
HAL Id: hal-00984035
https://hal.science/hal-00984035v3

Preprint submitted on 14 Nov 2015 (v3), last revised 26 Sep 2016 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

On the nonlinear dynamics of the traveling-wave
solutions of the Serre system

Dimitrios Mitsotakis, Denys Dutykh, John D. Carter

To cite this version:
Dimitrios Mitsotakis, Denys Dutykh, John D. Carter. On the nonlinear dynamics of the traveling-wave
solutions of the Serre system. 2015. �hal-00984035v3�

https://hal.science/hal-00984035v3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Dimitrios Mitsotakis
Victoria University of Wellington, New Zealand

Denys Dutykh
CNRS, Université Savoie Mont Blanc, France

John D. Carter
Seattle University, Washington, USA

On the nonlinear dynamics of the

traveling-wave solutions of the

Serre system

arXiv.org / hal



On the nonlinear dynamics of the
traveling-wave solutions of the Serre system

Dimitrios Mitsotakis∗, Denys Dutykh, and John D. Carter

Abstract. We numerically study nonlinear phenomena related to the dynamics of trav-

eling wave solutions of the Serre equations including the stability, the persistence, the in-

teractions and the breaking of solitary waves. The numerical method utilizes a high-order

finite-element method with smooth, periodic splines in space and explicit Runge-Kutta

methods in time. Other forms of solutions such as cnoidal waves and dispersive shock

waves are also considered. The differences between solutions of the Serre equations and

the Euler equations are also studied.
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1. Introduction

The Serre equations (also known as the Green–Naghdi or Su–Gardner equations) [17, 27,
28] approximate the Euler equations of water wave theory and model the one-dimensional,
two-way propagation of long waves. If a denotes a typical amplitude of a wave, d the mean
depth of the fluid, and λ a typical wavelength, then the Serre equations are characterized
by the parameters ε ≐ a/d = O(1) and σ ≐ d/λ ≪ 1, contrary to the Boussinesq equa-
tions which model the propagation of small-amplitude, long waves, i.e. ε ≪ 1 and σ ≪ 1,
when the Stokes number is S ≐ ε/σ2 = O(1). The Boussinesq equations are often called
weakly nonlinear, weakly dispersive equations while the Serre equations are often called
fully-nonlinear shallow-water equations. In dimensionless and scaled variables, the Serre
equations take the form:

ηt + ux + ε(ηu)x = 0 ,
ut + ηx + εuux − σ2

3h
[h3(uxt + εuuxx − ε(ux)2)]x = 0 , (1.1)

for x ∈ R, t > 0, along with the initial conditions

η(x,0) = η0(x) , u(x,0) = u0(x) . (1.2)

Here η = η(x, t) is the free surface displacement, while

h ≐ 1 + εη , (1.3)

is the total fluid depth, u = u(x, t) is the depth-averaged horizontal velocity, and η0, u0 are
given real functions, such that 1+ εη0 = h0 > 0 for all x ∈ R. In these variables, the location
of the horizontal bottom is given by y = −1. For a review of the derivation and the basic
properties of this system we refer to [2].

The Euler equations along with the model system (1.1) admit traveling wave solutions,
i.e. waves that propagate without change in shape or speed [3, 5, 20]. Solitary waves form
a special class of traveling wave solutions of these systems. The other important class of
traveling wave solutions is the class of cnoidal wave solutions which can be thought of as
the periodic generalization of solitary waves. Many Boussinesq-type equations are known
to possess solitary wave and periodic solutions, but do not admit nontrivial, closed-form
solutions. In contrast, the Serre equations admit closed-form solitary and cnoidal (periodic)
wave solutions. The solitary wave solutions of the Serre system traveling with constant
speed cs are given by

hs(ξ) ≐ hs(x, t) = (a0 + a1sech2(Ks ξ))/σ , (1.4)

us(ξ) ≐ us(x, t) = cs (1 − a0

σhs(ξ))/ǫ , (1.5)

where ξ = x − cst,
Ks =

√
3a1

4σa20c
2
s

, cs =
√
a0 + a1
σ

,
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a0 > 0, and a1 > 0. By taking a0 = σ and a1 = εσAs the formulas for the classical solitary
waves that are homoclinic to the origin are obtained.

