θ0, . . . , θM from [0, 1] to R such that

max
j=0,...,M

K(Pθ j
, Pθ0

) ≤
2e

2e + 1
log(1 + M) (5.5)

and any r > 0 we have

max
j=0,...,M

Eθ j

[
d2

X

(̂
θ, vT {θ j}

)]
≥

r2

4

(
1

2e + 1
− max

j=0,...,M
Pθ j

(
min
i:i, j

dX,T (θi, θ j) ≤ r

))
,

where we denote, for any two functions θ, θ′ from (−∞, 1] to R,

dX,T (θ, θ′) = dX

(
vT {θ}, vT {θ

′}
)
.

The proof is postponed to Section B.6 in Appendix B.

We next construct certain functions θ0, . . . , θM ∈ Λ1(β,R)∩ s1(δ) fulfilling (5.5) and

well spread in terms of the pseudo-distance dX,T . Consider the infinitely differentiable

kernel K defined by

K(u) = exp

(
−

1

1 − 4u2

) 1|u|<1/2 .

Given any m ≥ 8, Vershamov-Gilbert’s lemma ([29, Lemma 2.9]) ensures the existence

of M + 1 points w(0), . . . ,w(M) in the hypercube {0, 1}m such that

M ≥ 2m/8, w(0) = 0 and card
{
ℓ : w

( j)

ℓ
, w

(i)

ℓ

}
≥ m/8 for all j , i. (5.6)

We then define θ0, . . . , θM by setting, for all x ≤ 1,

θ j(x) =
R0

mβ

m∑

ℓ=1

w
( j)

l
K

(
mx − ℓ +

1

2

)
for j = 0, . . . , M , (5.7)

where

R0 = min

δ,
R(

2 |K|β
)
 . (5.8)
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Since K = 0 out of (−1/2, 1/2), we observe that θ j(x) = 0 for all x ≤ 0 and

θ j(x) =
R0

mβ
w

( j)

⌊mx⌋+1
K

(
{mx} −

1

2

)
, for all x ∈ [0, 1], (5.9)

where {mx} = mx − ⌊mx⌋ denotes the fractional part of mx. Thus we have

θ∗ := max
0≤ j≤M

sup
x∈[0,1]

|θ j(x)| ≤
R0e−1

mβ
≤ δ < 1 . (5.10)

We first check that the definition of R0 ensures that the θ j’s are in the expected set of

parameters.

Lemma 5. For all j = 0, . . . , M, we have θ j ∈ Λ1(β,R) ∩ s1(δ).

The proof can be found in Section B.7 of Appendix B.

Next we provide a bound to check the required condition (5.5) on the chosen θ j’s.

Lemma 6. For all j = 0, . . . , M, we have

K(Pθ j
, Pθ0

) ≤
8 e−2 κR2

0

(1 − δ2) log 2

T

m1+2β
log(1 + M) ,

where κ is the constant appearing in (I-3).

We prove it in Section B.8 of Appendix B.

Finally we need a control on the distances d2
X,T

(θi, θ j).

Lemma 7. For any ε > 0, there exists a constant A depending only on ε and the density

f of ξ such that for all m ≥ 16, T ≥ 4m and j = 0, . . . , M,

Pθ j

min
i:i, j

d2
X,T (θi, θ j) ≤ A

R2
0

m2β

 ≤ ε +
2R0e−3

A (1 − δ)mβ
. (5.11)

The proof is postponed to Section B.9 of Appendix B.

We can now conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. Recall that θ0, . . . , θM in (5.7) are some parameters only de-

pending on β and δ and a certain integer m ≥ 8 and that, whatever the value of m,

Lemma 5 insures that θ0, . . . , θM belongs to Λ1(β,R) ∩ s1(δ).

Hence it is now sufficient to show that (5.4) holds for a correct choice of m, relying

on Lemmas 4, 6 and 7. Let us set

m = max
{⌈

c0T 1/(2β+1)
⌉
, 16

}
, (5.12)

where c0 is a constant to be chosen. Then Tm−1−2β ≤ c
−1−2β

0
and, by Lemma 6, we can

choose c0 only depending on β, R, κ and δ so that Condition (5.5) of Lemma 4 is met.

We thus get that, for any r > 0,

max
j=0,...,M

Eθ j

[
d2

X

(̂
θ, vT {θ j}

)]
≥

r2

4

(
1

2e + 1
− max

j=0,...,M
Pθ j

(
min
i:i, j

dX,T (θi, θ j) ≤ r

))
,
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Applying Lemma 7 with ε = 1/(4e + 2) and the previous bound with r2 = A R2
0

m−2β,

we get, as soon as T ≥ 4m,

max
j=0,...,M

Eθ j

[
d2

X

(̂
θ, vT {θ j}

)]
≥

r2

4

(
1

4e + 2
−

2R0e−1

A (1 − δ)mβ

)
.

The proof is concluded by observing that, as a consequence of (5.12), we can choose a

constant T0 only depending on β, R, κ and δ such that T ≥ T0 implies that T ≥ 4m and

that the term between parentheses is bounded by 1/(8e + 4) from below. �

6 Numerical experiments

In this section, we test the proposed aggregation methods on data simulated according

to a TVAR process with d = 3. The choice of a smooth parameter function t 7→ θ(t)

within sd(δ) for some δ ∈ (0, 1) is done by first picking randomly some smoothly time

varying partial autocorrelation functions up to the order d that are bounded between

−1 and 1 and then by relying on the Levinson-Durbin algorithm. We show the three

components of the obtained θ(t) on t ∈ [0, 1] in the top parts of Figure 1. Realizations

of the TVAR process are then obtained from an innovation sequence (ξt)t∈Z of i.i.d.

centered Gaussian process with unit variance as in Definition 2 by sampling θ at a given

rate T ≥ 1. Figure 1 displays one realization of such a TVAR process for T = 210.