The cnoidal waves of the Serre system traveling with constant speed cc are given by

hc(ξ) ≐ hs(x, t) = (a0 + a1dn2(Kc ξ, k))/σ , (1.6)

uc(ξ) ≐ us(x, t) = cc (1 − h0

h(ξ))/ǫ , (1.7)

where

h0 = a0 + a1E(m)
K(m) ,

Kc =
√
3a1

2
√
a0(a0 + a1)(a0 + (1 − k2)a1) ,

cc =
¿ÁÁÀa0(a0 + a1)(a0 + (1 − k2)a1)

σh20
,

k ∈ [0,1], m = k2, a0 > 0, and a1 > 0. Here K and E are the complete elliptic integrals of the
first and second kind respectively. Note that (1.4)–(1.5) are the k → 1 limit of (1.6)–(1.7).

Another fundamental property of the Serre system is the conservation of the energy
which plays also the role of the Hamiltonian,

H(t) = 1
2
∫ ∞

−∞
[εhu2 + εσ2

3
h3u2x + εη2] dx , (1.8)

in the sense that H(t) = H(0) for all t > 0 up to the maximal time T of the existence of
the solution.

In the theory of traveling waves there are two basic kinds of stability: orbital and
asymptotic stability. A traveling-wave solution φc(x − ct) is said to be orbitally stable
if given any ǫ > 0, there exists a δ > 0 such that infγ ∥φ(x, t) − φc(x − ct + γ)∥ < ǫ for
t > 0 whenever inf ∥φ(x,0) − φc(x)∥ < δ. This means that if the perturbed solution φ is
initially close to the traveling wave φc then it will remain close to the set of translates
of the solution forever. A traveling-wave solution is said to be asymptotically stable if
inf ∥φ(x,0) − φc(x)∥ < δ then

inf ∥φ(x, t) − φc(x − ct)∥→ 0 , as t→ +∞ . (1.9)

In this paper we study the problem of the nonlinear stability (orbital and asymptotic) of
the traveling waves of the Serre system by using numerical techniques. We provide numer-
ical evidence of stability with respect to certain classes of perturbations. Phenomena such
as perturbations of the traveling waves, perturbations of the Serre system and interactions
of traveling waves are studied analyzing the stability properties of the waves at hand. We
also study the interactions of dispersive shock waves (DSWs) in the Serre system. The
physical relevance of the Serre equations is addressed whenever possible.

The paper is organized as follows. The numerical method is presented briefly in Section 2.
The compatibility of the solitary waves of the Serre and the Euler systems is examined in
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Section 3. The head-on collision of solitary waves is studied in Section 4. A number
of issues related to the stability of the traveling waves are discussed in Sections 5. The
interaction of DSWs is presented in Section 6.

2. The numerical method

The numerical method of preference is a high-order Galerkin / Finite element method
(FEM) for the spatial discretization combined with the classical fourth-order explicit Runge–
Kutta method in time. In some cases adaptive time-stepping methods, such as the Runge–
Kutta–Fehlberg, the Cash–Karp and the Dormand–Prince methods [18], were employed to
verify that there are no spurious solutions or blow-up phenomena. This numerical scheme
has been shown to be highly accurate and stable since there is no need for a restrictive
condition on the step-size but only mild conditions of the form ∆t ≤ C∆x cf. [23]. The
conservation of the Hamiltonian was monitored and was usually conserved to within 8 to
10 significant digits. In order to ensure the accuracy of the numerical results obtained with
the FEM we compared most with the analogous results obtained with the pseudo-spectral
method described and analyzed in [13]. The experiments presented in this paper also serve
as numerical benchmarks for the efficacy of the numerical scheme.

We consider (1.1) with periodic boundary conditions and, for simplicity, assume ε = σ = 1.
We rewrite (1.1) in terms of (h,u) rather than (η, u). This is done by using (1.3) and yields
the initial-boundary value problem

ht + (hu)x = 0 ,
ut + hx + uux − 1

3h
[h3(uxt + uuxx − (ux)2]x = 0 ,

∂ixh(a, t) = ∂ixh(b, t), i = 0,1,2, . . . ,
∂ixu(a, t) = ∂ixu(b, t), i = 0,1,2, . . . ,
h(x,0) = h0(x) ,
u(x,0) = u0(x) ,

(2.1)

where x ∈ [a, b] ⊂ R and t ∈ [0, T ]. Considering a spatial grid xi = a + i ∆x, where
i = 0,1,⋯,N , ∆x is the spatial mesh length, and N ∈ N, such that ∆x = (b − a)/N . We
define the space of the periodic cubic splines

S = {φ ∈ C2
per[a, b]∣φ∣[xi,xi+1] ∈ P3, 0 ≤ i ≤ N − 1} ,

where C2
per = {f ∈ C2[a, b]∣f (k)(a) = f (k)(b), 0 ≤ k ≤ r} and Pk is the space of polynomials

of degree k. The semi-discrete scheme is reduced to finding h̃, ũ ∈ S such that

(h̃t, φ) + ((h̃ũ)x, φ) = 0 ,B(ũt, φ; h̃) + (h̃(h̃x + ũũx), φ) + 1
3
(h̃3(ũũxx − (ũx)2), φx)) = 0 , (2.2)
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where B is defined as the bilinear form that for fixed h̃ is given by

B(ψ,φ; h̃) ≐ (h̃ψ,φ) + 1

3
(h̃3ψx, φx) for φ,ψ ∈ S . (2.3)

The system of equations (2.2) is accompanied by the initial conditions

h̃(x,0) = P{h0(x)} , ũ(x,0) = P{u0(x)} , (2.4)

where P is the L2-projection onto S satisfying (Pv,φ) = (v,φ) for all φ ∈ S. Upon choosing
appropriate basis functions for S, (2.2) is a system of ODEs. For the integration in time of
this system, we employ the classical, four-stage, fourth-order explicit Runge–Kutta method,
which is described by the following Butcher tableau:

A b

τ
=

0 0 0 0 1/6

1/2 0 0 0 1/3

0 1/2 0 0 1/3

0 0 1/2 0 1/6

0 1/2 1/2 1

. (2.5)

3. Solitary waves

The Serre system and the Euler equations both possess solitary waves that decay ex-
ponentially to zero at infinity. Although the justification of the Serre equations ensures
that its solutions will remain close to Euler solutions, it is not known whether an Euler
solitary wave propagates as a Serre solitary wave that differs only by a small amount from
the original one, when it is used as initial condition to the Serre system.

While the Serre system admits solitary wave solutions of the form given in (1.4)–(1.5),
there are no known closed-form solitary wave solutions of the Euler system. For this reason
we compute Euler solitary waves numerically. The numerical method is a Petviashvili
iteration applied to the Babenko equation, [8, 12, 25]. In order to integrate the full Euler
equations in time, we employ the method of holomorphic variables. This formulation was
first coined by L. Ovsyannikov (1974) [24] and developed later by A. Dyachenko et al.
(1996) [15] in deep waters. The extension to the finite depth case was given in [22]. The
resulting formulation is discretized in the conformal domain using a Fourier-type pseudo-
spectral method. For the time integration we employ an embedded Runge-Kutta scheme
of 5(4)th order along with the integrating factor technique to treat the dispersive linear
part.

In order to demonstrate the ability of the Serre equations to approximate the Euler
equations, we first compare the characteristics of two solitary waves with speeds cs = 1.1
and cs = 1.2. Figure 1 includes plots of the Serre and Euler solitary wave solutions with
these speeds. The plots demonstrate that the Euler and Serre solitary waves are not
identical and that the differences are more pronounced at the higher speed. Specifically, a
10% increase in the speed leads to an increase in solitary wave amplitude of almost 50%
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Figure 1. Solitary waves for the Serre system and Euler equations.

while the normalized difference between the Euler and Serre solitary waves increased by
more than a factor of two. The amplitude of several Euler and Serre solitary waves are
presented in Table 1.

cs Euler Serre

1.01 0.02012 0.0201

1.05 0.10308 0.1025

1.1 0.21276 0.2100

1.15 0.33007 0.3225

1.2 0.45715 0.4400

1.28 0.70512 0.6384

Table 1. Amplitudes of the Euler and Serre solitary waves corresponding
to different speeds.
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Figure 2. The evolution of an Euler solitary wave with cs = 1.1 when used as

initial condition in the Serre system.