The NLMS algorithm (see Algorithm 2 in Appendix A.1) studied in [24] provides

an online estimator of θ depending on a gradient step size µ. For any β ∈ (0, 1], choos-

ing µ ∝ T−2β/(2β+1) yields a C (β,R, δ, ρ, 1)–minimax-rate online L-Lipschitz predictor

as explained in Appendix A.1. Hence, proceeding as in Lemma 1 to define N and βi,

i = 1, . . . ,N, with β0 = 0.5, we obtain a finite set of NLMS predictors corresponding to

gradient step sizes µ1 > · · · > µN . This set of predictors is aggregated in two possible

ways according to the online Algorithm 1 with the specifications on η and N given in

Theorem 3.2. The overall running time of T iterates of the algorithm leading to the

aggregated predictors from the data X1, . . . , XT is then O(d N T ). Since the algorithm

is recursive, the corresponding required storage capacity is O(d N).

We evaluate the obtained NLMS predictors and their aggregated predictors by run-

ning 1000 simulations based on equally distributed realizations of the above Gaussian

TVAR process in the case T = 210 which yields N = 7. In Figure 2 we compare the

averaged downward shifted empirical losses defined for any predictor (X̂t,T )1≤t≤T by

LT =
1

T

T∑

t=1

((
X̂t,T − Xt,T

)2
− σ2

(
t

T

))
.

This empirical averaged loss mimics the risk considered in (3.6).

We observe that the best NLMS predictor is the third one while the aggregated

predictor of Strategy 1 enjoys a smaller loss and that of Strategy 2 a slightly larger

one. This is in accordance with Theorem 2.1 (i) and (iii) where it is shown that the

aggregated predictor of the first strategy may outperform the best predictor as it nearly

achieves the loss of the best possible convex combination of the original predictors

while the aggregated predictor of the second strategy nearly achieves the loss of the

best original predictor.
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Figure 1: The first three plots represent θ1, θ2 and θ3 on the interval [0, 1]. The last

plot displays T = 210 samples of the corresponding TVAR process with Gaussian

innovations.
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Figure 2: The seven boxplots on the left of the vertical red line correspond to the

averaged downward shifted empirical losses LT of the NLMS predictors X̂(1), . . . , X̂(7).

The ones on the right of the same line are those associated to the aggregated predictors

using the weights (2.5) and (2.6).

A Application to online minimax adaptive prediction

A.1 From estimation to prediction

We define a sequence (Lk)k≥1 by

Lk =



(
d

k

)
if 1 ≤ k ≤ d

0 otherwise,

which fulfills (L-1) with L∗ =
∑d

k=1

(
d

k

)
= 2d − 1. Given an estimator θ̂t−1,T =

[̂θt−1,T (1) . . . θ̂t−1,T (d)]′, we define a predictor X̂t,T which is L-Lipschitz by setting

X̂t,T =

d∑

k=1

(
min

{
max

{
−Lk, θ̂t−1,T (k)

}
, Lk

})
Xt−k,T . (A.1)

The predictor X̂t,T is the natural linear predictor θ̂′
t−1,T

Xt−1,T , where A′ denotes the

transpose of matrix A and Xs,T =
[
Xs,T . . . Xs−(d−1),T

]′
, normalized to be at most L-

Lipschitz. The normalization step amounts to project θ̂t,T on a rectangle [−L1, L1] ×

· · · × [−Ld, Ld] before deriving the linear predictor. This can only improve the quality

of estimation for a stable TVAR model, since θ takes values in the maximal set of
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stability sd(1), which implies that it is included in this rectangle at every point, see [24,

Equation 12]. We get the following result.

Lemma 8. Suppose that Assumption (M-2) holds. Consider, for some 1 ≤ t ≤ T, an

estimator θ̂ = (̂θt,T )0≤t≤T−1 adapted to the filtration (Ft,T )0≤t≤T−1. Define a predictor

X̂ = (X̂t,T )1≤t≤T as in (A.1). Then, for any q > 1 and for all and 1 ≤ t ≤ T,

E
ψ

(θ,σ)

[(
X̂t,T − Xt,T

)2
]
− σ2

(
t

T

)
≤ CT (q)

(
E
ψ

(θ,σ)

[∣∣∣∣̂θt−1,T − θt−1,T

∣∣∣∣
2q
])1/q

, (A.2)

where

CT (q) = max
1≤t≤T

(
E
ψ

(θ,σ)

[∣∣∣Xt−1,T

∣∣∣2q′
])1/q′

,

with 1/q′ + 1/q = 1.

Remark 8. Assume that the distribution ψ of the innovations satisfies (I-1) for some

p ≥ 2q′ > 2. Then, the Proposition 1 combined with the Minkowski inequality ensure

that there exists T0, K̄, δ1 such that, for any (θ, σ) ∈ C (β,R, δ, 0, σ+),

CT (q) ≤ d

(
K̄σ+

1 − δ1

)2

m
1/q′

2q′
, for all T ≥ T0 .

Proof. Denote by θ̃t,T the projection of θ̂t,T onto the rectangle [−L1, L1]×· · ·×[−Ld, Ld],

that is, θ̃t,T (k) = min{max{−Lk, θ̂t,T (k)}, Lk}. By [24, Equation 12], θt,T lies in this

rectangle and thus ∣∣∣∣̃θt,T − θt,T

∣∣∣∣ ≤
∣∣∣∣̂θt,T − θt,T

∣∣∣∣ . (A.3)

Using (B.5) and that θ̂t−1,T is a Ft−1,T -measurable, we have, for all t = 1, . . . , T ,

E
ψ

(θ,σ)

[(
X̂t,T − Xt,T

)2
]
= E

ψ

(θ,σ)

[((̃
θt−1,T − θt−1,T

)′
Xt−1,T

)2
]
+ σ2

(
t

T

)
.