Next, we examine how the solitary waves of the Euler system propagate when they are
used as initial conditions to the Serre system. Specifically, we use the numerically generated
solitary wave solutions of the Euler equations and the exact formula u = csη/(1+η) to define
the initial conditions η0 and u0 for the Serre equations. Then, we numerically integrate
the Serre system. Figures 2 and 3 contain plots of the solutions at t = 150 obtained using
the Euler solitary waves with cs = 1.1 and cs = 1.2. These figures demonstrate that the
difference between the Euler solitary wave and numerical Serre solution is greater when
cs = 1.2 than when cs = 1.1. We note that the value cs = 1.2 is a relatively large value since
the largest value we can use to generate an Euler solitary wave is cs = 1.29421.

To study further the differences between the Euler and Serre solitary waves, we consider
three quantities pertinent to the propagation of the solitary waves: the amplitude, shape

and phase. First, we define the normalized peak amplitude error as

AE[F ] ≐ ∣F (x∗(t), t) −F (0,0)∣∣F (0,0)∣ , (3.1)
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Figure 3. The evolution of an Euler solitary wave with cs = 1.2 when used as

initial condition in the Serre system.

where x∗(t) is the curve along which the computed solution F (x, t) achieves its maximum.
Monitoring AE as a function of time, we observe that although the Euler solitary waves
do not propagate as traveling waves to the Serre system, their amplitude asymptotically
tends towards a constant indicating that they evolve into a solitary wave solution of the
Serre equation, see Figures 4 and 5.

We define the normalized shape error as

SE[F ] ≐ log10(min
τ
ζ(τ)) , ζ(τ) ≐ ∥F (x, tn) − Fexact(x, τ)∥∥Fexact(x,0)∥ . (3.2)

The minimum in (3.2) is attained at some critical τ = τ∗(tn). This, in turn, is used to
define the phase error as

PE[F ] ≐ log10(∣τ∗ − tn∣). (3.3)

In order to find τ∗, we use Newton’s method to solve the equation ζ ′′(τ) = 0. The initial
guess for Newton’s method is chosen as τ 0 = tn −∆t. Figures 4 and 5 contain plots of the
shape and phase errors. We observe that the shape error is of O(10−3) when cs = 1.1 and of
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Figure 4. The amplitude, shape and phase error of the Euler’s solitary wave of

cs = 1.1 propagating with Serre equations. See also Figure 2.

O(10−2) when cs = 1.2. The phase error increases since the solitary waves propagate with
different speeds. It is remarkable that the phase speeds of the new solitary waves of the
Serre system are almost the same as the phase speeds of the Euler’s solitary waves. For
example, the speeds are cs ≈ 1.09 and cs ≈ 1.19. Similar comparisons have been performed
for other model equations such as the classical Boussinesq system and the results are
comparable [4, 11].

4. Head-on collision of solitary waves

The head-on collision of two solitary waves of the Serre system has previously been stud-
ied numerically in [13, 22, 23]. The interaction is more inelastic than in weakly nonlinear
models such as the classical Boussinesq system [4]. Highly nonlinear interactions result in
the generation of large amplitude dispersive tails.
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Figure 5. The amplitude, shape and phase errors of the Euler’s solitary wave of

cs = 1.1 propagating with Serre equations. See also Figure 3.