Define q′ by the relation 1/q′ + 1/q = 1. Thus, with (A.3) and the Hölder inequality,

we get that the left-hand side of (A.2) is bounded from above by

(
E(θ,σ)

[∣∣∣∣̂θt−1,T − θt−1,T

∣∣∣∣
2q
])1/q (

E(θ,σ)

[∣∣∣Xt−1,T

∣∣∣2q′
])1/q′

which concludes the proof of Lemma 8. �

By Lemma 8, to exhibit (ψ, β)-minimax-rate predictors in the sense of Definition 4,

it suffices to have (ψ, β)-minimax-rate estimators of θ in the sense of Lq-norm. We

recall some known results in this direction in the following section, with a focus on

online procedures.
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A.2 Online estimators

Parameter estimation for TVAR models, or, more generally for locally stationary pro-

cesses has been intensively studied in the past two decades, see [10] for a recent

overview on this problem. To our knowledge, minimax-rate estimation results are

sparse. The more widely spread approach for studying the behaviour of such esti-

mators consists in establishing a central limit theorem under differentiablity condi-

tions. Moment upper bounds are provided in [11] and could be used to obtain minimax

rate results. However the estimator, which is based on a localized Yule-Walker esti-

mation method is not naturally adapted to the filtration (Ft,T )0≤t≤T−1 as required for

(̃θt,T )0≤t≤T−1 above. Such a constraint could clearly be met with some adaptation of

the Yule-Walker approach. On the other hand it is directly satisfied by the estimators

studied in [24]. There, an online estimator is proposed, the normalized least mean

squares (NLMS) estimator θ̂t,T (µ), depending on a gradient step size µ. For the sake

of completeness, we present the computation of the NLMS estimator in Algorithm 2.

Algorithm 2: Online computation of the NLMS estimator.

parameters the gradient step size µ;

initialization t = 0, θ̂t,T (µ) =
[
0 . . . 0

]′
;

while input a new Xt,T ;

do

θ̂t,T (µ) = θ̂t−1,T (µ) + µ
(
Xt,T − θ̂

′
t−1,T

(µ) Xt−1,T

) Xt−1,T

1 + µ
∣∣∣Xt−1,T

∣∣∣2
;

return θ̂t,T (µ);

t = t + 1;

For any β ∈ (0, 1], provided that the gradient step µ is well chosen, the NLMS

estimator is (ψ, β)-minimax-rate, see [24, Corollary 3]. More precisely, assume (M-2)

with ψ satisfying (I-1) for some p ≥ 4. Then, for any c > 0, ε > 0, R > 0, δ ∈ (0, 1), ρ ∈

[0, 1] and q ∈ [1, p/6), there exists M > 0 such that, for all (θ, σ) ∈ C (β,R, δ, σ−, σ+)

and ε > 0,

sup
ε≤t/T≤1

(
E
ψ

(θ,σ)

[∣∣∣∣̂θt,T (cT−2β/(1+2β)) − θt,T

∣∣∣∣
2q
])1/q

≤ M T−2β/(1+2β) .

Clearly, from [24], the constant M can be bounded uniformly for β in any compact

subinterval away from 0, as required in Definition 5. Lemma 8 applies for q ≥ p/(p−2)

so to meet the condition q ∈ [1, p/6), we set q = p/(p−2) and impose p > 8 and finally

obtain that

sup
ε≤t/T≤1

E
ψ

(θ,σ)

[(
X̂t,T (cT−2β/(1+2β)) − Xt,T

)2
]
− σ2

(
t

T

)
≤ C′ σ2

+ T−2β/(1+2β) ,

where X̂t,T (µ) is the predictor defined from the estimator θ̂t,T (µ) as in (A.1). This is

almost what is required in our Definition 5 except that in (3.9) we have T−1
∑T

t=1(. . . )

instead of supε≤t/T≤1(. . . ). In fact one can take ε = 0, provided that a burn-in period

of observation is assumed prior to the time origin. It would only require the NLMS
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estimator to be running from observations Xt,T started at times t ≥ −εT for some

positive ε, which seems a reasonable assumption in practice. Finally, let us recall

that, as shown in [24], NLMS estimators are no longer minimax rate for a Hölder

smoothness index β > 1. However, a bias reduction technique can be used to obtain a

minimax-rate estimator for β ∈ (1, 2], see [24, Corollary 9].

B Postponed proofs

B.1 A useful lemma

The following lemma provides a uniform bound on the norm of a product of matrices

sampled from a continuous function defined on an interval I and valued in a set of d×d

matrices with bounded spectral radius and norm.

Lemma 9. Let d ≥ 1 and I an interval of R. Let A be a function defined on I taking

values in the set of d × d matrices with eigenvalues moduli at most equal to δ. Let | · |

be any matrix norm. Denote by A∗ the corresponding uniform norm of A,

A∗ = sup
t∈I

|A(t)| ,

and, for any h > 0, ωh(A, I) the modulus of continuity of A over I,

ωh(A; I) = sup {|A(t) − A(s)| : s, t ∈ I, |s − t| ≤ h} .

Let δ1 > δ and assume that A∗ < ∞. Then there exist some positive constants ε, ℓ and

K only depending on A∗, δ and δ1 such that, for any h ∈ (0, 1) fulfilling ωh(A; I) ≤ ε,

we have, for all s < t in I and all integer p ≥ ℓ(t − s)/h,

∣∣∣∣∣∣∣∣∣
A(t)A

(
t −

t − s

p

)
A

(
t −

2(t − s)

p

)
. . . A(s)

︸                                               ︷︷                                               ︸

∣∣∣∣∣∣∣∣∣
p + 1 terms

≤ K δ
p+1

1
. (B.1)

Proof. Denote by Π(s, t; p) the product of matrices appearing in the left-hand side

of (B.1). The proof goes along the same lines as [24, Proposition 13] but we use the

modulus of continuity instead of the β-Lipschitz norm to control the local oscillation

of matrices.

For ℓ1 ≥ 1 and any square matrices A1, . . . , Aℓ1
, adopting the convention

∏i2
i=i1

Ai =

Ai1 . . .Ai2 if i1 ≤ i2 and
∏i2

i=i1
Ai is the identity matrix if i1 > i2, we have

ℓ1∏

k=1

Ak = A
ℓ1

1
+

ℓ1−1∑

k=1

A
ℓ1−k

1

ℓ1∏

i=ℓ1−k+1

Ai − A
ℓ1−(k−1)

1

ℓ1∏

i=ℓ1−k+2

Ai

 (B.2)

= A
ℓ1

1
+

ℓ1−1∑

k=1

A
ℓ1−k

1

(
Aℓ1−k+1 − A1

) ℓ1∏

i=ℓ1−k+2

Ai .
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Given a positive integer ℓ, using the Euclidean division of p+1 by ℓ, p+1 = ℓq+ r,

we decompose the productΠ(s, t; p) as

Π(s, t; p) =

q−1∏

j=0


ℓ∏

k=1

A

(
t −

( jℓ + k − 1)(t − s)

p

)

×

r∏

k=1

A

(
t −

(qℓ + k − 1)(t − s)

p

)
. (B.3)

Using (B.2) we have for any h ≥ ℓ(t − s)/p, 0 ≤ j ≤ q and 0 ≤ ℓ1 ≤ ℓ,

∣∣∣∣∣∣∣

ℓ1∏

k=1

A

(
t −

( jℓ + k − 1)(t − s)

p

)∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

(
A

(
t −

jℓ(t − s)

p

))ℓ1

∣∣∣∣∣∣∣
+ (ℓ1 − 1) (A∗)

ℓ1−1
ωh (A; I) . (B.4)

Take an arbitrary δ2 ∈ (δ, δ1) (say the middle point). The eigenvalues of A are at

most δ on I and A∗ < ∞. Applying [24, Lemma 12] we obtain that there is a constant

K1 ≥ 1 only depending on δ, δ2 and A∗ such that | (A(t − jℓ(t − s)/p))ℓ1 | ≤ K1δ
ℓ1

2
.

From (B.3) and (B.4) we derive the following inequality

|Π(s, t; p)| ≤
(
K1δ

ℓ
2 + K2ωh(A; I)

)q (
K1δ

r
2 + K2ωh(A; I)

)
.

where K2 = (ℓ − 1) (max{A∗, 1})ℓ−1.

We can choose a positive integer ℓ and a positive number ε0 only depending on δ2,

δ1 and K1 such that

K1δ
ℓ
2 ≤ δ

ℓ
1 − ε0 .

In the following we set ε = ε0/K2. The previous bound gives that for any h ∈ (0, 1)

such that ωh(A; I) ≤ ε and ℓ(t − s)/p ≤ h,

|Π(s, t; p)| ≤ δ
ℓq

1

(
K1δ

r
2 + ε0

)
≤ K1δ

p+1

1
+ ε0δ

ℓq

1
≤

(
K1 + ε0 max

{
1, δ1−ℓ

1

})
δ

p+1

1
.

Hence the result. �

B.2 Proof of Proposition 1

We can now provide a proof of Proposition 1.

Equation (3.1) can be more compactly written as

Xt,T = θ
′

(
t − 1

T

)
Xt−1,T + σ

(
t

T

)
ξt,T . (B.5)

For all k ≥ 0, iterating this recursive equation k times, we have

Xt,T = e
′
1


k+1∏

i=1

A

(
t − i

T

) Xt−k−1,T +

k∑

j=0

σ

(
t − j

T

)
e
′
1


j∏

i=1

A

(
t − i

T

) e1ξt− j , (B.6)

31



where e1 = [1 0 . . .0]′ and

A(u) =



θ1(u) θ2(u) . . . . . . θd(u)

1 0 . . . . . . 0

0 1 0
. . . 0

... 0
. . .

. . .
...

0 . . . 0 1 0



.

Note that the eigenvalues of A(u) are the reciprocals of the roots of the local time-

varying autoregressive polynomial z 7→ θ(z; u) and thus are at most δ < 1. Moreover

since θ is bounded by a constant only depending on d and is uniformly continuous on

I = (−∞, 1] , so is A as a function defined on I and we can find h ∈ (0, 1) such that

ωh(A, I) ≤ ε for any positive ε. If θ ∈ Λd (β,R) this h can be chosen depending only on

ε, β and R (and also on the matrix norm | · |).

Consider δ1 ∈ (δ, 1). Lemma 9 gives that there exist some positive constant ε, ℓ and

K only depending on A∗, δ and δ1 such that, for any h ∈ (0, 1) fulfilling ωh(A; I) ≤ ε,

we have, for all T ≥ 1, t ≤ T and j ≥ 1 so that T ≥ ℓ/h,

∣∣∣∣∣∣∣

j∏

i=1

A

(
t − i

T

)∣∣∣∣∣∣∣
≤ K δ

j

1
.

We here consider the ℓ∞ operator norm which is the maximum absolute row sum of the

matrix, in which case A∗ = max{1, supu∈I(|θ1(u)| + · · · + |θd(u)|)} ≤ 2dd1/2. Hence by

(B.6) we obtain that

Xt,T =

d∑

i=1

bt,T (k, i)Xt−k−i,T +

k∑

j=0

at,T ( j) σ

(
t − j

T

)
ξt− j,T , 1 ≤ t ≤ T . (B.7)

with, provided that T > ℓ/h, for all t ≤ T , k, j ≥ 1 and i = 1, . . . , d,

∣∣∣bt,T (k, i)
∣∣∣ ≤ Kδk+1

1 ,
∣∣∣at,T ( j)

∣∣∣ ≤ Kδ
j

1
.

The result follows.

B.3 Proof of Lemma 1

The idea is to choose a convenient iN ∈ {1, . . . ,N} and use that

min
1≤i≤N

S T

(
X̂

(βi)

T
;ψ, β,R, δ, ρ, σ+

)
≤ S T

(
X̂

(βiN
)

T
;ψ, β,R, δ, ρ, σ+

)
.

We treat the cases β0 < ∞ and β0 = ∞ separately.