4.1. Physical relevance of the Serre system

In order to study the physical relevance of the head-on collision of two Serre solitary
waves, we compare the Serre numerical solution with the experimental data of [9]. In this
experiment, the Serre system is written in dimensional and unscaled form with an initial
condition that includes two counter-propagating solitary waves in the interval [−5,5]. The
speeds of these solitary waves are cs,1 = 0.7721m/s and cs,2 = 0.7796m/s. Their amplitudes
are A1 = 0.0108 m and A2 = 0.0120 m respectively. (In this experiment the depth d =
0.05 m.). At t = 18.3 s these solitary waves achieved their maximum values at x1 = 0.247 m
and x2 = 1.348 m respectively. Figures 6 and 7 include comparisons between the numerical
solution and experimental data. The agreement between the numerical results and the
experimental data is impressive. The agreement in the generated dispersive tails in Figure 7
is even more impressive. Such agreement cannot be found in the case of head-on collisions
of solitary waves of Boussinesq type models, [14], indicating that the high-order nonlinear
terms are important in studying even these small-amplitude solutions. Finally, we mention
that the maximum amplitude of the solution observed in Figure 6(c) during the collision
is smaller than the real amplitude, possibly, because of a splash phenomenon that cannot
be described by any model (see also [14]).
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Figure 6. Comparison of the head-on collision of two solitary waves of the Serre

system with experimental data.

4.2. Comparison with the Euler equations

We now compare a head-on collision of two unequal solitary waves via numerical solutions
of the Serre and Euler equations. For both models, we consider a right-traveling solitary
wave with cs = 1.1 and a left-traveling solitary wave with cs = 1.2. These solitary waves
are initially translated so that the maximum peak amplitudes are achieved at x = −100
and x = 100 respectively. Results from the numerical simulations are included in Figures 8
and 9. Both models show similar behavior, however the maximum amplitude observed
during the collision using the Euler equations is larger than in the Serre system. Also the
interaction in the Euler equations lasts longer and therefore a larger phase shift is observed.
Figure 9 shows that the leading waves of the dispersive tails are almost identical in the
two models, but the amplitude of the tails in the Euler system decay to zero more slowly
than the amplitude of the tails in the Serre system. These numerical simulations verify the
ability of the Serre system to accurately model head-on collisions of solitary waves. They
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Figure 7. (Cont’d) Comparison of the head-on collision of two solitary waves of
the Serre system with experimental data.

also show that the Serre system is consistent with the Euler equations during and after the
head-on collision with almost identical solutions.

5. Stability of traveling waves

The previous experiment of the head-on collision of two solitary waves indicates that the
solitary waves are robust. In this section, we present the behavior of a solitary wave under
small perturbations. We explore the effects of modifying some of the high-order terms of
the Serre system. We show that modifying one such term one can produce regularized shock
waves, as opposed to classical dispersive shock waves. Finally, we examine the stability of
the cnoidal wave solutions.
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Figure 8. Comparison between the head-on collisions of two solitary waves for

the Serre and Euler systems.

5.1. Stability of solitary waves

We consider perturbations of the amplitude, perturbations of the wavelength, and random-
noise perturbations of the shape. As we show below, all of the solitary waves we tested
were stable to all of the perturbations we considered.

We chose a solitary wave with speed cs = 1.4 and amplitude A = 0.96 for all numerical
simulations in this section. We perturb the amplitude by multiplying the pulse by a
parameter p such that

hp(x,0) = 1 + p ⋅ a1sech2(Ks x) , (5.1)

while keeping the velocity component of the solution unperturbed as in (1.5). When p = 1.1
the initial condition sheds a small-amplitude dispersive tail and results in a new solitary
wave with amplitude A = 1.02050. Figure 10 presents the initial condition and the resulting
solution at t = 130. Similar observations resulted in all cases we tested.
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Figure 9. (Cont’d) Comparison between the head-on collisions of two solitary

waves for the Serre and Euler systems.

We consider perturbations of the wavelength Ks by taking the initial condition for h to
be

hp(x,0) = 1 + a1sech2(p ⋅Ks x) . (5.2)

The results in this case were very similar to the results we obtained when we perturbed
the amplitude of the solitary waves and so we don’t show the results here. Table 2 shows
the amplitudes of the solitary waves that result from various amplitude and wavelength
perturbations.

Similar results were obtained when non-uniform perturbations were used. In order to
consider non-uniform perturbations, we used pseudo-random noise distributed uniformly
in [0,1]. Denoting the noise function by N(x), the perturbed solitary wave is given by

hp(x, t) = 1 + (1 − p N(x)) ⋅ a1sech2(Ks x − cst) , (5.3)

where the parameter p determines the magnitude of the noise. Figure 11 shows the per-
turbed solitary wave with p = 0.2. This type of perturbation is not only non-uniform, but
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Figure 10. The perturbed solution generated by the perturbation of the amplitude

of the solitary wave with cs = 1.4, A = 0.96, and perturbation parameter p = 1.1.

p Amplitude perturbation Wavelength perturbation

0.8 0.83860 1.02710

0.9 0.89936 0.99225

1.1 1.02050 0.93017

1.2 1.08087 0.90260

Table 2. Amplitudes of the uniformly perturbed solitary waves.

is also non-smooth. Nevertheless this initial condition is the L2-projection of the actual
solution which ensures the required by the FEM smoothness. Figure 12 shows the evolu-
tion of this perturbed solitary wave. The solution consists of a new solitary wave and a
small-amplitude dispersive tail. It does not differ qualitatively from the solution shown in
Figure 10. The values of the amplitudes of the emerging solitary waves for various values
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Figure 11. The solitary wave perturbed by pseudo-random noise with p = 0.2.
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Figure 12. Evolution of the initial condition shown in Figure 11 with p = 0.2.

of p are presented in Table 3. These results suggest that the solitary waves of the Serre
system are orbitally stable with respect to this class of perturbations.
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p Amplitude

−0.2 0.90110

−0.1 0.93055

0.1 0.98942

0.2 1.01883

0.5 1.10694

Table 3. Amplitudes of the randomly perturbed solitary waves.

5.2. Persistence of the solitary waves

One other aspect related to the stability of the solitary waves is their ability to persist
when some of the high-order terms in the PDE are perturbed. In this section, we examine
if a Serre solitary wave retains its shape when some of the terms of the Serre system are
perturbed. Introducing the parameters α, β, and γ, we rewrite the Serre equations in the
following form

ηt + ux + (ηu)x = 0 ,
ut + ηx + uux −

1
3h
[h3(αuxt + βuuxx − γ(ux)2)]x = 0 . (5.4)

The unperturbed Serre equations correspond to α = β = γ = 1. We first study the persistence
of the solitary waves when the system is perturbed by perturbing the parameters α, β, γ
and considering a solitary wave of the unperturbed system as an initial condition. In this
section we use the solitary wave (1.4)–(1.5) with cs = 1.4 as an initial condition. If α = 0.9,
or if β = 0.9, or if γ = 0.9 the solitary wave evolves in a manner similar to the amplitude
perturbations in Section 5.1. The new solitary waves are very similar to the unperturbed
solitary wave. This further indicates that the solitary waves of the Serre system are stable.

More interesting phenomena is observed when the solitary waves are used as initial con-
ditions to systems with small values of the parameters α, β and γ. When all the three
parameters are very small, the solutions tend to break into dispersive shock waves or other
forms of undular bores. In the first numerical simulation, we consider α = β = γ = 0.01.
This is similar to the case of the small dispersion limit where the weakly nonlinear terms
are dominant. Figure 13 demonstrates that the solution becomes a dispersive shock. This
phenomenon has been previously observed in dispersive systems, cf. [14, 16, 21]. Unex-
pectedly, taking the parameters β and γ to be very small, i.e. β = γ = 0.001 and keeping
the parameter α = 1, the solitary wave persists and evolves into a new solitary wave which
is similar to the unperturbed solitary wave qualitatively similar to 5.1. This persistence
is remarkable because the solitary wave remains almost the same even if two of the most
important terms have been almost eliminated. If α = β = 1 and γ = 0.001 or if α = γ = 1
and β = 0.001 the behavior is similar.

The behavior changes dramatically if large perturbations α are considered. The results
from the simulation with α = 0.001 and β = γ = 1 is shown in Figure 14. In this case, the
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Figure 13. The evolution of a solitary wave of a perturbed system (α = β = γ = 0.01).

initial condition breaks into different waves but instead of forming a dispersive shock wave,
it forms a new kind of regularized shock wave. This suggests a new breaking mechanism by
the elimination of the uxt term. Similar dissipative behavior has been observed in nonlinear
KdV-type equations where some high-order nonlinear terms introduce dissipation to the
system [6].