Let us first consider the case β0 < ∞. Let β ∈ (0, β0), δ ∈ (0, 1), R > 0 and

ρ ∈ [0, 1]. Let iN ∈ {1, . . . ,N} be such that βiN
= (iN − 1) β0/N < β ≤ iNβ0/N. Since
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C (β,R, δ, ρ, σ+) ⊂ C
(
βiN
,R, δ, ρ, σ+

)
, we have, for all δ ∈ (0, 1), R > 0, ρ > 0 and

σ+ > 0,

T 2β/(1+2β)S T

(
X̂

(βiN
)

T
;ψ, β,R, δ, ρ, σ+

)
≤ T 2β/(1+2β)S T

(
X̂

(βiN
)

T
;ψ, βiN

,R, δ, ρ, σ+

)

≤ T 2β0/N T 2βiN
/(1+2βiN

)S T

(
X̂

(βiN
)

T
;ψ, βiN

,R, δ, ρ, σ+

)
,

where we used that βiN
< β ≤ βiN

+ β0/N. Recall that we assumed N ≥ ⌈log T ⌉, so that

T 2β0/N ≤ e2β0 . Now, since for N large enough βiN
remains in a closed interval of (0, β0)

we get by Definition 5 that

lim sup
T→∞

T 2βiN
/(1+2βiN

)S T

(
X̂

(βiN
)

T
;ψ, βiN

,R, δ, ρ, σ+

)
< ∞ ,

which concludes the proof in the case β0 < ∞.

We next consider the case where β0 = ∞. In this case we take iN such that βiN
=

(iN−1)/N1/2 < β ≤ iN/N
1/2 which defines iN ∈ {1, . . . ,N} uniquely as soon as N1/2 > β.

The remainder of the proof is similar to the case β0 < ∞ using the bound

T 2β/(1+2β) ≤ T 2/N1/2

T 2βiN
/(1+2βiN

) ≤ e2 T 2βiN
/(1+2βiN

) ,

under the assumption N ≥
⌈ (

log T
)2 ⌉

.

B.4 Application to the TVAR process: proof of Theorem 3.2

Theorem 3.2 is an application of Theorem 2.1 to the aggregation of minimax predictors

for the TVAR model (M-2).

We first note that Proposition 1 shows that, for T large enough the TVAR

model (M-2) satisfies (M-1) with A∗ bounded independently of T as in (3.5) and Zt = |ξt|

for all t ∈ Z. Hence Assumptions (I-1) and (I-2) respectively imply (N-1) and (N-2).

This shows that Theorem 2.1 applies under the assumptions of Theorem 3.2 and

that the constants A∗ and a∗ appearing in (2.8), (2.9), (2.10) and (2.11) can be replaced

by K̄σ+/(1 − δ1) and K̄σ+, respectively, where K̄ > 0 and δ1 ∈ (0, 1) can be chosen

only depending on δ, β, and R.

On the other hand, Lemma 1 shows that, under the given assumptions on the pre-

dictors and with the given choices of N, the smallest prediction risk among the selected

predictors, achieves a rate T−2β/(1+2β) for some positive constant C only depending on

β, δ, R > 0, ρ and ψ. Hence, we get with Theorem 2.1 that

lim sup
T→∞

T 2β/(1+2β)S T

(
X̂T ;ψ, β,R, δ, ρ, σ+

)
≤ C + lim sup

T→∞

T 2β/(1+2β)R(N, T ) , (B.8)

where C is a positive constant and R(N, T ) is a remaining term which, in the set-

ting (i) in Theorem 3.2, is given by

R(N, T ) =
log N

Tη
+ 2η (1 + L∗)

4 m4

K̄4σ4
+

(1 − δ1)4
, (B.9)
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in the setting (ii), is given by

R(N, T ) =
log N

Tη
+ (2η)p/2−1(1 + L∗)

pmp

K̄pσ
p
+

(1 − δ1)p
, (B.10)

and, in the setting (iii), taking λ = ζ/(K̄σ+(L∗ + 1)), is given by

R(N, T ) =
log N

Tη
+

2

e
(φ(ζ))1/(1−δ1) λ−2

(
2 + λ(2η)−1/2

)
e−λ(2η)−1/2

. (B.11)

Replacing η and N in (B.9) as given by (i) and (3.11), we get

σ−2
+ R(N, T ) ≤

(
log⌈log T ⌉

T

)1/2 (
1 + 2 (1 + L∗)

4 m4

K̄4

(1 − δ1)4

)
.

Hence, using that β < β0 ≤ 1/2, this upper bound is negligible with respect to

T−2β/(2β+1) and, with (B.8), we get (3.12).

Analogously, we replace η and N in (B.10) as given by (ii) and (3.11), we get

σ−2
+ R(N, T ) ≤

(
log⌈log T ⌉

T

)1−2/p (
1 + 2p/2−1 (1 + L∗)

p mp

K̄p

(1 − δ1)p

)
.

Since β < β0 ≤ (p−2)/4, this upper bound is negligible with respect to T−2β/(2β+1) and,

with (B.8), we get (3.12).

Finally, in the setting (iii), using the specific form of η, we get from (B.11) that

σ−2
+ R(N, T ) ≤

1

T

[(
log T

)3
log

(
⌈log T ⌉2

)
+ c1

(
1 +

(
log T

)3/2
)

T−c2(log T)
1/2

]
,

where c1 and c2 are positive constants only depending on ζ, φ(ζ), δ1, K̄ and L∗. For

any β > 0, this upper bound is negligible with respect to T−2β/(2β+1) and, with (B.8), we

get (3.12).

B.5 Proof of Lemma 3

Denote ω(x) = min{2−1/2,max{x,−2−1/2}}, so that ω(x)2 = min(1/2, x2) ≤ x2. The

function x 7→ exp(−x2) is concave on [−2−1/2, 2−1/2], so introducing ω(x) and then

using Jensen’s inequality, we get

∫
exp

(
−x2

)
dP (x) ≤

∫
exp

(
−ω2 (x)

)
dP (x) ≤ exp

−
(∫

ω (x) dP (x)

)2


= exp

−
(∫

xdP (x)

)2

+

(∫
xdP (x)

)2

−

(∫
ω (x) dP (x)

)2
 .

It only remains to show that (
∫

xdP(x))2 − (
∫
ω(x)dP(x))2 ≤ (a2 − 1/2)+, with the

assumption that P has support on [−a, a]. This is verified if a ≤ 2−1/2 so we now

assume a > 2−1/2. We write
(∫

xdP (x)

)2

−

(∫
ω (x) dP (x)

)2

=

∫
(x − ω (x)) (y + ω (y)) dP (x) dP (y) .
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We note that |x −ω(x)| = (|x| − 1/2)+ and |y +ω(y)| ∈ {2|y|, |y|+ 2−1/2}. We deduce that

the product (x−ω(x))(y+ω(y)) either take non-positive values or positive values of the

form 
2 |y|

(
|x| − 2−1/2

)
with |x| > 2−1/2, |y| < 2−1/2 ,(

|x| − 2−1/2
) (
|y| + 2−1/2

)
with |x| > 2−1/2, |y| > 2−1/2 .

Now, for x, y ∈ [−a, a] with a > 2−1/2, in the first case, we have 2|y|(|x| − 2−1/2) ≤

21/2(a − 2−1/2) ≤ a2 − 1/2 since 21/2 ≤ a + 2−1/2, and, in the second case, (|x| −

2−1/2)(|y| + 2−1/2) ≤ (a − 2−1/2)(a + 2−1/2) = a2 − 1/2. The lemma follows.

B.6 Proof of Lemma 4

We define ̂ as the (random) smallest index which minimizes dX (̂θ, vT {θ j}) over j ∈

{0, . . . , M} so that dX (̂θ, vT {θ̂}) = minθ∈{θ0,...,θM} dX (̂θ, vT {θ}). Note that dX,T (θ̂, θ j) ≤

dX(vT {θ̂}, θ̂) + dX (̂θ, vT {θ j}) ≤ 2dX (̂θ, vT {θ j}). Hence

max
j=0,...,M

Eθ j

[
d2

X (̂θ, vT {θ j})
]
≥

1

4
max

j=0,...,M
Eθ j

[
d2

X,T (θ̂, θ j)
]

≥
r2

4
max

j=0,...,M
Pθ j

({
̂ , j

}
∩

{
min
i:i, j

dX,T (θi, θ j) > r

})

≥
r2

4

(
1 − min

j=0,...,M
Pθ j

(
̂ = j

)
− max

j=0,...,M
Pθ j

(
min
i:i, j

dX,T (θi, θ j) ≤ r

))
.

Birgé’s lemma ([23, Corollary 2.18]) implies that

min
j=0,...,M

Pθ j

(
̂ = j

)
≤ max



(
2e

2e + 1

)
,



max
j=0,...,M

K(Pθ j
, Pθ0

)

log(1 + M)




,

so the lemma follows from Condition (5.5).

B.7 Proof of Lemma 5

By (5.10), we have θ j ∈ s1(δ) for all j = 0, . . . , M. Decompose the Hölder-exponent

β = k + α where k is an integer and α ∈ (0, 1]. Differentiating (5.7) k times, we have,

as in (5.9),

θ
(k)

j
(x) =

R0

mα
w

( j)

⌊mx⌋+1
K(k)

(
{mx} −

1

2

)
, for all x ∈ [0, 1].

Thus, for s, s′ in the same interval [ℓ/m, (ℓ + 1)/m] with ℓ = 0, . . . ,m − 1, we get

∣∣∣∣θ(k)

j
(s) − θ

(k)

j
(s′)

∣∣∣∣ ≤
R0

mα

∣∣∣∣∣∣K
(k)

(
m s − ℓ −

1

2

)
− K(k)

(
m s′ − ℓ −

1

2

)∣∣∣∣∣∣
≤ R0 |K|β |s − s′|α
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The same inequality then follows with R0 replaced by 2R0 for s, s′ in two such con-

secutive intervals. Now, if s, s′ are separated by at least one such interval, we have

|s − s′| ≥ m−1 and, using that K has support in (−1/2, 1/2), we have that |K(k)(x)| is

bounded by |K|β. We thus get in this case that

∣∣∣∣θ(k)

j
(s) − θ

(k)

j
(s′)

∣∣∣∣ ≤
2R0

mα
sup

−1/2≤x≤1/2

∣∣∣K(k)(x)
∣∣∣ ≤ 2R0 |K|β |s − s′|α .

The last two displays and (5.8) then yields θ j ∈ Λ1(β,R).

B.8 Proof of Lemma 6

We note that under (I-3), the likelihood ratio dPθ j
/dPθ0

of (Xs,T )s≤T reads

dPθ j

dPθ0

=

T∏

t=1

f
(
Xt,T − θ j((t − 1)/T )Xt−1,T

)

f
(
Xt,T − θ0((t − 1)/T )Xt−1,T

) .

Using that θ0 ≡ 0 by (5.6) and that, under Pθ j
, we have Xt,T = θ j((t − 1)/T )Xt−1,T + ξt,

we get

K
(
Pθ j
, Pθ0

)
= Eθ j

[
log

dPθ j

dPθ0

]

=

T∑

t=1

Eθ j

[
log

f (ξt)

f (θ j((t − 1)/T )Xt−1,T + ξt)

]

=

T∑

t=1

Eθ j

∫
log

(
f (u)

f (θ j((t − 1)/T )Xt−1,T + u)

)
f (u) du

Using Assumption (I-3) yields

K
(
Pθ j
, Pθ0

)
≤

T∑

t=1

Eθ j

[
κθ2

j

(
t − 1

T

)
X2

t−1,T

]
≤ κθ∗2

T∑

t=1

Eθ j

[
X2

t−1,T

]
. (B.12)

The series representation (5.2), the fact that ξ is centered with unit variance and (5.10)

imply that for all t = 0, . . . , T

Eθ j

[
X2

t,T

]
≤

(
1 − θ∗2

)−1
.

Using this bound and (5.10) in (B.12), we obtain

K
(
Pθ j
, Pθ0

)
≤

R2
0

e−2 κ T

(1 − δ2) m2β
.

The proof of Lemma 6 now follows by applying the first bound in (5.6).
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B.9 Proof of Lemma 7

The proof relies on an upper bound of d2
X,T

(θi, θ j) involving the noise (ξt). By the

expression of θ j in (5.9), we have

d2
X,T (θi, θ j) =

R2
0

Tm2β

T−1∑

t=0

X2
t,T

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) , (B.13)

where we denoted ϕ(t) = {mt/T } − 1/2 and k(t) = ⌊mt/T ⌋ + 1. Using (5.2) and (5.10),

we have, for all 0 ≤ t ≤ T − 1,

∣∣∣Xt,T

∣∣∣ ≥ |ξt | −

∞∑

j=1

θ∗ j
∣∣∣ξt− j

∣∣∣ ,

which implies

X2
t,T ≥ ξ

2
t − 2 |ξt |

∞∑

j=1

θ∗ j
∣∣∣ξt− j

∣∣∣ .