5.3. Stability of Cnoidal waves

We follow the work of Carter & Cienfuegos [7] in order to study the linear stability of
the solutions given in (1.6)–(1.7). We enter a coordinate frame moving with the speed of
the solutions by defining χ = x − cc t and τ = t. In this moving frame, the Serre equations
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Figure 14. The evolution of a solitary wave of a perturbed system and the

generation of a regularized shock (α = 0.001, β = γ = 1).

are given by

hτ − cchχ + (hu)χ = 0 ,
uτ − ccuχ + uuχ + hχ −

1
3h
(h3(uχτ − ccuχχ + uuχχ − (uχ)2))

χ
= 0 , (5.5)

and the solution given in (1.6)–(1.7) simplifies to the following time-independent solution

h = h0(χ) = a0 + a1dn2(Kcχ,k) ,
u = u0(χ) = cc (1 − h0

h(χ)) . (5.6)

We consider perturbed solutions of the form

hpert(χ, τ) = h0(χ) + µh1(χ, τ) +O(µ2) ,
upert(χ, τ) = u0(χ) + µu1(χ, τ) +O(µ2) , (5.7)
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where h1 and u1 are real-valued functions and µ is a small real parameter. Substituting
(5.7) into (5.5) and linearizing leads to a pair of coupled, linear partial differential equations
that are constant coefficient in τ . Without loss of generality, assume

h1(χ, τ) = H(χ)eΩτ
+ c.c. ,

u1(χ, τ) = U(χ)eΩτ
+ c.c. ,

(5.8)

where H(χ) and U(χ) are complex-valued functions, Ω is a complex constant, and c.c.
denotes complex conjugate. If Ω has a positive real part, i.e. if Re(Ω) > 0, then the
perturbations h1 and u1 grow exponentially in τ and the solution is said to be unstable.

Substituting (5.8) into the linearized PDEs gives

L( H
U
) = ΩM( H

U
) , (5.9)

where L andM are the linear differential operators defined by

L = ( −u′0 + (cc − u0)∂χ −η′0 − η0∂χL21 L22 ) ,
M = ( 1 0

0 1 − η0η
′
0∂χ −

1
3
η20∂χχ

) , (5.10)

where prime represents derivative with respect to χ and

L21 = −η′0(u′0)2 − ccη′0u′′0 − 2

3
ccη0u

′′′
0 + η

′
0u0u

′′
0 −

2

3
η0u

′
0u
′′
0 +

2

3
η0u0u

′′′
0 + (η0u0u′′0 − g − η0(u′0)2 − ccη0u′′0)∂χ , (5.11)

L22 = −u′0 + η0η′0u′′0 + 13η20u′′′0 + (cc − u0 − 2η0η′0u′0 − 1

3
η20u

′′
0)∂χ +

(η0η′0u0 − ccη0η′0 − 1

3
η20u

′
0)∂χχ + (13η20u0 − 1

3
ccη

2
0)∂χχχ . (5.12)

The Fourier–Floquet–Hill method described in Deconinck & Kutz [10] is then used to
solve the differential eigenvalue problem given in (5.9). This method establishes that all
bounded solutions of (5.9) have the form

( H
U
) = eiρχ ( HP

UP
) , (5.13)

where HP and UP are periodic in χ with period 2K/Kc and ρ ∈ [−πKc/(4K), πKc/(4K)].
Using this method, Carter & Cienfuegos established that solutions of the form given

in (5.6) with sufficiently small amplitude and steepness are spectrally stable and solutions
with sufficiently large amplitude or steepness are spectrally unstable. For example, the
solution with a0 = 0.3, a1 = 0.2 and k = 0.75 is unstable with respect to the perturbation
shown in Figure 15. The period of this perturbation is twelve times the period of the exact
solution (ρ = 1/12). The theory establishes that the magnitude of this perturbation will
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Figure 15. Unstable perturbations corresponding to the solution given in