Inserting this bound in (B.13), we get

m2β

R2
0

d2
X,T (θi, θ j) ≥

1

T

T−1∑

t=0

ξ2
t

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) − RT , (B.14)

where

RT =
2e−2

T

T−1∑

t=0

∞∑

j=1

θ∗ j |ξt |
∣∣∣ξt− j

∣∣∣

Thus, with (B.14), the left-hand side of Inequality (5.11) is upper bounded by

Pθ j

min
i:i, j

1

T

T−1∑

t=0

ξ2
t

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) < 2A

 + P(RT > A) .

Using that ξ is centered with unit variance and then (5.10), we easily get that

Eθ j
[RT ] ≤

2e−2

T

T−1∑

t=0

∞∑

j=1

θ∗ j ≤
2e−2θ∗

1 − θ∗
≤

2R0e−3

(1 − δ)mβ
.

Hence, by Markov’s inequality, to conclude the proof, it now suffices to show that, for

A well chosen,

Pθ j

min
i:i, j

1

T

T−1∑

t=0

ξ2
t

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) < 2A

 ≤ ε . (B.15)

For k ∈ {1, . . . ,m}we define Jk = {⌊(k − 1)T/m⌋ + i : ⌈T/(4m)⌉ + 1 ≤ i ≤ ⌊3T/(4m)⌋}.

We observe that the cardinality of Jk is

Γ

(
T

m

)
=

⌊
3T

4m

⌋
−

⌈
T

4m

⌉
≥ 1 ,
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where the lower bound is a consequence of the assumption T ≥ 4m in the lemma.

Moreover, it is easy to check that we have |ϕ(t)| ≤ 1/4 for all index t ∈ Jk and that, for

each 1 ≤ k ≤ m, the set Jk is included in the set {1 ≤ t ≤ T − 1 : k(t) = k} (so that, in

particular, Jk ∩ Jk′ = ∅ for k < k′). It follows that random variables

S k =
1

Γ(T/m)

∑

t∈Jk

ξ2
t−1, for k = 1, . . . ,m

are i.i.d. By the monotonicity of K in R− and its symmetry we have

1

T

T−1∑

t=0

ξ2
t

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) ≥

1

T

m∑

k=1

(
w

(i)

k
− w

( j)

k

)2 ∑

t∈Jk

ξ2
t K2 (ϕ (t))

≥
K2(1/4)Γ(T/m)

T

m∑

k=1

(
w

(i)

k
− w

( j)

k

)2
S k.

From (5.6), for any i, j ∈ {1, . . . , M} there exist at least ⌈m/8⌉ values of k for which

(w
(i)

k
− w

( j)

k
)2 equals one in the above sum. Hence using the order statistics S (1,m) ≤

. . . ≤ S (m,m), we thus obtain that

min
i:i, j

1

T

T−1∑

t=0

ξ2
t

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) ≥

K2(1/4)Γ(T/m)

T

⌈m/8⌉∑

k=1

S (k,m)

≥
K2(1/4) m Γ(T/m)

16 T
S (⌊m/16⌋,m)

≥
K2(1/4)

128
S (⌊m/16⌋,m),

where we used Γ(T/m) ≥ T/(8m) for T/m ≥ 4 in the last inequality. Let us denote by

F the cumulative distribution function of S 1, which only depends on Γ(T/m) and on

the distribution of ξ0. For x > 0, we have

P
(
S (⌊m/16⌋,m) ≤ x

)
= P

(
Bin(m, F(x)) ≥

⌊
m

16

⌋)

≤
m

⌊m/16⌋
F(x) ≤ 32F(x).

Gathering the last two bounds, we get that

Pθ j

min
i:i, j

1

T

T−1∑

t=1

ξ2
t

(
w

(i)

k(t)
− w

( j)

k(t)

)2
K2 (ϕ (t)) ≤ 2A

 ≤ P
(
(S (⌊m/16⌋,m) ≤

256 A

K2(1/4)

)

≤ 32 F

(
256 A

K2(1/4)

)
.

Recall that Γ(T/m) ≥ 1 and note that S 1 admits a density, since ξ does. By the strong

law of large numbers, we further have that the random variable S 1 converges to 1

almost surely when Γ(T/m) goes to infinity, so there exists x0 > 0 depending only on

the density of ξ such that F(x0) ≤ ε/32 whatever the value of Γ(T/m) ≥ 1. Therefore,

there exists some A > 0, depending only on the distribution of ξ, such that (B.15) holds,

which achieves the proof.
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C From best predictor regret bounds to convex regret

bounds

We can improve upon the convex regret bound (2.13) when T is larger than N2 and the

noise Z either satisfies (N-2) for some positive ζ, or (N-1) with p > 4. The improvement

is based on the following deterministic lemma adapted from the proof of Theorem 6 in

[34].

Lemma 10. Let (xt)1≤t≤T be a real valued sequence and {(x̂
(i)
t )1≤t≤T , 1 ≤ i ≤ N} be a

collection of predicting sequences. For any α ∈ SN (defined by (2.4)), we set x̂
[α]
t =∑N

i=1 αi x̂
(i)
t . For any T ≥ N and η > 0, there exists an aggregated predictor (x̂t)1≤t≤T

such that,

1

T

T∑

t=1

(
x̂t − xt

)2
≤ inf
ν∈SN

1

T

T∑

t=1

(
x̂

[ν]
t − xt

)2
+

N

ηT
log

(
5T

N

)

+
3N

T
×

1

T

T∑

t=1

y2
t +

1

T

T∑

t=1

(
y2

t −
1

2η

)

+

, (C.1)

with yt = |xt| +max1≤i≤N |̂x
(i)
t |.

Proof. We set ε = N/T ≤ 1. Let SN,ε ⊂ SN be a minimal ε-net of the simplex SN

for the ℓ1 distance. We consider the aggregated predictor (x̂t)1≤t≤T obtained from the

collection of predictors {(x̂
[α]
t )1≤t≤T ,α ∈ SN,ε} with the weights (2.6). From Lemma 2,

we have

1

T

T∑

t=1

(
x̂t − xt

)2
≤ min
α′∈SN,ε

1

T

T∑

t=1

(
x̂

[α′]
t − xt

)2
+

log Nε

Tη
+

1

T

T∑

t=1

(
y2

t,ε −
1

2η

)

+

, (C.2)

where Nǫ = |SN,ε| and yt,ε = |xt| +maxα′∈SN,ε
|̂x

[α′]
t |.

Note that, for any α, α′ ∈ SN , we have

|̂x
[α′]
t − x̂

[α]
t | ≤

N∑

j=1

|α j − α
′
j| max

i=1,...,N
|̂x

(i)
t | .

Hence, for any α ∈ SN there exists α′ ∈ SN,ε such that |̂x
[α′]
t − x̂

[α]
t | ≤ εyt and

(
x̂

[α′]
t − xt

)2
=

(
x̂

[α′]
t − x̂

[α]
t

)2
+ 2

(
x̂

[α′]
t − x̂

[α]
t

) (
x̂

[α]
t − xt

)
+

(
x̂

[α]
t − xt

)2

≤ (ε2 + 2ε)y2
t +

(
x̂

[α]
t − xt

)2
.

Plugging this bound in (C.2) and using that, since SN,ε ⊂ SN , yt,ǫ ≤ yt, we obtain

1

T

T∑

t=1

(
x̂t − xt

)2
≤ inf
α∈SN

1

T

T∑

t=1

(
x̂

[α]
t − xt

)2
+

log Nε

Tη
+

3ε

T

T∑

t=1

y2
t

+
1

T

T∑

t=1

(
y2

t −
1

2η

)

+

. (C.3)
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For any 0 < ε ≤ 1, the cardinality Nε of a minimal ε-net ofSN can be upper-bounded by

(5/ε)N , see [17, Lemma A.4]. So, for the choice ε = N/T ≤ 1, we get the bound (C.1).

�

We can now investigate how the bound (2.13) can be improved when conditions

stronger than (N-1) with p = 4 are imposed on the noise Z.

Theorem C.1. Assume that Assumption (M-1) holds and let {(X̂
(i)
t )1≤t≤T , 1 ≤ i ≤ N} be

a collection of sequences of L-Lipschitz predictors with L satisfying (L-1).

(i) Assume that the noise Z satisfies (N-1) with a given p > 2 and let X̂ = (X̂t)1≤t≤T

denote the aggregated predictor defined in the proof of Lemma 10 with

η =
1

2m
2/p
p (1 + L∗)2 A2

∗

(
N

T
log

(
5T

N

))2/p

. (C.4)

For T ≥ N, we then have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ min

1≤i≤N

1

T

T∑

t=1

E

[(
X̂

(i)
t − Xt

)2
]
+C1

(
N

T
log

(
5T

N

))1−2/p

,

(C.5)

with C1 = 6m
2/p
p (1 + L∗)

2 A2
∗.

(ii) Assume that the noise Z fulfills (N-2) for some positive ζ and let X̂ = (X̂t)1≤t≤T

denote the aggregated predictor obtained using the weights (2.6) with

η =
ζ2

2A2
∗(L∗ + 1)2

(
log

(
T

log N

))−2

. (C.6)

For T ≥ N, we then have

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ inf
ν∈SN

1

T

T∑

t=1

(
X̂

[ν]
t − Xt

)2

+
2A2
∗(L∗ + 1)2

ζ2

N

T



(
log

(
T

log N

))2

log

(
5T

N

)
+
φ(ζ)

e

(
7 + log

(
T

log N

)) .

(C.7)

(Note that when N/T → 0, the term between curly brackets is equivalent to

(log T )3).

Proof. We define Yt = |Xt| +max1≤i≤N |X̂
(i)
t |.

Case (i). Following the same lines as in the proof of Theorem 2.1, we obtain that

E[Y2
t ] ≤ A2

∗(1 + L∗)
2m2 and E[(Y2

t − 1/(2η))+] ≤ (2η)p/2−1A
p
∗ (1 + L∗)

pmp. Hence, from

Lemma 10 we get

1

T

T∑

t=1

(
X̂t − Xt

)2
≤ inf
ν∈SN

1

T

T∑

t=1

(
X̂

[ν]
t − Xt

)2
+

3N

T
A2
∗(1 + L∗)

2m2

+
N

ηT
log

(
5T

N

)
+ (2η)p/2−1A

p
∗ (1 + L∗)

pmp . (C.8)
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Since m2 ≤ m
2/p
p , for η given by (C.4), the inequality (C.5) follows.

Case (ii). We set λ = ζ/(A∗(1 + L∗)). Following the same lines as in the proof of

Theorem 2.1, we obtain that E[Y2
t ] ≤ λ−2φ(ζ) and E[(Y2

t − 1/(2η))+] ≤ 2e−1λ−2(2 +

λ(2η)−1/2) e−λ(2η)−1/2

φ(ζ). Hence, from Lemma 10 we get that

1

T

T∑

t=1

E

[(
X̂t − Xt

)2
]
≤ inf
ν∈SN

1

T

T∑

t=1

(
X̂

[ν]
t − Xt

)2
+

N

ηT
log

(
5T

N

)

+
3N

λ2T
φ(ζ) +

2

e
λ−2

(
2 + λ(2η)−1/2

)
e−λ(2η)−1/2

φ(ζ) . (C.9)

Choosing η as in (C.6), we obtain (C.7). �

Remark 9. For p > 4, we observe that the bound (C.5) improves upon (2.13) when

N log(T/N) ≤ T (p−4)/(2p−4). Similarly, the bound (C.7) improves upon (2.13) when

T ≥ N2(log T )6.

Remark 10. The cardinality of a N/T -net of SN roughly scales as (T/N)N−1 with T ,

so the computational cost of the aggregated predictor X̂ of Lemma 10 is prohibitive.

Hence, the bounds (C.5) and (C.7) are of theoretical interest only.
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