(1.6)–(1.7) with a0 = 0.3, a1 = 0.2 and k = 0.75.

grow like e0.00569t. We corroborated this result by using the following perturbation-seeded
solution as the initial condition in our Serre solver

hpert(x,0) = h(x,0) + 10−7h1(x) ,
upert(x,0) = u(x,0) + 10−7u1(x) . (5.14)

Here (h(x,0), u(x,0)) is the solution given in equations (5.6) with a0 = 0.3, a1 = 0.2 and

k = 0.75 and (h1(x), u1(x)) is the perturbation shown in Figure 15. Figure 16 contains a
plot of the magnitude of the first Fourier mode of the solution versus t. This mode initially
(up to t = 1500) grows exponentially with a rate of 0.00577, very close to the rate predicted
by the linear theory. However after more time, the solution returns to a state close to the
initial one. The first portion of this recurrence phenomenon is depicted in Figure 17. Note
that the solution at t = 2870 has nearly returned to its initial state. Similar behavior has
been observed to other shallow water models by Ruban [26] and it is referred to as the
Fermi-Pasta-Ulam recurrence.
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Figure 16. The magnitude of the first Fourier mode of the perturbation versus time.
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Figure 17. The periodic instability of the perturbed cnoidal wave.
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6. Dispersive shock waves

A simple DSW traveling to the right can be generated using the Riemann initial data,
cf. [16],

h(x,0) = { h−, for x < 0
h+, for x > 0 , u(x,0) = { u−, for x < 0

u+, for x > 0 , (6.1)

with the compatibility condition (Riemann invariant)

u−

2
−

√
h− = u+

2
−

√
h+ . (6.2)

DSWs can also be generated during the dam-break problem simulation. In this case, the
initial data for h(x,0) are the same as in (6.1), but there is no flow at t = 0, i.e. , u(x,0) = 0.
As shown in [16], this generates two counter-propagating DSWs, one on each side of the
“dam”, and two rarefaction waves that travel toward the center. We consider the initial
condition for h to be a smooth step function that decays to zero as ∣x∣ →∞. Specifically,
we choose

η(x,0) = 1

2
η0 [1 + tanh(x0 − ∣x∣

2
)] , (6.3)

where η0 = 0.1, x0 = 350, and u(x,0) = 0. A plot of this initial condition is included in
Figure 18. Both the Euler and Serre equations generate two counter propagating DSWs
and two rarefaction waves. Figure 18 demonstrates that the amplitude of the leading wave
for both solutions is almost the same. For example, the amplitude of the Euler leading
wave at t = 200 is A = 0.06372 while the amplitude of the Serre leading wave at t = 200
is A = 0.06356. Although the leading waves have almost the same amplitudes, the phase
speeds are slightly different. The difference in phase speeds is demonstrated in Figure 18.

After verifying that the Serre system has dispersive shock waves that are comparable
with the full Euler equations, we examine the interactions of simple DSWs starting with the
head-on collision. For the head-on collision we again consider two initial waveforms similar
to (6.1) but translated as is shown in Figure 19(a). These step functions generate two
counter-propagating waves that begin to interact at approximately t = 27. The collision is
inelastic. After the collision there are two DSWs propagating in different directions on the
trailing edge of the DSWs.

We now consider overtaking collisions of DSWs. For this situation we consider double-
step initial conditions as is shown in Figure 20. The first step has amplitude 0.1 while the
shorter step has amplitude 0.05. This initial condition generate two DSWs that propagate
to the right. Because shorter DSWs propagate with smaller phase speeds than taller DSWs,
the taller DSW approaches the shorter one and they interact. The interaction is so strong
that the symmetry of the leading wave of both DSWs is destroyed. The two waves appear
to merge and propagate as one single-phase DSW. Similar behavior has been observed in
NLS-type and KdV-type equations [1, 19]. Finally, we mention that the solutions shown
in Figures 19 and 20 are magnifications of the actual solutions. The rest of the solution,
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Figure 18. The dam break problem.

not shown in these figures, consists of dispersive rarefaction waves that we do not study in
this paper. For more information see [23].
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